
Tutorial #2: presented by members of the IEEE P1801 WG

Using UPF for
Low Power Design and Verification

John Biggs

Erich Marschner

Sushma Honnavara-Prasad

David Cheng

Shreedhar Ramachandra

Jon Worthington

Nagu Dhanwada

Welcome and Introductions

Erich Marschner
Verification Architect

Mentor Graphics

3 March 2014Using UPF for Low Power Design and Verification 2© 2014 Mentor Graphics

Tutorial #2

This tutorial presents the latest information on the Unified
Power Format (UPF), based on IEEE Std 1801-2013 UPF
which was released in late May of last year.

Beginning with a review of the concepts, terminology,
commands, and options provided by UPF, it will cover the
full spectrum of UPF capabilities and methodology, from
basic flows through advanced applications, with particular
focus on incremental adoption of UPF.

Tutorial attendees will come away with a thorough
understanding of UPF usage in low power design and
verification and its role in energy aware system design.

3 March 2014Using UPF for Low Power Design and Verification 3© 2014 Mentor Graphics

Takeaways

Why power is important - and challenging

How power affects implementation decisions

What UPF is and what problems it addresses

How UPF enables early consideration of power

UPF concepts, commands, semantics, and usage

UPF methodology for modeling, design, integration

How UPF can be adopted most effectively

What else we need to address related to power

3 March 2014Using UPF for Low Power Design and Verification 4© 2014 Mentor Graphics

Presenters

 John Biggs, ARM Ltd.
– Chair, IEEE P1801 UPF Work Group

 Erich Marschner, Mentor Graphics
– Vice-Chair, IEEE P1801 UPF Work Group

 Sushma Honnavara-Prasad, Broadcom
– Secretary, IEEE P1801 UPF Work Group

 David Cheng, Cadence
– Member, IEEE P1801 UPF Work Group

 Shreedhar Ramachandra, Synopsys
– Member, IEEE P1801 UPF Work Group

3 March 2014Using UPF for Low Power Design and Verification 5© 2014 Mentor Graphics

Other Contributors

 Jon Worthington, Synopsys
– Member, IEEE P1801 UPF Work Group

 Nagu Dhanwada, IBM
– Member, Si2 LPC and LPSG

3 March 2014Using UPF for Low Power Design and Verification 6© 2014 Mentor Graphics

Agenda
 Welcome & Introductions

– Erich Marschner

 Low Power Design and
Verification Challenges
– Erich Marschner

 Introduction to UPF
– John Biggs

 UPF Basic Concepts and
Terminology
– Shreedhar Ramachandra

 UPF Semantics and Usage
– Erich Marschner

 BREAK

 Hard IP Modeling with Liberty
and Verilog
– Sushma Honnavara-Prasad

 Power Management Cell
Commands and Power Models
– David Cheng

 Low Power Design Methodology
for IP Providers
– John Biggs

 SoC-Level Design and
Verification Challenges
– Sushma Honnavara-Prasad

 Adopting UPF
– Sushma Honnavara-Prasad
– Shreedhar Ramachandra

 Where We Go From Here
– John Biggs

3 March 2014Using UPF for Low Power Design and Verification 7© 2014 Mentor Graphics

Low Power Design and
Verification Challenges*

Erich Marschner
Verification Architect

Mentor Graphics

3 March 2014Using UPF for Low Power Design and Verification 8

* With slides contributed by Nagu Dhanwada and Sushma Honnavara-Prasad

© 2014 Mentor Graphics

Low Power Design Challenges

Power density is increasing every process node
– Higher performance
– Lower area
– > Designs are thermally limited
– > No single technique serves all purposes
– > Aggressive power gating is used to minimize leakage

Number of power domains and supplies on chip is
increasing
– Early architecture decisions impacts power, so early power

exploration is critical

3 March 2014Using UPF for Low Power Design and Verification 9© 2014 Broadcom

SoC Low Power Design Challenges

Reducing power with:
– low area overhead
– high performance
– low schedule impact

Early power estimation and budgeting
– Silicon variation
– Correlation of models with Si data
– Lack of use case vectors

Power aware flow
– Making all phases of design power aware
– Capturing power intent accurately
– Ensuring power intent is correctly implemented
– Verifying power intent with firmware/Software drivers

© 2014 BroadcomUsing UPF for Low Power Design and Verification 3 March 2014 10

3 March 2014Using UPF for Low Power Design and Verification

Three Phases of a Power Aware Flow

 ESL (algorithm and
system models)
– Functionality
– Architecture
– TLM
– Firmware

 Design (RTL and IP)
– RTL module

design/selection
– IP selection and

Chip integration

 Implementation
– Synthesis
– Physical design

ESL

Design &
mapping

Analysis &
Optimization Validation

Design
Design &

integration
Analysis &

optimization
Verification
and test

Implementation

Optimization Analysis &
closure

Verification &
test

11© 2014 IBM

Power Analysis is Required Throughout*

3 March 2014Using UPF for Low Power Design and Verification 12

Architecture

High level
models

(arch. verif.)

RTL

Tech. map

Place & route

Signoff

Design
closure

Static tim
ing (C

PS)
TPC

/IPC
 perform

ance

Floorplan

Greatest power
savings opportunity
(design exploration)

Need
faster analysis,
can afford lower
accuracy / detail

Automated / Manual
power reduction

Need
higher accuracy, can

afford longer run times

Tim
ing, noise,

reliability analysis

Pow
er consum

ption analysis

Pow
er m

inim
ization

Pow
er grid / therm

al analysis
* But with varying criteria:

© 2014 IBM

No Single Metric Handles Everything

 Battery Life
–Total chip power over long time period

 Package Inductance
–Total chip power over short time period

 Reliability / Electromigration
–Very local power over a very long time period

 Static IR Drop
–Local power over moderate time period

 Decap / Transient IR drop
–Local power over very short time periods

3 March 2014Using UPF for Low Power Design and Verification 13© 2014 IBM

Power-Awareness Needed in Each Phase

3 March 2014Using UPF for Low Power Design and Verification 14

• Explore architectures and algorithms for power efficiency
• Map functions to sw and/or IP blocks for power efficiency
• Choose voltages and frequencies
• Evaluate power consumption for each operational mode
• Generate budgets for power, performance, area

• Generate RTL to match system-level model
• Select IP blocks
• Analyze and optimize power at module and chip levels
• Analyze power implications of test features
• Check power against budget for various modes

• Synthesize RTL to gates using power optimizations
• Floorplan, place and route design
• Optimize dynamic and leakage power
• Verify power budgets and power delivery

Design Phase Low Power Design Activities

ESL Design

Design &
mapping

Analysis &
optimization Validation

RTL Design

Design &
integration

Analysis &
optimization

Verification
& Test

Implementation

Optimization Analysis &
Closure

Verification
& Test

© 2014 IBM

Power Analysis Flow at ESL

Workloads /
Stimulus

Power Analysis
Power Models

Early Analytical Performance
Models

Trace/Execution driven
Transaction Level Models

Trace/Execution driven Cycle
Accurate Models

Power Calculation

Benchmark
Programs/Traces

Random Stimulus
Generators

Power Models

Power
Reports

System
C

Sim

ulator

Architecture parameters
(Initial Configuration)

Power
Intent

Optimization and Refinement

Power
Intent

RTL Design
And Simulation

3 March 2014Using UPF for Low Power Design and Verification 15© 2014 IBM

Power Analysis Flow at RTL

Workloads /
Stimulus

Power Analysis
Power Models

RTL Description

Power Calculation

Benchmark
Programs/Traces

Random Stimulus
Generators

Power Models

Power
Reports

VH
D

L/Verilog
Sim

ulator

Architecture parameters
(Initial Configuration)

Power
Intent

Optimization and Refinement

Power
Intent

Implementation
Level

3 March 2014Using UPF for Low Power Design and Verification 16© 2014 IBM

System-to-Silicon
Power Aware Design Flow

3 March 2014Using UPF for Low Power Design and Verification 17

ESL Design

Design &
mapping

Analysis &
optimization Validation

Power
Models

Power
Data

RTL Design

Design &
Integration

Analysis &
optimization

Verification
& Test

Implementation

Optimization
& Closure Analysis Verification

& Test

© 2014 IBM

Where Are the Models?

 Flow execution is limited
by model availability
– Implementation tasks rely upon

gate level models

– RTL tasks rely upon gate level
models (directly or indirectly)

– ESL? …. Ad hoc solutions…

 What about IP blocks?
– Behavioral models are available

for ESL & RTL, but without power

– Simplistic power models may be
available, …accuracy? reliability?

 We have a problem
– Gate level models can be used

for IP power simulations, but
simulation time and resources
are prohibitive

3 March 2014Using UPF for Low Power Design and Verification 18

ESL Design

Design &
mapping

Analysis &
optimization

Validatio
n

Power
Models

Power
Data

RTL Design

Design &
Integration

Analysis &
optimization

Verificatio
n & Test

Implementation

Optimization
& Closure

Analysis Verificatio
n & Test

Li
be

rty

N
o

st
an

da
rd

 to
da

y

© 2014 IBM

Must Handle Different Kinds of Models

3 March 2014Using UPF for Low Power Design and Verification 19

Spec

Untimed

Cycle
Simulation

RTC

RTL

Timed

Algorithmic
(SystemC)

Transaction
Level

(SystemC)

Cycle Accurate
(Pin Level)

Register Transfer
Level

Register Transfer
Level HDL

Function
parameters

Protocol

Protocol

Protocol

Protocol

Protocol

© 2014 IBM

Modeling Paradigms and Use Scenarios

3 March 2014Using UPF for Low Power Design and Verification 20

ANSI C/C++ or Algorithmic SystemC
 Used to functionally verify algorithm, with no

focus on implementation issues.
 HW and SW algorithms are described in the

same way.
 At best design is partitioned into functional

blocks, but what lies in software or hardware is
not considered.

(System Data)
Output

Sequential

ANSI C/C++
Input f(a) f(b) f(c) f(d)

Untimed TLM

Hierarchy, Concurrency

f(a) f(b)

f(c)

f(d)

“Untimed” SystemC Transaction Level Model
 Used to manually partition system.
 No reset, clocks, or timing, but enough

synchronization to enable correct functionality.
 Instruction set simulation models / virtual platforms

for embedded software development would fall into
this category.

© 2014 IBM

Modeling Paradigms and Use Scenarios

3 March 2014Using UPF for Low Power Design and Verification 21

Cycle Accurate “Behavioral” SystemC Model
 Used to verify cycle level and system behavior at a

low level.
 Models clocking in detail, i.e all clocks ticking.
 Model full pin and cycle timing at block interfaces.
 Behaves as RTL but optimized internally for speed.

Clock1 Clock2

FIFO

Cycle Accurate Model

Interface Pin & Cycle Accurate

FIFO

Timed TLM

a
b

d

c

Hierarchy, Concurrency & Timing

“Timed” SystemC Transaction Level Model
 Used to design and test the “system timing budget”.
 Models have timing information, transactions will

take correct number of clock cycles to execute but
not every clock accounted for within transactions.

 Specialized structures (FIFOs) absorb irregular data
rates.

 Budget defines synthesis constraints for each block.

© 2014 IBM

Modeling Paradigms and Use Scenarios

3 March 2014Using UPF for Low Power Design and Verification 22

RTL Model
 Model used for implementation via RTL synthesis.
 Completely cycle accurate (external and internal).
 Logic between clock ticks is simulated.

Clock1 Clock2

FIFO

RTL Model

Inter-Block Pin & Cycle Accurate

Mixed Abstraction Level Modeling
 Used for mixed mode system/block verification.
 “transactors or adaptors” are used to connect

different abstractions within a system.

Clock2

Adaptor

Mixed Abstraction

© 2014 IBM

SoC Low Power Verification Challenges
Modeling issues

– Are all the low power features
correctly represented?

Capacity issues
– Number of domains
– Size of the chip

Complexity issues
– Chip-level power state complexity
– Complex interactions between blocks

Coverage issue
– Power state coverage
– System level use cases
– H/W-S/W co-verification

3 March 2014Using UPF for Low Power Design and Verification 23© 2014 Broadcom

Source: Synopsys 2012 global user survey

So Where Does UPF Fit In?

UPF models active power management
– A form of power optimization

UPF Power Intent applies at RTL and GL today
– RTL for “early” verification and to drive implementation flow
– GL for verification of implementation stages

UPF concepts can be extended to other models
– Power states and transitions in particular
– Component-based modeling paradigm can also apply

3 March 2014Using UPF for Low Power Design and Verification 24© 2014 Mentor Graphics

Introduction to UPF

John Biggs
Senior Principal Engineer

ARM

3 March 2014Using UPF for Low Power Design and Verification 25© 2014 ARM Ltd

What is UPF?
 An Evolving Standard

– Accellera UPF in 2007 (1.0)
– IEEE 1801-2009 UPF (2.0)
– IEEE 1801-2013 UPF (2.1)

 For Power Intent
– To define power management
– To minimize power consumption

 Based upon Tcl
– Tcl syntax and semantics
– Can be mixed with non-UPF Tcl

 And HDLs
– SystemVerilog, Verilog, VHDL

 For Verification
– Simulation or Emulation
– Static/Formal Verification

 And for Implementation
– Synthesis, DFT, P&R, etc.

Power Intent
File(s)

Power Intent
File(s)

Power Intent
File(s)

S
im

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Verilog
(Netlist)

Synthesis

Verilog
(Netlist)

P&R

HDL/
RTL

3 March 2014Using UPF for Low Power Design and Verification 26© 2014 ARM Ltd

Components of UPF
 Power Domain:

– Groups of elements which share a common set of power
supply requirements

 Power Supply Network
– Abstract description of power distribution (ports, nets,

sets & switches)

 Power State Table
– The legal combinations of states of each power domain

 Isolation Strategies
– How the interface to a power domain should be isolated

when its primary power supply is removed

 Retention Strategies
– What registered state in a power domain should be

retained when its primary power supply is removed

 Level Shifter Strategies
– How signals connecting power domains operating at

different voltages should be shifted

 Repeater Strategies
– How domain ports should be bufffered

3 March 2014Using UPF for Low Power Design and Verification 27© 2014 ARM Ltd

P1801: IEEE-SA Entity Based Work Group

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 28

IEEE 1801 (UPF) timeline

3 March 2014Using UPF for Low Power Design and Verification 29

20162009 2010 2011 2012 2013 20142006 2007 2008 2015

UPF-1.0
Donated
to IEEE

IEEE1801-2009
(AKA UPF-2.0)

Published

UPF-1.0
Kick off
Meeting

Accellera
UPF-1.0

Published

New Project
Revision of
1801-2009

1801-2013
(AKA UPF-2.1)

Published

1801-2016
(AKA UPF-3.0)

Planned

New Project
Revision of
1801-2013

CPF-2.0
Donated
to IEEE

1801a-2014
(Amendment)

Planned

New Project
Amendment of

1801-2013

© 2014 ARM Ltd

Accellera UPF-1.0 (2007)
Navigation:

- set_scope
- set_design_top

Supply Nets:
- create_supply_port
- create_supply_net
- connect_supply_net
- create_power_switch

Power States:
- add_port_state
- create_pst
- add_pst_state

Power Domains:
- create_power_domain
- set_domain_supply_net

Code Management:
- upf_version
- load_upf
- save_upf

HDL Interface:
- bind_checker
- create_hdl2upf_vct
- create_upf2hdl_vct

Strategies:

- set_retention
- set_retention_control
- set_isolation
- set_isolation_control
- set_level_shifter

Implementation:
- map_retention_cell
- map_isolation_cell
- map_level_shifter_cell
- map_power_switch_cell

Key:
- Accellera UPF-1.0 (2007)

3 March 2014Using UPF for Low Power Design and Verification 30© 2014 Mentor Graphics

IEEE 1801-2009 (UPF-2.0)
Navigation:

- set_scope
- set_design_top

Supply Nets:
- create_supply_port
- create_supply_net
- connect_supply_net
- create_power_switch

Power States:
- add_port_state
- create_pst
- add_pst_state
- add_power_state
- describe_state_transition

Simstates:
- add_power_state
- set_simstate_behavior

Power Domains:
- create_power_domain
- set_domain_supply_net
- create_composite_domain

Code Management:
- upf_version
- load_upf
- save_upf
- load_upf_protected
- load_simstate_behavior
- find_objects

HDL Interface:
- bind_checker
- create_hdl2upf_vct
- create_upf2hdl_vct

Strategies:

- set_retention_elements
- set_retention
- set_retention_control
- set_isolation
- set_isolation_control
- set_level_shifter

Attributes:
- set_port_attributes
- set_design_attributes
- HDL and Liberty attributes

Supply Sets:
- create_supply_set
- supply set handles
- associate_supply_set
- connect_supply_set

Implementation:
- map_retention_cell
- map_isolation_cell
- map_level_shifter_cell
- map_power_switch_cell
- use_interface_cell

Control Logic:
- create_logic_port
- create_logic_net
- connect_logic_net

Key:
- Accellera UPF-1.0 (2007)
- IEEE 1801-2009 (UPF-2.0)

3 March 2014Using UPF for Low Power Design and Verification 31© 2014 Mentor Graphics

IEEE 1801-2013 (UPF-2.1)
Navigation:

- set_scope
- set_design_top

Supply Nets:
- create_supply_port
- create_supply_net
- connect_supply_net
- create_power_switch

Power States:
- add_port_state
- create_pst
- add_pst_state
- add_power_state
- describe_state_transition

Simstates:
- add_power_state
- set_simstate_behavior

Power Domains:
- create_power_domain
- set_domain_supply_net
- create_composite_domain

Code Management:
- upf_version
- load_upf
- save_upf
- load_upf_protected
- load_simstate_behavior
- find_objects
- begin_power_model
- end_power_model
- apply_power_model

HDL Interface:
- bind_checker
- create_hdl2upf_vct
- create_upf2hdl_vct

Strategies:
- set_repeater
- set_retention_elements
- set_retention
- set_retention_control
- set_isolation
- set_isolation_control
- set_level_shifter

Attributes:
- set_port_attributes
- set_design_attributes
- HDL and Liberty attributes

Supply Sets:
- create_supply_set
- supply set handles
- associate_supply_set
- connect_supply_set
- set_equivalent

Power Management Cells:
- define_always_on_cell
- define_diode_clamp
- define_isolation_cell
- define_level_shifter_cell
- define_power_switch_cell
- define_retention_cell

Implementation:
- map_retention_cell
- map_isolation_cell
- map_level_shifter_cell
- map_power_switch_cell
- use_interface_cell

Control Logic:
- create_logic_port
- create_logic_net
- connect_logic_net

Key:
- Accellera UPF-1.0 (2007)
- IEEE 1801-2009 (UPF-2.0)
- IEEE 1801-2013 (UPF-2.1)
- Deprecated/Legacy

3 March 2014Using UPF for Low Power Design and Verification 32© 2014 Mentor Graphics

The IEEE 1801-2013 Standard

Motivation
– Address known issues with 1801-2009

• Improve the clarity and consistency
– Syntax clarifications, semantic clarifications

• Some restrictions, some additions
– Include limited number of critical enhancements

• Improved support for macro cell modeling
• Attribution library pins/cells with low power meta data

Additional contributions:
– Cadence: Library Cell Modeling Guide Using CPF
– Cadence: Hierarchical Power Intent Modeling Guide Using CPF
– Si2: Common Power Format Specification, Version 2.0

=> Improved methodology convergence with CPF flows

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 33

The IEEE 1801-2013 Standard

 Revisited each and every command
– Rewrote the major strategy commands

 Rewrote many key sections:
– Definitions, UPF Concepts, Language Basics, Simulation Semantics

 Added new sections:
– Power management cell commands, UPF processing,
– Informative Annex on Low Power Design Methodology

 Final Draft (D14) approved by IEEE-SA March 2013
– A 95% (19/20) approval rate on a 95% (20/21) return.
– One the largest entity base ballot pools in IEEE-SA history

 IEEE1801-2013 Published May 30th 2013
– Available at no charge via the IEEE Get™Program

• http://standards.ieee.org/findstds/standard/1801-2013.html
• http://standards.ieee.org/getieee/1801/download/1801-2013.pdf

343 March 2014Using UPF for Low Power Design and Verification © 2014 ARM Ltd

35

UPF Basic Concepts
and Terminology*

Shreedhar Ramachandra
Staff Engineer

Synopsys

3 March 2014Using UPF for Low Power Design and Verification 36

* Slides contributed by Jon Worthington

© 2014 Synopsys

Functional Intent vs. Power Intent
What is the difference?

Functional intent specifies

• Architecture
• Design hierarchy
• Data path
• Custom blocks

• Application
• State machines
• Combinatorial logic
• I/Os
• EX: DSP, Cache

• Usage of IP
• Industry-standard interfaces
• Memories
• etc

Power intent specifies

• Power distribution
architecture
• Power domains
• Supply rails
• Shutdown control

• Power strategy
• Power state tables
• Operating voltages

• Usage of special cells
• Isolation cells, Level shifters
• Power switches
• Retention registers

Captured in RTL Captured in UPF

3 March 2014Using UPF for Low Power Design and Verification 37© 2014 Synopsys

How Power Intent Affects
Implementation

3 March 2014Using UPF for Low Power Design and Verification 38

 The power intent will
have an impact on the
implementation of the
design.
– Domains may need

separate
floorplans/regions.

– Cells may need
special power routing.

 This section will
introduce power
intent concepts in UPF
and how they relate
to implementation.

© 2014 Synopsys

Power Domains

Defined as:
– A collection of

instances that are
treated as a group for
power management
purposes. The
instances of a power
domain typically, but
do not always, share a
primary supply set. ...

PDTop

PD1 PD2
Block2

Block11

Block12

Block13

Power Domain PD1 contains 3 instances
Power Domain PD2 contains only Block2

3 March 2014Using UPF for Low Power Design and Verification 39© 2014 Synopsys

UPF - Power Domains

3 March 2014Using UPF for Low Power Design and Verification 40

 create_power_domain

set_scope Sub

create_power_domain PD_Sub \
-include_scope

create_power_domain PD_Proc1 \
-elements {P1}

create_power_domain PD_Proc1Mem \
-elements {P1/M1 P1/M2}

set_scope P2
create_power_domain PD_Proc2 \

-include_scope
create_power_domain PD_Proc2Mem \

-elements {P2/M1 P2/M2}

P1

M1 M1

Sub

Sub/PD_Sub

Sub/PD_Proc1Mem PD_Proc2Mem

PwrCtl

M2 M2

PD_Proc2

P1

M1 M1

P2

Sub
PwrCtl

M2 M2

Sub/PD_Proc1

P2

Domain names are created
in the new scope (P2)

© 2014 Synopsys

Domain names are created
in the current scope (Sub)

PDTop

Power Supply Network

 Describes logical connectivity of the
power supplies, or power rails in
your design
– May include connectivity through

power switchesPD1 PD2

VDDSS1

Analog

Digital2

VDDSS1

VDDSS2

sw_ctrl

VDD_SW

3 March 2014Using UPF for Low Power Design and Verification 41© 2014 Synopsys

UPF Power Supply Networks
- Supply Sets

 A group of related supply nets

 Functions represent nets
– which can be defined later

 Electrically complete model
– power, ground, etc.

 Predefined supply sets
– for domains

 User-defined supply sets
– for domains (local)
– standalone (global)

 Supply set parameters
– for strategies

create_power_domain PD \
-supply {primary} \
-supply {backup}

create_supply_set Main \
-function {power} \
-function {ground} \
-function {nwell}

set_isolation ISO –domain PD \
-isolation_supply_set PD.backup

(predefined)
(user-defined)

(user-defined)

power
ground

FunctionsSupply Nets Supply Set

power
ground
nwell

PD.primary

Main

pwell
deepnwell
deeppwell

3 March 2014Using UPF for Low Power Design and Verification 42© 2014 Synopsys

How Logical Supply Networks Relate
to Real World Connections

3 March 2014Using UPF for Low Power Design and Verification 43© 2014 Synopsys

 The functions in a supply set will translate into real
supply net connections.
– Often a domain’s ‘primary’ function will be

implemented as the rails within a floorplan region,
VDD and VSS in this example.

– The other functions will be routed as secondary
supplies and connect to special pins on the cell. The
example here shows a levelshifter cell with a
secondary pin called VDDL that connects to VDD2.

– Secondary supplies may be primary supplies of other
domains. Therefore the location of special cells may
result in supplies from other domains to be available at
the location where the cell is inserted.

create_supply_set top_ss\
-function {power VDD} \
-function {ground VSS}

associate_supply_set top_ss\
-handle PD.primary

Power Management Techniques

Power Gating

Multi-voltage

Bias Voltage

Dynamic Voltage and Frequency Scaling

3 March 2014Using UPF for Low Power Design and Verification 44© 2014 Synopsys

Power Gating
Power reduction technique

to save leakage power by
shutting off, or powering
down, unnecessary logic

Enabled by power switch,
or MTCMOS, cells

Requires consideration of
isolating and state
retention.

Gate Gate Gate GateGate

on/off

VDD

VSS

VDD_SW

Sleepin Sleepout

3 March 2014Using UPF for Low Power Design and Verification 45© 2014 Synopsys

Multi-Voltage

Power savings
technique to operate
different blocks of logic
at different voltages
– Less critical blocks can be

operated at a lower
voltage
for power savings

Design Top

FSM
Block2

Block1

Macro

MacroMacro

0.8
V

0.8
V

0.8
V

0.8
V

1.2
V

1.2
V

0.8
V

3 March 2014Using UPF for Low Power Design and Verification 46© 2014 Synopsys

Bias Voltage

Used to change the threshold voltage of a cell to
improve the leakage characteristics of the cell

3 March 2014Using UPF for Low Power Design and Verification 47© 2014 Synopsys

Dynamic Voltage and Frequency
Scaling
 Power Saving Technique to

change the voltage and/or
clock frequency while the chip
is running to save power

Design Top

FSM
Block2

Block1

Macro

MacroMacro

0.8
V

0.8
V

0.8
V

0.8
V

1.2
V

1.2
V

0.8
V

0.8
V

0.8
V

0.6
V

0.6
V

0.6
V

0.6
V

0.6
V

3 March 2014Using UPF for Low Power Design and Verification 48© 2014 Synopsys

Power Management Architecture

Power States and Transitions

Supply switching

 Isolation and Level Shifting

State Retention

3 March 2014Using UPF for Low Power Design and Verification 49© 2014 Synopsys

Power States and Transitions

 A design may have
multiple modes of
operation that affect the
power supplies.

 Modelling these modes will
allow tools to verify and
implement the power
intent. For example;
– Simulation: States can indicate

that correct isolation has been
specified.

– Implementation: Correct
levelshifting can be inserted.

– Verification: Confirm that the
design is still correct after
optimization.

3 March 2014Using UPF for Low Power Design and Verification 50

Idle

RunSleep

UPF Power States

UPF uses ‘add_power_state’
to define the states of
supplies.

add_power_state PD_Mem \
-state RUN {-logic_expr {primary ==

ON_08}} \
-state OFF {-logic_expr {primary == OFF}}

add_power_state PD_Proc \
-state Normal { \
-logic_expr {primary == ON_10 && \

memory == ON_08 && \
PD_Mem == RUN} } \

-state Sleep { \
-logic_expr {primary == OFF && \

memory == ON_08 && \
PD_Mem == RUN} } \

-state Hibernate { \
-logic_expr {primary == OFF && \

memory == OFF && \
PD_Mem == OFF} }

51

Proc1/PD_Mem

M1 M2

Proc1/PD_Proc

P1Proc1

M

P

P

PD_PROC primary memory PD_MEM

Normal ON_10 ON_08 RUN

Sleep OFF ON_08 RUN

Hibernate OFF OFF OFF

3 March 2014Using UPF for Low Power Design and Verification © 2014 Synopsys

Supply Switching/Power Gating

 Supplies can be switched off to
save power when they are not
needed. This can be done off or on
chip.

 On-chip switching can be
implemented by number of
methods including fine/course
grain switch cells.

 UPF will allow a switch construct to
be declared to represent the
switching state of the supplies.
The supplies, their states and
controlling signals are all defined
however how it is implemented is
not specified.

3 March 2014Using UPF for Low Power Design and Verification 52© 2014 Synopsys

enable

vdd

vdds

vss

UPF - Power Gating

create_logic_port nPWR1 –direction in

create_power_switch SW -domain PD_Proc
-input_supply_port {sw_in VDDSOC}
-output_supply_port {sw_out VDDPROC1}
-control_port {sw_ctl nPWR}
-on_state {on_state sw_in {!sw_ctl}}
-off_state {off_state { sw_ctl}}

Proc1/PD_Mem

M1 M2

Proc1/PD_Proc

P1Proc1

M

P

P

PD_PROC primary memory PD_MEM

Normal ON_10 ON_08 RUN

Sleep OFF ON_08 RUN

Hibernate OFF OFF OFF

nPWR

3 March 2014Using UPF for Low Power Design and Verification 53© 2014 Synopsys

Coarse Grain Switch Implementation

 A UPF switch may be implemented as an array of
switches all connected together to switch as one.

 The switches power the standard cell rows and use
power meshes to connect the secondary supply.

3 March 2014Using UPF for Low Power Design and Verification 54© 2014 Synopsys

Isolation Cells

Isolation cells are
typically used to
protect logic that is
powered on from logic
that is powered off
– Used to prevent unknown

values in unpowered
logic from propagating
into live logic

– Can also be used to
prevent leakage current
from live logic from
improperly powering
unpowered logic

3 March 2014Using UPF for Low Power Design and Verification 55© 2014 Synopsys

UPF Isolation Strategies

set_isolation ISO_Proc \
-domain PD_Proc \
-applies_to outputs \
-clamp_value 0 \
-isolation_signal mISO \
-isolation_sense low \
-location self

use_interface_cell ISOX1 \
-domain PD_Mem \
-strategy ISOMem \
-lib_cells {TechISOX1}

Proc1/PD_Mem

M1 M2

Proc1/PD_Proc

P1Proc1

M

P

P

PD_PROC primary memory PD_MEM

Normal ON_10 ON_08 RUN

Sleep OFF ON_08 RUN

Hibernate OFF OFF OFF

nPWR

3 March 2014Using UPF for Low Power Design and Verification 56© 2014 Synopsys

Level Shifters

 Changes the voltage from one discrete
value to another discrete value
– A 1’b1 driven by 1.0V logic may be

too much for 0.7V logic and likewise a
1’b1 from 0.7V logic may not
translate into a 1’b1 for 1.0V logic

– A level shifter changes a 0.7V 1’b1 to
a 1.0V 1’b1 so you are propagating
valid digital values through the circuit

1.0V 0.7V

LS

3 March 2014Using UPF for Low Power Design and Verification 57© 2014 Synopsys

Proc1/PD_Mem

M1 M2

Proc1/PD_Proc

P1Proc1

M

P

P

UPF Level Shifting Strategies

set_level_shifter LSmem \
-domain PD_Mem \
-applies_to outputs \
-location self

use_interface_cell LSX2 \
-domain PD_Mem \
-strategy LSMem \
-lib_cells {TechLSX2}

LS

PD_PROC primary memory PD_MEM

Normal ON_10 ON_08 RUN

Sleep OFF ON_08 RUN

Hibernate OFF OFF OFF

LS LS

nPWR

3 March 2014Using UPF for Low Power Design and Verification 58© 2014 Synopsys

State Retention

 A sequential element that can
retain its value despite being
powered off
– Useful to recover the last

known state of the design when
power was removed

– Reduces the amount of time
needed reset a design to a
specific state to continue
operation

VSS

VDDB
VDD

Retention
Register

SAVE
RESTORE

RR

3 March 2014Using UPF for Low Power Design and Verification 59© 2014 Synopsys

UPF Retention Strategies

set_retention RET1 \
-domain PD_Proc \
-save_signal {SRb posedge} \
-restore_signal {SRb negedge}

map_retention_cell RET1 \
-domain PD_Proc \
-lib_cells {TechRRX4}

RR

Proc1/PD_Mem

M1 M2

Proc1/PD_Proc

P1Proc1

M

P

P

RR

PD_PROC primary memory PD_MEM

Normal ON_10 ON_08 RUN

Sleep OFF ON_08 RUN

Hibernate OFF OFF OFF

SRb

nPWR

3 March 2014Using UPF for Low Power Design and Verification 60© 2014 Synopsys

Multi-Voltage Special Cell Requirement

Multiple
Voltage (MV)
Domains

Multi-Supply
with Shutdown
No State

Retention

Multi-Voltage
with
Shutdown

Multi-Voltage
with Shutdown
& State
Retention

Retention
Registers

Power
Switches

(MTCMOS)
Level

Shifters
Isolation

Cells

Always-
on Logic

0.9V0.7V

0.9V

OFF

0.9V0.9V

0.9V

OFF

0.9V0.7V

0.9V

0.9V0.7V

0.9V

OFF

SR

3 March 2014Using UPF for Low Power Design and Verification 61© 2014 Synopsys

UPF Semantics and Usage

Erich Marschner
Verification Architect

Mentor Graphics

3 March 2014Using UPF for Low Power Design and Verification 62© 2014 Mentor Graphics

A Deeper Look at UPF Power Intent

Logic Hierarchy

Power Domains

Power Domain Supplies

Supply Sets

Supply Connections

Power Related Attributes

Power States and Transitions

Power Domain State Retention

Power Domain Interface Management

Supply Network Construction

Supply Equivalence

3 March 2014Using UPF for Low Power Design and Verification 63© 2014 Mentor Graphics

Logic Hierarchy

Design Hierarchy
– A hierarchical description in HDL

Logic Hierarchy
– An abstraction of the design hierarchy (instances only)

Scope
– An instance in the logic hierarchy

Design Top
– The topmost scope/instance in the logic hierarchy to which a

given UPF file applies

3 March 2014Using UPF for Low Power Design and Verification 64© 2014 Mentor Graphics

Logic Hierarchy

 Design Hierarchy
– Instances, generate stmts,

block stmts, etc.

 Logic Hierarchy
– Instances only
– UPF objects

• Created in instance scopes
• Referenced with hierarchical

names

 Mapping to Floorplan
– May or may not reflect

implementation
• Depends upon the user and tools

65

P1

M1 M1

P2

Sub

PwrCtl

M2 M2

UPF

3 March 2014Using UPF for Low Power Design and Verification © 2014 Mentor Graphics

P1

M1 M1

P2

Sub

PwrCtl

M2 M2

Navigation

 set_design_top
set_design_top TB/Sub

 set_scope
set_scope .
set_scope P1/M1
set_scope ..
set_scope M2
set_scope /P2

66

SB

TBDUT

Note:
These are all instance names

3 March 2014Using UPF for Low Power Design and Verification © 2014 Mentor Graphics

Logic Hierarchy

3 March 2014Using UPF for Low Power Design and Verification 67

module
instance

functional
element

macro
instance

M1 M2 M3 M4 M5 M6 M7 M8

A B

Top

C D E F

Lowconn
of a port

Highconn
of a port

© 2014 Mentor Graphics

Power Domains

Partition the Logic Hierarchy
– Every instance must be in (the extent of) exactly one domain

Can be further partitioned
– A subtree of the design can be carved out as another domain

Unless declared “atomic”
– Atomic power domains cannot be further subdivided

Can be composed into larger domains
– If all subdomains have the same primary power supply

Have an upper and a lower boundary
– Boundaries represent a change in primary supply

3 March 2014Using UPF for Low Power Design and Verification 68© 2014 Mentor Graphics

PD1

Partitioning the Logic Hierarchy - 1

3 March 2014Using UPF for Low Power Design and Verification 69

M1 M2 M3 M4 M5 M6 M7 M8

create_power_domain PD1 -elements {.} …

A B

Top

C D E F

© 2014 Mentor Graphics

PD1

PD2

Partitioning the Logic Hierarchy - 2

3 March 2014Using UPF for Low Power Design and Verification 70

M1 M2 M3 M4 M5 M6 M7 M8

create_power_domain PD2 -elements {A} …

A B

Top

C D E F

PD2
Upper

Boundary

PD1
Lower

Boundary

© 2014 Mentor Graphics

PD1

PD3PD2

Partitioning the Logic Hierarchy - 3

3 March 2014Using UPF for Low Power Design and Verification 71

M1 M2 M3 M4 M5 M6 M7 M8

create_power_domain PD3 -elements {B} …

A B

Top

C D E F

© 2014 Mentor Graphics

PD1

PD3PD2

PD4

Partitioning the Logic Hierarchy - 4

3 March 2014Using UPF for Low Power Design and Verification 72

M1 M2 M3 M4 M5 M6 M7 M8

create_power_domain PD4 -elements {A/D B/E} -atomic …

A B

Top

C D E F

Atomic domain cannot be further partitioned

PD2
Lower

Boundary

PD2
Upper

Boundary

© 2014 Mentor Graphics

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Partitioning the Logic Hierarchy - 5

3 March 2014Using UPF for Low Power Design and Verification 73

M1 M2 M3 M4 M5 M6 M7 M8

create_composite_domain PD23 -subdomains {PD2 PD3} …

A B

Top

C D E F

PD23
Lower

Boundary

PD23
Upper

Boundary

© 2014 Mentor Graphics

Power Domain Boundaries

Define Domain Interfaces
– Isolation/Level shifting are only inserted at power domain

boundaries

Upper Boundary
– Includes lowconn of declared ports of “top-level” instances

Lower Boundary
– Includes highconn of ports of instances in another domain
– Includes macro instance ports with different supplies

Macro Instances
– May have multiple supplies
– Each port may have a different supply

3 March 2014Using UPF for Low Power Design and Verification 74© 2014 Mentor Graphics

Domain Supplies

Primary supply
– Provides the main power, ground supplies for cells in the domain
– Can also provide additional supplies (nwell, pwell, …)

Default retention supply
– Provides a default supply for saving the state of registers

Default isolation supply
– Provides a default supply for input or output isolation

Additional user-defined supplies
– Can be defined for particular needs (e.g., hard macros)

Available supplies
– Can be used by tools to power buffers used in implementation

3 March 2014Using UPF for Low Power Design and Verification 75© 2014 Mentor Graphics

create_power_domain PD1 …create_power_domain PD1 -supply {AO} …

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Power Domain Supply Sets

3 March 2014Using UPF for Low Power Design and Verification 76

M1 M2 M3 M4 M5 M6 M7 M8

Top

C D E F

Primary,
Retention,
Isolation
Supplies

P R I

A B

User-
Defined
Supply

AO

© 2014 Mentor Graphics

Supply Sets

Consists of a set of up to 6 supply “functions”
– power, ground, nwell, pwell, deepnwell, deeppwell

Represent a collection of supply nets
– One supply net per (required) function

Can be “global” or “local” to a power domain
– Power domains have a few predefined supply set “handles”

Can be associated with one another
– To model supply connections abstractly

Have power states with simstates
– Determine domain functionality in power aware simulation

3 March 2014Using UPF for Low Power Design and Verification 77© 2014 Mentor Graphics

Supply Sets

 A group of related supply nets

 Functions represent nets
– which can be defined later

 Electrically complete model
– power, ground, etc.

 Predefined supply sets
– for domains

 User-defined supply sets
– for domains (local)
– standalone (global)

 Supply set parameters
– for strategies

create_power_domain PD \
-supply {primary} \
-supply {backup}

create_supply_set Main \
-function {power} \
-function {ground} \
-function {nwell}

set_isolation ISO –domain PD \
-isolation_supply_set PD.backup

3 March 2014 78

(predefined)
(user-defined)

(user-defined)

power
ground

FunctionsSupply Nets Supply Set

power
ground
nwell

PD.primary

Main

pwell
deepnwell
deeppwell

© 2014 Mentor GraphicsUsing UPF for Low Power Design and Verification

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Associating Supply Sets 1

3 March 2014Using UPF for Low Power Design and Verification 79

M1 M2 M3 M4 M5 M6 M7 M8

associate_supply_set PD1.primary -handle PD2.primary

Top

C D E F

P R I

A B

P

Supply
Set

Association

AO

© 2014 Mentor Graphics

associate_supply_set PD1.AO -handle PD3.AO

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Associating Supply Sets 2

3 March 2014Using UPF for Low Power Design and Verification 80

M1 M2 M3 M4 M5 M6 M7 M8

Top

C D E F

P R I

A B

P

AO

AO

© 2014 Mentor Graphics

Supply
Set

Association

Supply Connections

 Implicit connections
– Primary supply is implicitly connected to std cells

Automatic connections
– Supplies can be connected to cell pins based on pg_type

Explicit connections
– Supplies can be connected explicitly to a given pin

Precedence rules apply
– Explicit overrides Automatic overrides Implicit

Supply states determine cell behavior
– Cells function when supply is on,
– Cells outputs are corrupted when supply is off

3 March 2014Using UPF for Low Power Design and Verification 81© 2014 Mentor Graphics

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Implicit Supply Connections

3 March 2014Using UPF for Low Power Design and Verification 82

M1 M2 M3 M4 M5 M6 M7 M8

…

Top

C D E F

P R I

A B

P

Implicit
Connections:
power, ground

only

AO

AO

© 2014 Mentor Graphics

PG Types

Describe the usage of supply pins of cells, macros
– primary_power, primary_ground
– backup_power, backup_ground
– internal_power, internal_ground
– nwell, pwell, deepnwell, deeppwell

Typically defined in Liberty library models
– primary power/ground are common to all

Can also be defined in HDL or UPF
– Using attributes …

Drive implicit and automatic supply connections
– Each function of a domain supply set maps to a pg_type

3 March 2014Using UPF for Low Power Design and Verification 83© 2014 Mentor Graphics

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Automatic Supply Connections

3 March 2014Using UPF for Low Power Design and Verification 84

M1 M2 M3 M4 M5 M6 M7 M8

connect_supply_set PD3.AO -elements {B/F/M7 B/F/M8}

Top

C D E F

P R I

A B

P

AO

AO

Automatic
Connections

based on
pg_type

© 2014 Mentor Graphics

PG Type-Driven Connections

Automatic connection
connect_supply_set PD3.AO -elements {B/F/M7 B/F/M8} \

-connect {power primary_power} \
-connect {ground primary_ground}

connect_supply_set PD3.AO -elements {B/F/M7 B/F/M8} \
-connect {power backup_power} \
-connect {ground backup_ground}

 Implicit connection
– Equivalent to

connect_supply_set PD2.primary -elements {.} \
-connect {power primary_power} \
-connect {ground primary_ground}

3 March 2014Using UPF for Low Power Design and Verification 85© 2014 Mentor Graphics

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Explicit Supply Connections

3 March 2014Using UPF for Low Power Design and Verification 86

M1 M2 M3 M4 M5 M6 M7 M8

connect_supply_net PD3.AO.power -ports {B/F/M7/VDDB …}

Top

C D E F

P R I

A B

P

AO

AO

Explicit
Connection
to specific

ports

© 2014 Mentor Graphics

Power Attributes

Characteristics of a port or design element
– That relate to power intent or implementation

Defined in UPF, HDL, or Liberty
– Liberty and HDL attributes are imported into UPF

Used to identify power supplies for ports
– Related supplies for ports and cell pins

Used to specify constraints for IP usage
– Clamp value constraints for isolation of ports

Used to specify structure and behavior information
– Hierarchy leaf/macro cells, net connections, simstate use

3 March 2014Using UPF for Low Power Design and Verification 87© 2014 Mentor Graphics

Predefined UPF Attributes

 Supply Attributes
– UPF_pg_type
– UPF_related_power_port
– UPF_related_ground_port
– UPF_related_bias_ports
– UPF_driver_supply
– UPF_receiver_supply

 Isolation Attributes
– UPF_clamp_value
– UPF_sink_off_clamp_value
– UPF_source_off_clamp_value

 Structural Attributes
– UPF_is_leaf_cell
– UPF_is_macro_cell
– UPF_feedthrough
– UPF_unconnected

 Behavioral Attributes
– UPF_retention
– UPF_simstate_behavior

3 March 2014Using UPF for Low Power Design and Verification 88© 2014 Mentor Graphics

Attribute Definitions

 UPF
set_port_attributes -ports Out1 \
-attribute \
{UPF_related_power_port "VDD"

set_port_attributes -ports Out1 \
-attribute \
{UPF_related_ground_port "VSS“

set_port_attributes -ports Out1 \
-related_power_port "VDD" \
-related_ground_port "VSS"

 HDL
SystemVerilog or Verilog-2005

(* UPF_related_power_port = "VDD",
UPF_related_ground_port = "VSS" *)

output Out1;

VHDL

attribute UPF_related_power_port of
Out1: signal is "VDD";

attribute UPF_related_ground_port of
Out1: signal is "VSS";

3 March 2014Using UPF for Low Power Design and Verification 89

 Liberty
– related_power_pin, related_ground_pin

– pg_type, related_bias_pins, is_macro_cell, etc.

© 2014 Mentor Graphics

UPF Attribute Usage

 Supply Attributes
– UPF_pg_type
– UPF_related_power_port
– UPF_related_ground_port
– UPF_related_bias_ports
– UPF_driver_supply
– UPF_receiver_supply

 Used to specify
– cell/macro supply port types
– logic port related supplies
– primary IO port related supplies
– driver/receiver supply sets

• can be defined only in UPF
• no supply set data type in HDL or

Liberty

3 March 2014Using UPF for Low Power Design and Verification 90

VDD VDDBVSS

IN1 OUT1

pwr_aon pwr_swgnd

power: (VDD)
ground: (VSS)

receiver supply

power: (VDDB)
ground: (VSS)

driver supply

© 2014 Mentor Graphics

backup_power

pg_type

primary_power

pg_type

VDDB

related_power_port

VDD

related_power_port

VSS

related_ground_port

VSS

related_ground_port

UPF Attribute Usage

 Supply Attributes
– UPF_pg_type
– UPF_related_power_port
– UPF_related_ground_port
– UPF_related_bias_ports
– UPF_driver_supply
– UPF_receiver_supply

 Isolation Attributes
– UPF_clamp_value
– UPF_sink_off_clamp_value
– UPF_source_off_clamp_value

 Used to specify
– cell/macro supply port types
– logic port related supplies
– primary IO port related supplies
– driver/receiver supply sets

• can be defined only in UPF
• no supply set data type in HDL or

Liberty

 Used to specify
– clamp value requirements in

case source is powered off when
sink is powered on
• used to define power constraints

for IP blocks

3 March 2014Using UPF for Low Power Design and Verification 91© 2014 Mentor Graphics

UPF Attribute Usage

 Used to identify
– leaf cells in the hierarchy
– macro cells in the hierarchy
– feedthrough paths through

a macro cell
– unconnected macro ports

 Structural Attributes
– UPF_is_leaf_cell
– UPF_is_macro_cell
– UPF_feedthrough
– UPF_unconnected

3 March 2014Using UPF for Low Power Design and Verification 92

VDD VDDBVSS

IN2 OUT2

IN1 OUT1

IN3 OUT3

logic

ports: IN1, OUT1

feedthrough

ports: OUT3

unconnected

© 2014 Mentor Graphics

UPF Attribute Usage

 Used to identify
– leaf cells in the hierarchy
– macro cells in the hierarchy
– feedthrough paths through

a macro cell
– unconnected macro ports

 Used to define
– whether state retention is

required for a given element
– whether simstates determine

power aware behavior (i.e.,
corruption)

 Structural Attributes
– UPF_is_leaf_cell
– UPF_is_macro_cell
– UPF_feedthrough
– UPF_unconnected

 Behavioral Attributes
– UPF_retention
– UPF_simstate_behavior

3 March 2014Using UPF for Low Power Design and Verification 93© 2014 Mentor Graphics

Hard Macro Supplies

 Modeled with Attributes
– Attributes of cell pins:

• PG type attributes
• Related supply attributes
• In UPF, HDL, or Liberty

– Imply anonymous supply sets

3 March 2014 94

In a memory cell with separate supplies
for peripheral logic and memory core,

different ports will have different
driver supplies or receiver supplies.

Using UPF for Low Power Design and Verification

M7 M8

F

M8

VDD VDDBVSS

Data In Data Out

power: (VDDB)
ground: (VSS)

power: (VDDB)
ground: (VSS)

receiver supply driver supply

primary_power

pg_type

backup_power

pg_type

Core

control

data

power: (VDD)
ground: (VSS)

driver supply

power: (VDD)
ground: (VSS)

receiver supply

Periphery

© 2014 Mentor Graphics

Supply Power States

Defined on supply sets
– In particular, power domain primary supply

Represent how cells behave in various situations
– When / whether cell outputs are corrupted

Defined by a logic expression
– State holds when logic expression is TRUE

Also may include a supply expression
– Defines the legal values of supply set fns when in that state

Also includes a simstate
– Simstate defines precise simulation semantics in this state

Not necessarily mutually exclusive!

3 March 2014Using UPF for Low Power Design and Verification 95© 2014 Mentor Graphics

Supply Set Power State Definition

Simple
add_power_state PD1.primary -supply \

-state {ON -logic_expr {PwrOn} -simstate NORMAL} \
-state {OFF -logic_expr {!PwrOn} -simstate CORRUPT}

More Complex
add_power_state PD1.primary -supply \

-state {RUN -logic_expr {PwrOn && !Sleep && Mains} \
-simstate NORMAL} \

-state {LOW -logic_expr {PwrOn && !Sleep && Battery} \
-simstate NORMAL} \

-state {SLP -logic_expr {PwrOn && Sleep} \
-simstate CORRUPT_ON_CHANGE} \

-state {OFF -logic_expr {!PwrOn} \
-simstate CORRUPT}

3 March 2014Using UPF for Low Power Design and Verification 96© 2014 Mentor Graphics

Simstates - Precedence and Meaning

 NORMAL

 CORRUPT_STATE_ON_CHANGE

 CORRUPT_STATE_ON_ACTIVITY

 CORRUPT_ON_CHANGE

 CORRUPT_ON_ACTIVITY

 CORRUPT

 NORMAL
– Combinational logic functions normally
– Sequential logic functions normally
– Both operate with characterized timing

 CORRUPT_STATE_ON_CHANGE
– Combinational logic functions normally
– Sequential state/outputs maintained as long as

outputs are stable

 CORRUPT_STATE_ON_ACTIVITY
– Combinational logic functions normally
– Sequential state/outputs maintained as long as

inputs are stable

 CORRUPT_ON_CHANGE
– Combinational outputs maintained as long as

outputs are stable
– Sequential state/outputs corrupted

 CORRUPT_ON_ACTIVITY
– Combinational outputs maintained as long as

inputs are stable
– Sequential state/outputs corrupted

 CORRUPT
– Combinational outputs corrupted
– Sequential state/outputs corrupted

3 March 2014Using UPF for Low Power Design and Verification 97

lower

higher

© 2014 Mentor Graphics

Domain Power States

Defined on power domains
– In particular, power domains representing an IP block

Represent aggregate state of supplies, subdomains
– Abstract functional/power modes of a component

Defined by a logic expression (like supply set states)
– Typically refers to power states of other objects

Does NOT include a supply expression
– Supply expressions are only for supply set power states

Does NOT include a simstate
– Simstates are only for supply set power states

Not necessarily mutually exclusive!

3 March 2014Using UPF for Low Power Design and Verification 98© 2014 Mentor Graphics

Domain Power State Definition

Examples
add_power_state PD_TOP -domain \
-state {Normal \
-logic_expr \
{primary == ON && \
backup == ON && \
PD_mem == UP} } \

-state {Sleep \
-logic_expr \
{primary == OFF && \
backup == ON && \
PD_mem == UP} } \

-state {Off\
-logic_expr \
{primary == OFF && \
backup == OFF && \
PD_Mem == DOWN} }

3 March 2014Using UPF for Low Power Design and Verification 99

PD_TOP .primary .backup PD_MEM

Normal ON ON UP

Sleep OFF ON RET

Off OFF OFF DOWN

Examples
add_power_state PD_Mem -domain \
-state {UP \
-logic_expr {primary == ON}} \

-state {RET \
-logic_expr {retention == ON}} \

-state {DOWN \
-logic_expr {retention == OFF}}

© 2014 Mentor Graphics

Power Management Strategies

Retention strategies
– Identify registers to retain, controls/conditions, and supplies
– Must satisfy any retention constraints (clamp value attributes)

Repeater strategies
– Identify ports to be buffered and their supplies
– Input and output ports can be buffered

 Isolation strategies
– Define how to isolate ports where required - control, supplies
– Actual isolation insertion is driven by source/sink power states

Level shifter strategies
– Define how to level-shift ports where required - supplies
– Actual level shifter insertion is driven by threshold analysis

3 March 2014Using UPF for Low Power Design and Verification 100© 2014 Mentor Graphics

Retention Strategies

Balloon Latch
set_retention BL -domain PD1 \

-elements {…} \
-save_signal … \
-restore_signal … \
-retention_supply …

Live Slave Latch
set_retention LSL -domain PD1 \

-elements {…} \
-retention_condition … \
-retention_supply …

© 2014 Mentor Graphics 3 March 2014Using UPF for Low Power Design and Verification 101

Isolation Strategies

Specifying Ports
– Using -elements and -exclude_elements
– Using filters: -applies_to, -diff_supply_only, -sink, -source

Precedence Rules
– More specific rules take precedence over more generic rules

Specifying Location
– Using locations self, parent, other, and fanout

Handling Fanout to Different Domains
– Using -sink to isolate different paths

 Isolation Supplies and Cells
– Location affects default isolation supply and usable cell types

3 March 2014Using UPF for Low Power Design and Verification 102© 2014 Mentor Graphics

Specifying Ports

Elements list includes ports
-elements { <port name> }
-elements { <instance name> }
-elements { . }

[if no -elements list, default is all ports of domain]

Exclude elements list excludes ports
-exclude_elements { … }

Filters further limit the set of ports
-applies_to <inputs | outputs | both>
-source <domain name> | <supply set name>
-sink <domain name> | <supply set name>
-diff_supply_only

3 March 2014Using UPF for Low Power Design and Verification 103© 2014 Mentor Graphics

0 1 2 3 4 5A 0 1 2 3 4 5B

What Happens if Multiple Strategies?

set_isolation ISO1 \
-elements {A B[0]} …

set_isolation ISO2 \
-elements {A[5] B} …

3 March 2014Using UPF for Low Power Design and Verification 104© 2014 Mentor Graphics

Precedence Rules for Strategies

 Strategy for all ports of a specified
power domain

 Strategy for all ports of a specified
power domain with a given
direction

 Strategy for all ports of an
instance specified explicitly by
name

 Strategy for a whole port specified
explicitly by name

 Strategy for part of a multi-bit
port specified explicitly by name

set_isolation ISO1 -domain PD \
…

set_isolation ISO2 -domain PD \
-applies_to inputs …

set_isolation ISO3 -domain PD \
-elements {i1} …

set_isolation ISO4 -domain PD \
-elements {i1/a i1/b} …

set_isolation ISO5 -domain PD \
-elements {i1/a[3] i1/b[7]} …

3 March 2014Using UPF for Low Power Design and Verification 105

lower

higher

© 2014 Mentor Graphics

Interface Cell Locations

Self
– The domain for which the strategy is defined

Parent
– The domain “above” the self domain

Other
– The domains “above” and “below” the self domain

Fanout
– The domain in which the receiving logic is contained

3 March 2014Using UPF for Low Power Design and Verification 106© 2014 Mentor Graphics

PD1

PD3PD2 (PD3)(PD2)

PD23

PD4

Isolation Cell Locations

3 March 2014Using UPF for Low Power Design and Verification 107

M1 M2 M3 M4 M5 M6 M7 M8

Top

C D E F

P R I

A B

AO

set_isolation ISO1 -domain PD2 -location …

-location self
Input Isolation

-location self
Output Isolation

-location other
Output Isolation

-location parent
Output Isolation

-location fanout
Output Isolation
(-sink PD3.AO)

-location fanout
Output Isolation

(-sink PD4)

P AO

-diff_supply_only
might inhibit
insertion of

this cell

-location other
Output Isolation

© 2014 Mentor Graphics

Other Isolation Cell Parameters

Clamp Value
– specified with

-clamp_value < 0 | 1 | any | Z | latch >

Control
– specified with

-isolation_signal <signal name>
-isolation_sense <high | low>

Supply
– specified with

-isolation_supply <supply set name>

– if not specified, uses default_isolation supply of location
• can be a single-rail cell if containing domain is always on when enabled
• otherwise typically requires a dual-rail cell

3 March 2014Using UPF for Low Power Design and Verification 108© 2014 Mentor Graphics

Strategy Execution Order

109

Retention, then Repeater, then Isolation, then Level Shifter

PD_Proc PD_Mem

3 March 2014Using UPF for Low Power Design and Verification © 2014 Mentor Graphics

Logic

Logic

Strategy Interactions

3 March 2014Using UPF for Low Power Design and Verification 110© 2014 Mentor Graphics

Retention Repeater Isolation Level
Shifter

Retention -- affects affects affects

Repeater affected
by -- affects affects

Isolation affected
by

affected
by -- affects

Level
Shifter

affected
by

affected
by

affected
by --

Strategies may change driver and/or receiver supplies of a port

This may affect -source/-sink filters of subsequently executed strategies

Supply Ports/Nets

Represent supply ports, pins, and rails
– Primary supply inputs, supply pins of cells, nets in between

Are connected together to create supply network
– Together with power switches to control power distribution

Deliver power/ground/etc. supplies to domains
– Delivered values determine how domain functions

Have and propagate {state, voltage} values
– States are UNDETERMINED, OFF, PARTIAL_ON, FULL_ON
– Voltages are fixed-point values with microvolt precision

Examples
– {FULL_ON 1.2} {PARTIAL_ON 0.81} {OFF}

3 March 2014Using UPF for Low Power Design and Verification 111© 2014 Mentor Graphics

“Power” (Supply) Switches

Have one or more supply inputs
– Defined with -input_supply_port

Have one supply output
– Defined with -output_supply_port

Have one or more control inputs
– Defined with -control_port

Have one or more control states
– Defined with -on_state or -on_partial_state
– Also can include -error_state and/or -off_state

Conditionally propagate input supply values to output
– Based on which control states are active

3 March 2014Using UPF for Low Power Design and Verification 112© 2014 Mentor Graphics

Power Switches

Examples
create_power_switch Simple \

-output_supply_port {vout} \
-input_supply_port {vin} \
-control_port {ss_ctrl} \
-on_state {ss_on vin { ss_ctrl }} \
-off_state {ss_off { ! ss_ctrl }}

create_power_switch TwoStage \
-output_supply_port {vout} \
-input_supply_port {vin} \
-control_port {trickle_ctrl} \
-control_port {main_ctrl} \
-on_partial_state {ts_ton vin { trickle_ctrl }} \
-on _state {ts_mon vin { main_ctrl }} \
-off_state {ts_off { ! trickle_ctrl && ! main_ctrl }}

3 March 2014Using UPF for Low Power Design and Verification 113© 2014 Mentor Graphics

Input and Output
Supply
Ports

Switch
Input States
and Output State

Control Port

Supply Network Construction

Commands
create_supply_port …
create_supply_net …
connect_supply_net …

create_power_switch …
connect_supply_net …

create_supply_net \
-resolved …

connect_supply_net …

create_supply_set \
-update

3 March 2014Using UPF for Low Power Design and Verification 114

VDD1 VDD2 VDD3 VSS

Pwr1 Pwr2 Pwr3 Gnd

Pwr1sw

Pri

Pwr23mx

PwrRes

© 2014 Mentor Graphics

Supply Equivalence

Supply Ports/Nets/Functions
– Electrically equivalent if same/connected/associated
– Functionally equivalent if

• they are electrically equivalent, or
• they are declared functionally equivalent

- example: outputs of two switches that have same input and control

Supply Sets
– Functionally equivalent if

• both have the same required functions, and
corresponding required functions are electrically equivalent; or

• both are associated with the same supply set; or
• they are declared functionally equivalent

- Declaration works for verification only;
must be explicitly connected for implementation

1153 March 2014Using UPF for Low Power Design and Verification © 2014 Mentor Graphics

A Deeper Look at UPF Power Intent

Logic Hierarchy

Power Domains

Power Domain Supplies

Supply Sets

Supply Connections

Power Related Attributes

Power States and Transitions

Power Domain State Retention

Power Domain Interface Management

Supply Network Construction

Supply Equivalence

3 March 2014Using UPF for Low Power Design and Verification 116© 2014 Mentor Graphics

For more details, read the
IEEE 1801-2013 UPF spec,

especially
Clause 4, UPF Concepts

BREAK

3 March 2014Using UPF for Low Power Design and Verification 117

Hard IP Modeling with
Liberty and Verilog

3 March 2014Using UPF for Low Power Design and Verification

Sushma Honnavara-Prasad
Principal Engineer

Broadcom

118© 2014 Broadcom

Leaf Cells vs Macros (IPs)
Leaf cell

– An instance that has no descendants, or an instance that has
the attribute UPF_is_leaf_cell associated with it.

– In a typical ASIC flow,
• Used to denote a standard cell/IO/Analog IP etc in the design
• Have simulation models/.libs associated with them

Macros
– Also called IPs, a piece of functionality optimized for

power/area/performance
• Soft macros – handed off as synthesizable HDL (technology

agnostic)
• Hard macros – handed off as LEF/GDS (technology specific)

- Also a leaf cell

– UPF_is_macro_cell attribute allows the model to be
recognized as part of lower boundary of the domain
containing the instance

3 March 2014Using UPF for Low Power Design and Verification 119© 2014 Broadcom

Models Dealing with Power

Why do we need them:
– Power models provide a compact abstraction of the design

while preserving the structural/functional power related
properties of the design

– Type of models we use change based on the
design/verification phase

UPF Power models

Simulation models
• Power aware RTL/Gate models (Verilog/VHDL/SV)

 Implementation models
• Liberty
• LEF etc.

3 March 2014Using UPF for Low Power Design and Verification 120© 2014 Broadcom

Liberty Attributes and UPF

Leaf cell/macro cell power intent may be contained in
liberty (.lib models)

 .lib can describe power/power management cell attributes

3 March 2014Using UPF for Low Power Design and Verification 121© 2014 Broadcom

.lib UPF Purpose
pg_pin - Supply pin definition

pg_type UPF_pg_type Function of a supply

pg_function - Supply expression for
generated supplies

related_power_pin UPF_related_power_port Power associated with a port

related_ground_pin UPF_related_ground_port Ground associated with a port

Supply Attributes

Liberty Attributes and UPF

3 March 2014Using UPF for Low Power Design and Verification 122© 2014 Broadcom

.lib UPF Purpose
is_macro_cell UPF_is_macro_cell Identify a hard-macro

- UPF_is_leaf_cell Identify a leaf-cell (all cells in
.lib are considered leaf cells)

always_on define_always_on_cell Cells that can remain on while
the domain is off

antenna_diode_type define_diode_clamp Define/describe diode clamps

is_isolation_cell define_isolation_cell Define isolation cell

isolation_cell_enable_pin -enable Identifies isolation cell enable

always_on -always_on_pins Always on Pin attribute

is_level_shifter define_level_shifter_cell Define level shifter cells

level_shifter_enable_pin -enable Enabled level shifter control

Power management cell attributes

Liberty Attributes and UPF

3 March 2014Using UPF for Low Power Design and Verification 123© 2014 Broadcom

.lib UPF Purpose
switch_cell_type create_power_switch_cell Define a power-switch cell

user_pg_type gate_bias_pin Identifies supply pin associated
with gate input

retention_cell define_retention_cell Define a retention cell

retention_pin - Identifies the retention control(s)

save_action save_function Save pin function that enables
save action

restore_action restore_function Restore pin function that enables
restore action

Power management cell attributes

Example: Embedded SRAM

module RAM (cs, clk, addr,
din, dout, we, pwron_in,
pwron_out, iso, float,
clk_out);

input cs, clk, we;

input float;

input [3:0] addr;

input [31:0] din;

output [31:0] dout;

input pwron_in, iso;

output pwron_out;

output clk_out;

endmodule

3 March 2014Using UPF for Low Power Design and Verification 124© 2014 Broadcom

Embedded SRAM: Liberty
cell (SRAM) {

is_macro_cell : true;

switch_cell_type : fine_grain;

pg_pin (VDD) {

pg_type: primary_power;

voltage_name: VDD;

direction: input;

}

pg_pin (VSS) {

pg_type: primary_ground;

voltage_name: VSS;

direction: input;

}

3 March 2014Using UPF for Low Power Design and Verification 125© 2014 Broadcom

Embedded SRAM: Liberty
pg_pin (VDDSW) {

pg_type: internal_power;

voltage_name: VDDSW;

direction: internal;

pg_function: VDD;

switch_function: pwron_in;

}

pin (iso) {

related_power_pin : VDD;

related_ground_pin : VSS;

}

}

3 March 2014Using UPF for Low Power Design and Verification 126© 2014 Broadcom

Embedded SRAM: Liberty
pin (pwron_in) {

related_power_pin : VDD;

related_ground_pin : VSS;

switch_pin: true;

}

pin (clk) {

related_power_pin : VDDSW;

related_ground_pin : VSS;

}

pin (cs) {

related_power_pin : VDDSW;

related_ground_pin : VSS;

}

3 March 2014Using UPF for Low Power Design and Verification 127© 2014 Broadcom

Embedded SRAM: Liberty
pin (pwron_out) {

related_power_pin : VDD;

related_ground_pin : VSS;

function: pwron_in;

}

pin (dout[0]) {

related_power_pin : VDD;

related_ground_pin : VSS;

}

pin (dout[1]) {

related_power_pin : VDD;

related_ground_pin : VSS;

}

3 March 2014Using UPF for Low Power Design and Verification 128© 2014 Broadcom

Embedded SRAM: Power Aware HDL
assign VDDSW = pwron_in && VDD;
assign supply_on = VDDSW && !VSS;

//Corrupt all the inputs associated
// with VDDSW when pwron_in is 0
assign clk_int = (supply_on)?clk: ‘x’;
assign cs_int = (supply_on)?cs: ‘x’;

//Corrupt array if iso !=1 when off
if (!pwron_in && !iso)

array[M] <= 16{1’bx};

//Corrupt outputs when VDDSW is off
// and not isolated
assign dout = (iso)? 16{1’b0}: (supply_on)? dout_int:16{1’bx};

3 March 2014Using UPF for Low Power Design and Verification 129© 2014 Broadcom

Power Model and Power
Management Cell Commands

David Cheng
Architect

Cadence Design Systems

3 March 2014Using UPF for Low Power Design and Verification 130© 2014 Cadence

3 March 2014Using UPF for Low Power Design and Verification 131

Power Model

For static tools (where the block content is a black box)

Liberty cell modeling provides basic modeling
Power model provides additional modeling:

– Power states (power modes)
– Feedthrough and floating ports
– Detailed isolation picture of boundary ports

For dynamic tools (where the block content is visible)
Similar to the block’s design UPF
Power model provides a clear boundary that prevents higher-

scope UPF constructs from “coming into” the block

© 2014 Cadence

3 March 2014Using UPF for Low Power Design and Verification 132

Commands for Power Model

 Commands to define a power model containing other UPF
commands

begin_power_model power_model_name [-for model_list]
<UPF commands>

end_power_model
apply_power_model power_model_name

[-elements instance_list]
[-supply_map {

{lower_scope_handle upper_scope_supply_set}*
}]

 Certain commands cannot be used within a power model definition
•name_format
•save_upf
•save_scope
•load_upf –scope
•begin_power_model/end_power_model/apply_power_model
•Any deprecated/legacy commands/options

© 2014 Cadence

Same Example - Different Colors

3 March 2014Using UPF for Low Power Design and Verification 133

For static tools:
– Only describes the

boundary (the red part)
– Internal is a black box
– Similar to Liberty model

Power
Switch

Memory
Array

Logic
periphery

ISO

ISO

ISO

VDD

VDDSW

dout[0]

dout[1]

dout[15]

pwron_outpwron_in

clk

cs

we

din

addr

iso

float

clk_out

© 2014 Cadence

Possible Checks in Mind

3 March 2014Using UPF for Low Power Design and Verification 134

 Do I always assert iso
before I assert pwron_in?

 Are my power states/
modes consistent with
the block’s?

 Is my logic compatible
with the asserted clamp
values?

 Are clk and clk_out
treated the same?

 No check needed for float

© 2014 Cadence

Power
Switch

Memory
Array

Logic
periphery

ISO

ISO

ISO

VDD

VDDSW

dout[0]

dout[1]

dout[15]

pwron_outpwron_in

clk

cs

we

din

addr

iso

float

clk_out

Power Model Description

3 March 2014Using UPF for Low Power Design and Verification 135

begin_power_model

create_power_domain PD1 \
–include_scope

create_supply_set SS_VDD ...

create_supply_set SS_VDDSW ...

set_port_attributes \
–elements . \
–applies_to inputs \
–receiver_supply SS_VDDSW

set_port_attributes \
–ports {pwron_in iso}
–receiver_supply SS_VDD

set_port_attributes \
–elements . \
–applies_to outputs \
–driver_supply SS_VDD

...

© 2014 Cadence

Power
Switch

Memory
Array

Logic
periphery

ISO

ISO

ISO

VDD

VDDSW

dout[0]

dout[1]

dout[15]

pwron_outpwron_in

clk

cs

we

din

addr

iso

float

clk_out

Blue: Liberty can also describe
Red: Liberty weaker

Power Model Description

3 March 2014Using UPF for Low Power Design and Verification 136

...

set_port_attributes \
–ports {float}
–unconnected

set_port_attributes \
–ports {clk clk_out} \
–feedthrough

set_isolation -domain PD1 \
–elements {dout} \
–clamp_value 1 \
–isolation_signal iso ...

create_pst PST1 \
–supplies {VDD VDDSW...}

end_power_model

© 2014 Cadence

Power
Switch

Memory
Array

Logic
periphery

ISO

ISO

ISO

VDD

VDDSW

dout[0]

dout[1]

dout[15]

pwron_outpwron_in

clk

cs

we

din

addr

iso

float

clk_out

Blue: Liberty can also describe
Red: Liberty weaker

Liberty Description

3 March 2014Using UPF for Low Power Design and Verification 137

pin (clk_out) {

function: clk;

}

pin (float) {

}

pin (dout[0]) {

related_power_pin : VDD;

related_ground_pin : VSS;

is_isolated: true;

(isolation_enable_condition:
iso;)

}

© 2014 Cadence

Power
Switch

Memory
Array

Logic
periphery

ISO

ISO

ISO

VDD

VDDSW

dout[0]

dout[1]

dout[15]

pwron_outpwron_in

clk

cs

we

din

addr

iso

float

clk_out

Possible Checks in Mind

3 March 2014Using UPF for Low Power Design and Verification 138

 Do I always assert iso
before I assert pwron_in?
– Now possible with Liberty’s

isolation_enable_condition

 Are my power states/
modes consistent with the
block’s?
– Liberty has no PSTs

 Is my logic compatible with
the asserted clamp values?
– Liberty has no “clamp_value”

 Are clk and clk_out treated
the same?
– Liberty has no “feedthrough”

 No check needed for float
– Liberty has no “unconnected”

© 2014 Cadence

Power
Switch

Memory
Array

Logic
periphery

ISO

ISO

ISO

VDD

VDDSW

dout[0]

dout[1]

dout[15]

pwron_outpwron_in

clk

cs

we

din

addr

iso

float

clk_out

Using UPF for Low Power Design and Verification

Two Flavors of Dynamic Simulation for a Block

Power aware
HDL alone is enough
Often “hard macros”
(Review Sushma’s slide)

Power unaware
HDL + UPF
Often “soft macros”

E.g., an HDL block that goes through implementation and
is now “hardened”

Without power model, the UPF looks just like your regular
design

3 March 2014 139© 2014 Cadence

Power Unaware HDL
assign VDDSW = pwron_in && VDD;
assign supply_on = VDDSW && !VSS;

//Corrupt all the inputs associated
// with VDDSW when pwron_in is 0
assign clk_int = (supply_on)?clk: ‘x’;
assign cs_int = (supply_on)?cs: ‘x’;

//Corrupt array if iso !=1 when off
if (!pwron_in && !iso)

array[M] <= 16{1’bx};

//Corrupt outputs when VDDSW is off
// and not isolated
assign dout = (iso)? 16{1’b0}: (supply_on)? dout_int:16{1’bx};

3 March 2014Using UPF for Low Power Design and Verification 140© 2014 Broadcom

 Note: many details abstracted out,
e.g.:

 always @ (addr or cs or...)

 if (we) { write } else { read }

 assign dout_int = ...

Only the RED code
is required

Using UPF for Low Power Design and Verification

Power Model (for Dynamic Tools)
A power model is similar to the block’s design UPF, except a

clear boundary that prevents higher-scope UPF constructs from
“coming into” the block

set_isolation ... –diff_supply_only

VDD1 VDD2

Example: two supply ports
in a block are shorted at
higher scope
With the clear boundary

of a power model, the
simulation tool would
treat the two supplies
still as “different
supplies”

Other examples exist

3 March 2014 141© 2014 Cadence

3 March 2014Using UPF for Low Power Design and Verification 142

Summary on Power Model

 In short, power model indicates this block is already done
For static tools (where the block content is a black box)

Liberty cell modeling provides basic modeling
Power model provides additional modeling:

– Power states (power modes)
– Feedthrough and floating ports
– Detailed isolation picture of boundary ports

For dynamic tools (where the block content is visible)
Similar to the block’s design UPF
Power model provides a clear boundary that prevents higher-

scope UPF constructs from “coming into” the block

© 2014 Cadence

3 March 2014Using UPF for Low Power Design and Verification 143© 2014 Cadence

Modeling Power Management Cells

1801-2013 provides commands to model the
following power management cells
– State retention cells
– Always-on cells
– Isolation cells
– Level shifter cells
– Power switch cells
– Diode cells

An alternative to modeling low power management
cells using Liberty

3 March 2014Using UPF for Low Power Design and Verification 144

Example: State Retention Cells

Retention
Latch

State
Register

VDD

VDD_SW

D
Clk

RESETN

Q

Wake

Sleep

define_retention_cell -cells SR1 \
-save_function {Sleep high} \
–restore_function {Wake high} \
-restore_check !Clk -save_check !Clk \
-power_switchable VDD_SW -power VDD \
-ground VSS

Retention flops with both save and restore

Slave
Latch

Master
Latch

VDD

VDD_SW

D
Clk

RESETN

Q
define_retention_cell -cells SR1 \

-restore_check !Clk -save_check !Clk \
-power_switchable VDD_SW -power VDD \
-ground VSS

Retention flops with live slave latch

© 2014 Cadence

3 March 2014Using UPF for Low Power Design and Verification 145© 2014 Cadence

Relationship to Liberty

1801-2013 Annex H contains the current mapping
– Sushma covered with some examples earlier

1801 does not have to “wait” for Liberty if special
needs arise, e.g.:

a
en
iso

Y

VSW

vss

VDD

2

2
2

3

3
3

Isolation cell with two control pins

define_isolation_cell -cells myiso \
-power_switchable VSW -power VDD -ground VSS \
-enable iso -aux_enables en -valid_location source

define_isolation_cell -cells IsoLL \
-power_switchable VSW -power VDD -ground VSS \
-valid_location source \
-pin_groups {{in1 out1 en1} {in2 out2 en2} \
{in3 out3 en3}}

Multi-bit isolation cell

3 March 2014Using UPF for Low Power Design and Verification 146

Work with Strategies, Example:

a
en
iso

Y

VSW

vss

VDD Cell definition
define_isolation_cell -cells isoandlow \

-power_switchable VSW –power VDD -ground VSS \
-enable iso -aux_enables en

Strategy specification

set_isolation iso1 –domain PD1 –location self \
-isolation_signal { iso_drvr en_drvr} \
-isolation_sense { high low } -clamp_value 0

© 2014 Cadence

3 March 2014Using UPF for Low Power Design and Verification 147

Summary on 1801-2013 Library Cell
Commands

Model commonly used power management cells

Compact form to specify common attributes of
many cells in a single command

An alternative modeling in addition to Liberty

Direct mapping with corresponding strategies

© 2014 Cadence

Low Power Design Methodology
for IP Providers

John Biggs
Senior Principal Engineer

ARM

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 148

ARM® Cortex®-A MPCore Example

Generic simplified example

Symmetric Multicore Cluster
– 1-4 CPUs with L2 cache

Each CPU has 2 power domains
– Integer CPU, L1 Cache, Debug and

Trace
– Floating point and SIMD engine

The MPCore has 3 power
domains
– L2 cache RAMs.
– L2 cache control
– Debug and Trace

®

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 149

Cortex-A MPCore Power Domains

Clamps may be physically
located in FPU logic hierarchy

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 150

Tip: Align Power Domains and Logic Hierarchy

iso

A C

TOP

B

 Multi-element power domains can lead
to unexpected “intra-domain” isolation
create_power_domain RED –elements {A B}

A C

TOP

B

 These can often be avoided with a
different approach
create_power_domain RED –elements {.}

BLUE

TOP

BA DC

RED

 Better to align power domains with logic
hierarchy if at all possible
create_power_domain RED –elements {RED}
create_power_domain BLUE –elements {BLUE}

D

E

C
create_power_domain BLUE –elements {C}

151

Failing that, use -diff_supply_only option
or the -source/-sink filters

3 March 2014Using UPF for Low Power Design and Verification © 2014 ARM Ltd

Cortex-A MPCore Power States

PD_CPU PD_FPU

RUN RUN *

RETENTION RET !RUN

OFF OFF OFF

PD_CPU0 PD_CPU1 PD_CLSTR PD_L2RAM PD_DBG

RUN RUN RUN RUN RUN *

RETENTION !RUN !RUN !RUN RET *

DORMANT OFF OFF OFF ON *

DEBUG * * * * RUN

OFF OFF OFF OFF OFF OFF

!RUN = RET or OFF

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 152

Successive Refinement of Power Intent

IP Provider:
 Creates IP source

 Creates low power
implementation
constraints

IP Licensee/User:
 Configures IP for context

 Validates configuration

 Freezes “Golden Source”

 Implements configuration

 Verifies implementation
against “Golden Source”

RTL

Constraint
UPF

+
Configuration
UPF

+

Impl’tion
UPF

+

Impl’tion UPF

Impl’tion UPF

S
im

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Netlist

Synthesis

Netlist

P&R

Soft IP Golden Source

IP Creation1 IP Configuration2 IP Implementation3

RTL
Constraint
UPF

RTL
Constraint

Config’n
UPF

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 153

A Soft IP Provider Need Only Declare Four Things:

1. The "atomic" power domains in the design
• These can be merged but not split during implementation

2. The state that needs to be retained during shutdown
• Without prescribing how retention is controlled

3. The signals that need isolating high/low
• Without prescribing how isolation is controlled

4. The legal power states and sequencing between them
• Without prescribing absolute voltages

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 154

CPU Constraints

1. Atomic power domains
create_power_domain PD_CPU -elements {.} \
–exclude_elements “$FPU” -atomic

create_power_domain PD_FPU –elements “$FPU” –atomic

2. Retention requirements
set_retention_elements RETN_LIST -elements {.}

3. Isolation requirements
set_port_attributes -model cortex_cpu -applies_to outputs \

-exclude_ports “$CPU_CLAMP1” -clamp_value 0
set_port_attributes -model cortex_cpu –ports “$CPU_CLAMP1” -clamp_value 1

set_port_attributes -elements “$FPU” -applies_to outputs -clamp_value 0

Retain “all or nothing”

Put everything in PD_CPU
execpt PD_FPU

Clamp everything low by default
Then call out the exceptions

FPU

CPU

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 155

CPU Constraints (cont…)

4. Power State
add_power_state PD_FPU -domain \

-state {RUN -logic_expr {primary == ON \
&& default_retention == ON }} \

-state {RET -logic_expr {primary == OFF \
&& default_retention == ON }} \

-state {OFF -logic_expr {primary == OFF \
&& default_retention == OFF }}

add_power_state PD_CPU -domain \
-state {RUN -logic_expr {primary == ON \

&& default_retention == ON} \

-state {RET -logic_expr {primary == OFF \
&& default_retention == ON \

&& PD_FPU != RUN}} \

-state {OFF -logic_expr {primary == OFF \
&& default_retention == OFF \

&& PD_FPU == OFF}}

PD_CPU primary retention PD_FPU

RUN ON ON *

RET OFF ON !RUN

OFF OFF OFF OFF

PD_FPU primary retention

RUN ON ON

RET OFF ON

OFF OFF OFF

Define PD_FPU in terms
of its supply sets

Define PD_CPU in terms
of its supply sets and
the state of PD_FPU

In RET the FPU state can
be anything but RUN

FPU

CPU

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 156

Cluster Constraints

1. “Atomic” power domains
create_power_domain PD_CLSTR -elements {.} \

–exclude_elements {“$L2RAM” “$DEBUG”} -atomic

create_power_domain PD_L2RAM –elements “$L2RAM” -atomic

create_power_domain PD_DEBUG –elements “$DEBUG” -atomic

2. Retention requirements
set_retention_elements RETN_LIST -elements {.}

3. Isolation requirements
set_port_attributes –model cortex_cluster -applies_to outputs \

-exclude_ports “$CLSTR_CLAMP1” -clamp_value 0

set_port_attributes –model cortex_cluster –ports “$CLSTR_CLAMP1” -clamp_value 1

set_port_attributes -elements $L2RAM -applies_to outputs \
-exclude_ports “$L2RAM_CLAMP1” -clamp_value 0

set_port_attributes -elements $L2RAM –ports “$L2RAM_CLAMP1” -clamp_value 1

set_port_attributes -elements $DEBUG –applies_to outputs -clamp_value 0

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

Retain “all or nothing”

Put everything in
PD_CLSTR
except PD_L2RAM
and PD_DEBUG

Clamp everything low by default
Then call out the exceptions

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 157

Cluster Constraints (cont…)

4. Power Domain State
add_power_state PD_L2RAM -domain \

-state {RUN -logic_expr {primary == ON \
&& default_retention == ON }}\

-state {RET -logic_expr {primary == OFF \
&& default_retention == ON }}\

-state {OFF -logic_expr {primary == OFF \
&& default_retention == OFF}}

add_power_state PD_DEBUG -domain \

-state {RUN -logic_expr {primary == ON }}\

-state {OFF -logic_expr {primary == OFF }}

PD_L2RAM primary retention

RUN ON ON

RET OFF ON

OFF OFF OFF

PD_DEBUG primary

RUN ON

OFF OFF

Define PD_L2RAM
in terms of its
supply sets

Define PD_DEBUG in terms
of its supply sets

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 158

Cluster Constraints (cont…)

4. Power Domain State (Cont.)
add_power_state PD_CLSTR -domain \

-state {RUN -logic_expr {primary == ON && PD_L2RAM == RUN \
&& uCPU0/PD_CPU == RUN || uCPU1/PD_CPU == RUN}} \

-state {RET -logic_expr {primary == OFF && PD_L2RAM == RET \
&& uCPU0/PD_CPU != RUN && uCPU0/PD_CPU != RUN}} \

-state {DMT -logic_expr {primary == OFF && PD_L2RAM == RUN \
&& uCPU0/PD_CPU == OFF && uCPU0/PD_CPU == OFF}} \

-state {DBG -logic_expr {PD_DEBUG == RUN}}

-state {OFF -logic_expr {primary == OFF && PD_L2RAM == OFF \
&& uCPU0/PD_CPU == OFF && uCPU0/PD_CP == OFF \
&& PD_DEBUG == OFF}}

PD_CLSTR primary PD_L2RAM PD_CPU0 PD_CPU1 PD_DEBUG

RUN ON RUN RUN RUN *

RET OFF RET !RUN !RUN *

DMT OFF RUN OFF OFF *

DBG * * * * RUN

OFF OFF OFF OFF OFF OFF

Define PD_CLSTR in
terms of its supply
sets and also the
state of PD_L2RAM
and PD_DEBUG

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 159

Successive Refinement of Power Intent

IP Provider:
 Creates IP source

 Creates low power
implementation
constraints

RTL

Constraint
UPF

+ Soft IP

IP Creation1 IP Configuration2

We now have UPF constraints to go along
with the unconfigured RTL

This is what an IP provider would deliver

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 160

Flat vs Hierarchical

Configure instances in
context
set_scope /SOC

load_upf cpu_cnstr.upf –scope CLSTR/CPU1
load_upf cpu_cnstr.upf –scope CLSTR/CPU2

load_upf clstr_cnstr.upf –scope CLSTR

 Isolation
set_isolation ISO -domain PD_CPU1

-isolation_signal PMU/nISO1
-location self

Power switches
create_power_switch SW -domain PD_CPU1

-input_supply_port {sw_in VDDSOC}
-output_supply_port {sw_out VDDCPU1}
-control_port {sw_ctl PMU/nPWR1}
-on_state {on_state sw_in {!PMU/nPWR1}}
-off_state {off_state { PMU/nPWR1}}

SOC

CLSTR

PMU

CPU1 CPU2

nISO2nPWR2nISO1nPWR1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 161

Flat vs Hierarchical

Configure IP out of context
create_logic_port nISO –direction in
create_logic_port nPWR –direction in

set_isolation ISO -domain PD1
-isolation_signal nISO

create_power_switch SW -domain PD
-control_port {sw_ctl nPWR}

Load configured IP in to
context

set_scope /CLSTR
load_upf cpu_config.upf –scope CPU1
load_upf cpu_config.upf –scope CPU2

create_logic_port nISO1
create_logic_port nPWR1

connect_logic_net CPU1/ISO –port nPWR1
connect_logic_net CPU1/ISO –port nISO1

Connect up to PMU

SOC
PMU nISO2nPWR2nISO1nPWR1

CLSTR

CPU1 CPU2

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 162

CPU Configuration

Compose PD_CPU and PD_FPU in to single
domain
create_composite_domain PD_myCPU –subdomains {PD_CPU PD_FPU}

Create power control ports
create_logic_port nPWRUP_CPU -direction in
create_logic_port nISOLATE_CPU -direction in

Create isolation strategies to fulfill isolation
requirements
set_isolation ISO_LO -domain PD_myCPU \

–applies_to outputs -clamp_value 0 \
-isolation_signal nISOLATE_CPU -isolation_sense low \
-location self

set_isolation ISO_HI -domain PD_myCPU \
-elements “$CPU_CLAMP1” -clamp_value 1 \
-isolation_signal nISOLATE_CPU -isolation_sense low \
-location self

PD_FPU not
required

Clamp the exceptions high
(more specific overrides
more generic)

Clamp all outputs
low by default

FPU

CPU

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 163

CPU Configuration

Update power supply state with supply
expressions
add_power_state PD_myCPU.primary –supply -update\

-state {ON -supply_expr {power == FULL_ON && ground == FULL_ON }}\
-state {OFF -supply_expr {power == OFF || ground == OFF }}

Update power domain state with logic
expressions
add_power_state PD_CPU -domain -update \

-state {RET -illegal} \
-state {RUN -logic_expr {!nPWRUP_CPU}} \
-state {OFF -logic_expr { nPWRUP_CPU}}

add_power_state PD_FPU -domain -update \
-state {RUN -logic_expr {!nPWRUP_CPU}}
-state {OFF -logic_expr { nPWRUP_CPU}}

add_power_state PD_myCPU –domain -update \
-state {RUN -logic_expr {PD_CPU = RUN && PD_FPU == RUN}
-state {OFF -logic_expr {PD_CPU = OFF && PD_FPU == OFF}

CPU state retention
not required

Express PD_myCPU
state in terms of
PD_CPU & PD_FPU

PD_FPU is switched
by nPWRUP_CPU

FPU

CPU

1643 March 2014Using UPF for Low Power Design and Verification © 2014 ARM Ltd

Cluster Configuration

Create Cluster power control ports
create_logic_port nPWRUP_CLSTR -direction in
create_logic_port nISOLATE_CLSTR -direction in

create_logic_port nPWRUP_L2RAM -direction in
create_logic_port nISOLATE_L2RAM -direction in
create_logic_port nRETAIN_L2RAM -direction in

create_logic_port nPWRUP_DEBUG -direction in
create_logic_port nISOLATE_DEBUG -direction in

Create CPU power control ports
create_logic_port nPWRUP_CPU0 -direction in
create_logic_port nISOLATE_CPU0 -direction in

create_logic_port nPWRUP_CPU1 -direction in
create_logic_port nISOLATE_CPU1 -direction in

Connect CPU power control ports
connect_logic_net nPWRUP_CPU0 -port uCPU0/nPWRUP_CPU0
connect_logic_net nISOLATE_CPU0 -port uCPU0/nISOLATE_CPU0

connect_logic_net nPWRUP_CPU1 -port uCPU1/nPWRUP_CPU1
connect_logic_net nISOLATE_CPU1 -port uCPU1/nISOLATE_CPU1

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 165

Cluster Configuration

Create retention strategy for L2RAM
set_retention PD_L2RAM \

-save_signal {nRETAIN_L2RAM posedge} \
-restore_signal {nRETAIN_L2RAM negedge} \
-retention_condition {nRETAIN_L2RAM} \

Create isolation strategies to fulfill isolation requirements
set_isolation ISO_LO -domain PD_CLSTR -clamp_value 0 \

-isolation_signal nISOLATE_CPU -isolation_sense low \
-location self

set_isolation ISO_HI -domain PD_CLSTR –elements “$CLSTR_CLAMP1” -clamp_value 1
-isolation_signal nISOLATE_CPU -isolation_sense low \
-location self

set_isolation ISO_LO -domain PD_L2RAM -clamp_value 0 \
-isolation_signal nISOLATE_L2RAM -isolation_sense low \
-location self

set_isolation ISO_LO -domain PD_DEBUG -clamp_value 0 \
-isolation_signal nISOLATE_DEBUG -isolation_sense low \
-location self

Single pin
retention
control

Clamp the exceptions high
(more specific overrides
more generic)

Clamp all outputs
low by default

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 166

Cluster Configuration

 Update power supply state with supply expressions
add_power_state PD_CLSTR.primary -supply -update \

-state {ON -supply_expr {power == FULL_ON && ground == FULL_ON}}\
-state {OFF -supply_expr {power == OFF || ground == OFF }}

add_power_state PD_L2RAM.primary -supply –update ...

add_power_state PD_L2RAM.default_retention -supply –update ...

add_power_state PD_DEBUG.primary -supply –update ...

 Update power domain state with logic expressions
add_power_state PD_L2RAM -domain -update \

-state {RUN -logic_expr {!nPWRUP_L2RAM && !nRETAIN_L2RAM}} \
-state {RET -logic_expr { nPWRUP_L2RAM && nRETAIN_L2RAM}} \
-state {OFF -logic_expr { nPWRUP_L2RAM }}

add_power_state PD_DEBUG -domain \
-state {RUN -logic_expr {!nPWRUP_DEBUG}} \
-state {OFF -logic_expr { nPWRUP_DEBUG}}

add_power_state PD_CLSTR -domain \
-state {RUN -logic_expr {!nPWRUP_CLSTR}} \
-state {RET -logic_expr {!nPWRUP_CLSTR}} \
-state {DMT -logic_expr { nPWRUP_CLSTR}} \
-state {OFF -logic_expr { nPWRUP_CLSTR}}

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 167

Successive Refinement of Power Intent

IP Provider:
 Creates IP source

 Creates low power
implementation
constraints

IP LicenseeUser:
 Configures IP for context

 Validates configuration

 Freezes “Golden Source”

RTL

Constraint
UPF

+
Configuration
UPF

+
Soft IP Golden Source

IP Creation1 IP Configuration2 IP Implementation3

RTL
Constraint
UPF

We now have a fully
configured technology
independent “Golden
Reference” ready for
implementation

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 168

CPU Implementation

Create supply nets and update supply set functions
create_supply_net VDD
create_supply_net VDD_CPU
create_supply_net VSS

create_supply_set PD_myCPU.primary –update\
-function {power VDD_CPU} -function {ground VSS}

create_supply_set PD_myCPU.default_isolation –update \
-function {power VDD} -function {ground VSS}

Map the isolation strategies on to specific library cells
use_interface_cell CPU_LO -strategy ISO_LO -domain PD_CPU -lib_cells “$ISO_LO”

use_interface_cell CPU_HI -strategy ISO_HI -domain PD_CPU -lib_cells “$ISO_HI”

Create a switch to fulfill the power state
create_power_switch SW_CPU -domain PD_myCPU \

-input_supply_port {sw_in VDD} \
-output_supply_port {sw_out VDD_CPU} \
-control_port {sw_ctl nPWRUP_CPU} \
-on_state {on_state sw_in {!sw_ctl}} \
-off_state {off_state {sw_ctl}}

Use VDD for
isolation power

Use VDD_CPU for
primary power

Switch drives VDD_CPU with VDD
when nPWRUP_CPU is low

FPU

CPU

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 169

Cluster Implementation

Create supply nets and update supply set
functions

create_supply_net VDD
create_supply_net VDD_CLSTR
create_supply_net VDD_L2RAM
create_supply_net VDD_DEBUG
create_supply_net VSS

create_supply_set PD_CLSTR.primary -update \
-function {power VDD_CLSTR} -function {ground VSS}

create_supply_set PD_CLSTR.default_isolation -update \
-function {power VDD} -function {ground VSS}

create_supply_set PD_L2RAM.primary -update \
-function {power VDD_L2RAM} -function {ground VSS}

create_supply_set PD_L2RAM.default_isolation -update \
-function {power VDD} -function {ground VSS}

create_supply_set PD_L2RAM.default_retention -update \
-function {power VDD} -function {ground VSS}

create_supply_set PD_DEBUG.primary -update \
-function {power VDD_CLSTR} -function {ground VSS}

create_supply_set PD_DEBUG.default_isolation -update \
-function {power VDD} -function {ground VSS}

Use VDD for
isolation power

Use VDD_CLSTR
for primary power

Use VDD for
retention power

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 170

Cluster Implementation

Map the isolation strategies on to specific library cells

use_interface_cell CLSTR_LO -strategy ISO_LO -domain PD_CLSTR -lib_cells “$ISO_LO”

use_interface_cell CLSTR_HI -strategy ISO_HI -domain PD_CLSTR -lib_cells “$ISO_HI”

use_interface_cell L2RAM_LO -strategy ISO_LO -domain PD_L2RAM -lib_cells “$ISO_LO”

use_interface_cell DEBUG_LO -strategy ISO_LO -domain PD_DEBUG -lib_cells “$ISO_LO”

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 171

Cluster Implementation

Create switches to fulfill the power state
create_power_switch SW_CLSTR -domain PD_CLSTR \

-input_supply_port {sw_in VDD} \
-output_supply_port {sw_out VDD_CLSTR} \
-control_port {sw_ctl nPWRUP_CLSTR} \
-on_state {on_state sw_in !sw_ctl}} \
-off_state {off_state {sw_ctl}}

create_power_switch SW_L2RAM -domain PD_L2RAM \
-input_supply_port {sw_in VDD} \
-output_supply_port {sw_out VDD_L2RAM} \
-control_port {sw_ctl nPWRUP_L2RAM} \
-on_state {on_state sw_in {!sw_ctl}} \
-off_state {off_state {sw_ctl}}

create_power_switch SW_DEBUG -domain PD_DEBUG \
-input_supply_port {sw_in VDD} \
-output_supply_port {sw_out VDD_DEBUG} \
-control_port {sw_ctl nPWRUP_DEBUG} \
-on_state {on_state sw_in {!sw_ctl}} \
-off_state {off_state {sw_ctl}}

Switch drives VDD_CLSTR with VDD
when nPWRUP_CLSTR is low

DEBUG

FPU0

CPU0

L2RAM

FPU1

CPU1

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 172

Successive Refinement of Power Intent

IP Provider:
 Creates IP source

 Creates low power
implementation
constraints

IP Licensee/User:
 Configures IP for context

 Validates configuration

 Freezes “Golden Source”

 Implements configuration

 Verifies implementation
against “Golden Source”

RTL

Constraint
UPF

+
Configuration
UPF

+

Impl’tion
UPF

+

Impl’tion UPF

Impl’tion UPF

S
im

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Netlist

Synthesis

Netlist

P&R

Soft IP Golden Source

IP Creation1 IP Configuration2 IP Implementation3

RTL
Constraint
UPF

RTL
Constraint

Config’n
UPF

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 173

Hand Off as Hard Macro

 No need to re-verify the low power implementation
– Just need to verify its low power integration in to the SoC

1. Power aware simulation model
• Corruption and retention behaviours during shutdown
• Assertions to check correct sequencing of power controls

2. Liberty model with power/ground pin syntax
• related_power_pin, power_down_function etc.

3. Macro level UPF (descriptive not directive)
• “Virtual” switches to “expose” internal supply sets
• Power states, related power pins, isolation etc.

Hard Macro

PD
Blue

Liberty:
related_
power_

pin UPF:
set_port_
attributes
-model

1743 March 2014Using UPF for Low Power Design and Verification © 2014 ARM Ltd

Hand Off as Hard Macro

 Improved support for Macro Cell modelling in IEEE1801-2013
begin_power_model CLSTR

create_power_domain PD_CLSTR -elements {.}

create_supply_set PD_CLSTR.primary –update -function {power VDD} -function {ground VSS}

add_power_state PD_CLSTR –domain

-state {RUN -logic_expr {primary == DEFAULT_NORMAL &&

(!nPWRUP_CPU0 || !nPWRUP_CPU1) && !nPWRUP_L2RAM && nRETAIN_L2RAM}}

-state {RET -logic_expr {primary == DEFAULT_NORMAL &&
(nPWRUP_CPU0 && nPWRUP_CPU1) && !nPWRUP_L2RAM && !nRETAIN_L2RAM}}

-state {DMT -logic_expr {primary == DEFAULT_NORMAL &&
(nPWRUP_CPU0 && nPWRUP_CPU1) && !nPWRUP_L2RAM && nRETAIN_L2RAM}}

-state {DBG -logic_expr {primary == DEFAULT_NORMAL && !nPWRUP_DGB}

-state {OFF -logic_expr {primary == DEFAULT_CORRUPT}

end_power_model

apply_power_model CLSTR –elements uCLSTR -supply_map {PD_CLSTR.primary SS1}

 Alternatively just use the original RTL+UPF to model Hard Macro

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 175

SoC-Level Design and
Verification

3 March 2014Using UPF for Low Power Design and Verification

Sushma Honnavara-Prasad
Principal Engineer

Broadcom

176© 2014 Broadcom

SoC Power Intent Specification

3 March 2014Using UPF for Low Power Design and Verification 177© 2014 Broadcom

Introduction

3 March 2014Using UPF for Low Power Design and Verification 178

 A typical SoC contains:
– Hard IP (fully implemented macros)
– Soft IP (HDL integrated into top level)
– Analog/mixed signal macros
– IO pads

 Challenges involved:
– Number of power supplies and their

connections
– Number of system power states
– Modularizing the top level UPF
– Specification of top level iso/ls

requirements due to multiple domains

IO Ring

MACRO1

MACRO2

MACRON

Module 2Module 1

Module 3 Module N

© 2014 Broadcom

SoC UPF Outline
load_upf $env(UPF_PATH)/core/upf/core.upf –scope u_core
load_upf $env(UPF_PATH)/iopads/upf/iopads.upf –scope u_pads

if { $env(HIER_MODE) eq “TRUE” } {
load_upf $env(UPF_PATH)/hard_block/upf/hard_block.upf \
–scope u_hard_block

}

create_power_domain PD_TOP –elements { . }
source $env(UPF_PATH)/top/upf/top_power_ports.upf
source $env(UPF_PATH)/top/upf/top_power_nets.upf
source $env(UPF_PATH)/top/upf/top_supply_sets.upf
associate_supply_set aonss –handle PD_TOP.primary

source $env(UPF_PATH)/top/upf/top_submodule_connections.upf
source $env(UPF_PATH)/top/upf/top_macro_connections.upf
source $env(UPF_PATH)/top/upf/top_port_attributes.upf
source $env(UPF_PATH)/top/upf/top_system_states.upf
source $env(UPF_PATH)/top/upf/top_strategies.upf

3 March 2014Using UPF for Low Power Design and Verification 179© 2014 Broadcom

Top-Level Supply States
Supplies Type nom turbo offmode

IO supplies Constant 1.8V

AON supply Constant 0.8V

VAR1 supply Variable/switchable 0.8V 0.9V Off

VAR2 supply Variable/switchable 0.8V 0.9V Off

VAR3 supply Variable 0.8V 0.9V

VAR4 supply Switchable 0.9V Off

add_power_state var1ss -supply \
-state { nom -supply_expr { (power == {FULL_ON 0.8}) && (ground == {FULL_ON 0}) && \

(nwell == {FULL_ON 0.8}) } \
-state { turbo -supply_expr { (power == {FULL_ON 0.9}) && (ground == {FULL_ON 0}) && \

(nwell == {FULL_ON 0.9}) } \
-state { offmode -supply_expr { (power == {OFF}) && (ground == {FULL_ON 0}) && \

(nwell == {OFF}) -simstate CORRUPT}

add_power_state var3ss -supply \
-state { nom -supply_expr { (power == {FULL_ON 0.8}) && (ground == {FULL_ON 0}) && \

(nwell == {FULL_ON 0.8}) } \
-state { turbo -supply_expr { (power == {FULL_ON 0.9}) && (ground == {FULL_ON 0}) && \

(nwell == {FULL_ON 0.9}) }

Note: Some states are left
out for brevity

3 March 2014Using UPF for Low Power Design and Verification 180© 2014 Broadcom

Top-Level Power States
State ioss aonss var1ss var2ss var3ss var4ss

nom nom nom nom nom nom nom

state1 nom nom turbo turbo turbo nom

state2 nom nom turbo nom nom nom

state3 nom nom nom turbo nom nom

state4 nom nom nom nom turbo nom

state5 nom nom off nom nom nom

......

State ioss aonss var1ss var2ss var3ss var4ss

on nom nom !off !off nom | turbo !off

var1off nom nom off !off | off nom | turbo !off

var2off nom nom !off off nom | turbo !off

var4off nom nom off !off | off nom | turbo off

alloff nom nom off off nom | turbo off

3 March 2014Using UPF for Low Power Design and Verification 181© 2014 Broadcom

Top-Level Power States
State ioss aonss var1ss var2ss var3ss var4ss

on nom nom !off !off nom | turbo !off

var1off nom nom off - (any) nom | turbo !off

var2off nom nom !off off nom | turbo !off

var4off nom nom off - (any) nom | turbo off

alloff nom nom off off nom | turbo off

add_power_state PD_TOP -domain \
-state { on \
-logic_expr { (var1ss != offmode) && (var2ss != offmode) && \

(var3ss == nom || var3ss==turbo) && (var4ss != offmode)} } \
-state { var1off \
-logic_expr { (var1ss == offmode) && (var3ss == nom || var3ss==turbo) && \

(var4ss != offmode)} } \
-state { var2off \
-logic_expr { (var1ss != offmode) && (var2ss == offmode) && \

(var3ss == nom || var3ss==turbo) && (var4ss != offmode)} } \
-state { var4off \
-logic_expr { (var1ss == offmode) && (var3ss == nom || var3ss==turbo) && \

(var4ss == offmode)} } \
-state { alloff \
-logic_expr { (var1ss == offmode) && (var2ss == offmode) && \

(var3ss == nom || var3ss==turbo) && (var4ss == offmode)} }

3 March 2014Using UPF for Low Power Design and Verification 182© 2014 Broadcom

Top-Level Power Transitions
ALLON

VAR1OFF

VAR2OFF VAR4OFF

ALLOFF

t1

t2

t3

t4

i1

i2

i3

i4

t1 t2

t3 t4

t2

t5

describe_state_transition i1 -object PD_TOP -from {ALLOFF} -to {ALLON} –illegal

describe_state_transition i2 -object PD_TOP -from {ALLON} -to {ALLOFF} –illegal

describe_state_transition i3 -object PD_TOP -from {ALLON} -to {VAR4OFF} –illegal

describe_state_transition i4 -object PD_TOP -from {VAR4OFF} -to {ALLON} –illegal

describe_state_transition t1 –object PD_TOP -from {ALLON} –to {VAR1OFF VAR2OFF}

describe_state_transition t2 –object PD_TOP -from {VAR1OFF} –to {ALLON VAR2OFF VAR4OFF}

describe_state_transition t3 –object PD_TOP -from {VAR2OFF} –to {VAR1OFF ALLON}

describe_state_transition t4 –object PD_TOP -from {VAR4OFF} –to {VAR1OFF ALLOFF}

describe_state_transition t4 –object PD_TOP -from {ALLOFF} –to {VAR4OFF}

Transition name next to arrow stands
for transition TO the state, eg: i1 is a
transition to ALLON state from
ALLOFF state

3 March 2014Using UPF for Low Power Design and Verification 183© 2014 Broadcom

SoC UPF Integration Tips

3 March 2014Using UPF for Low Power Design and Verification 184© 2014 Broadcom

Summary

 Design/UPF Partitioning

 Modularization

 Mixed language handling

 IO modeling

 Macro handling

3 March 2014Using UPF for Low Power Design and Verification 185© 2014 Broadcom

Design/UPF Partitioning

 Partition design UPF into sub-module UPF
– Place and route block boundary
– Power domain boundary

load_upf $env(UPF_PATH)/module1/upf/module1.upf \
-scope core_inst/module1_inst

load_upf $env(UPF_PATH)/module2/upf/module2.upf \
-scope core_inst/module2_inst

load_upf $env(UPF_PATH)/module3/upf/module3.upf \
-scope core_inst/module3_inst

 Iso/Ls inside blocks or at top level
– Number of domains < N, Iso/Ls insertion at top

• Block/sub-module implementation is simplified, all domain crossings at top
– Number of domains > N, Iso/Ls inside implementation blocks/sub-

modules
• Block/sub-module low power implementation is self contained
• Top level domain crossings are minimized, simplifying top level

implementation

3 March 2014Using UPF for Low Power Design and Verification 186© 2014 Broadcom

Modularizing Top-Level UPF

Break up the contents of top level UPF into multiple
files for readability
– Top level power ports
– Top level power nets
– Top level supply sets
– Macro connections
– System power states

source $env(UPF_PATH)/top/upf/top_power_ports.upf

source $env(UPF_PATH)/top/upf/top_power_nets.upf
source $env(UPF_PATH)/top/upf/top_macro_connections.upf
source $env(UPF_PATH)/top/upf/top_system_states.upf

3 March 2014Using UPF for Low Power Design and Verification 187© 2014 Broadcom

Mixed Language Handling

Be aware of HDL case sensitivity
– Verilog/VHDL (and UPF) – case sensitive
– VHDL – case insensitive
– Issue: This particular affects how we write a UPF for a piece

of HDL code
• find_objects – by default returns case sensitive match patterns

Bus notation differences
– Verilog/System Verilog – square bracket
– VHDL – parenthesis

Tip
– Keeping the domain boundary in one HDL type helps keep the

UPF simple.

3 March 2014Using UPF for Low Power Design and Verification 188© 2014 Broadcom

IO Modeling
 IO pad con

– Special structure involving multiple power supplies
– Need many connect_supply_net connections
– Special IO cells connected to analog constants need additional

domains (hierarchies)
set pad_inst_list [find_objects . -pattern “PADRING_*” \

-object_type model -transitive]
foreach pad_inst $pad_inst_list {

connect_supply_net pad_ring_VSS -ports “$pad_inst/VSSP”
}

Supply port/net/set reduction using equivalence
– Several IO supplies are functionally equivalent
– Some supplies might be connected at package level/off-chip

set_equivalent –function_only { AVDD VDD1P8 pad_ana_VDD }

set_equivalent –function_only { AVSS pad_AVSS ana_VSS VSS dig_VSS }

3 March 2014Using UPF for Low Power Design and Verification 189© 2014 Broadcom

Handling Macros

Macro connections
– Analog macros - all non-default connections need to specified

with connect_supply_net
– Analog model should include pg_pin

definitions/related_power_pin/ground_pin definitions
– Special care needs to be taken for macros with internal

supplies
• Does that need additional top level isolation/level-shifting

set pll_inst_list [find_objects . -pattern *u_pll* -object_type inst \
-leaf_only -transitive]

foreach inst $pll_inst_list {
connect_supply_net 1p8ss.power -ports “$inst/AVDD1P8”
connect_supply_net 1p8ss.ground -ports “$inst/AVSS”

}

3 March 2014Using UPF for Low Power Design and Verification 190© 2014 Broadcom

SoC Verification

3 March 2014Using UPF for Low Power Design and Verification 191© 2014 Broadcom

Power Aware Simulation

3 March 2014Using UPF for Low Power Design and Verification 192

Power aware simulator

UPF HDL Bench,
Drivers

Power-aware
libraries (.v/.sv/.lib)

Reports Waveform Coverage

© 2014 Broadcom

SoC Test-bench UPF

Set the scope to the test bench
set_design_top top/chip_tb_inst

Load chip upf
load_upf $env(UPF_PATH)/chip/upf/chip.upf –scope u_chip

Global settings –treat all partial on as OFF
set_partial_on_translation OFF

Simstate settings – simulation behavior for a model/library

load_simstate_behavior MACRO_LIB -file macro_lib_simsate.upf

set_simstate_behavior ENABLE -lib ANA_PLL_LIB -model ANA_PLL

....

3 March 2014Using UPF for Low Power Design and Verification 193© 2014 Broadcom

SoC Test-bench

module chip_tb;
.......

`ifdef DEFINE_UPF_PKG

import UPF::*;
`endif

// Constant supplies
initial
begin

supply_on(“VDD_1P8”, 1.8);
supply_on(“AVSS”, 0);
supply_off(“VDD_VAR”, 0);

.......

3 March 2014Using UPF for Low Power Design and Verification 194

Chip

Supply driver
(model off chip suplies)

VDD_1P8 AVSS VDD_VAR

© 2014 Broadcom

SoC Test-bench
// Dynamic supplies
always @ (posedge system_clk, negedge por)

begin

if(supply_requested)
begin
if(supply_value==0x1)

supply_on(“VDD_VAR”,0.8);
else if(supply_value==0x2)

supply_on(“VDD_VAR”,0.9);
else if(supply_value==0x3)

supply_on(“VDD_VAR”,1.0);

else
supply_on(“VDD_VAR”,0.7);

end
else
supply_off(“VDD_VAR”,0);

end
end

3 March 2014Using UPF for Low Power Design and Verification 195© 2014 Broadcom

Note: system_clk, por and supply_value
are signals in the test bench, not UPF
objects

Adopting UPF

3 March 2014Using UPF for Low Power Design and Verification

Sushma Honnavara-Prasad
Principal Engineer

Broadcom

196© 2014 Broadcom

Recommendations for Adopting UPF

•A color coded domain hierarchy illustrating picture
•Visually describes the domains, relationships, isolation
locations, power connectivity etc

Draw a power
diagram

• Initial UPF could leave out implementation details
•UPF can be refined during the flow

Enable
incremental UPF

•Understanding what is implementable with a given set
of libraries is useful

•A rich library set could allow various implementations,
the user can choose the most optimal combination

Know your
libraries

3 March 2014Using UPF for Low Power Design and Verification 197© 2014 Broadcom

Recommendations for Adopting UPF

•Tcl variables, foreach loops, procs could help making the
UPF compact and readable

•For example: find_objects can return a list which a
foreach loop could consume to do a certain operation

Unleash the
power of Tcl

•Try to keep the UPF technology agnostic if possible, this
way, it can be paired with technology agnostic RTL and
reused.

Enable UPF reuse

•Use of tool specific commands in a UPF file is not
allowed per standard. It is possible vendors might allow
this, but it would make the UPF non-portable.

•Use of a pure UPF based solution is recommended

Avoid vendor
specific

constructs

3 March 2014Using UPF for Low Power Design and Verification 198© 2014 Broadcom

Recommendations for Adopting UPF

• If loading other UPF files or helper tcl files, avoid hard-coding the
path. Try using a configurable env variable instead.

• Avoid hardcoding HDL hierarchical paths if possible by using
find_objects (allows use of same UPF in spite of hierarchy changes)

Avoid hardcoding
paths

• Add comments wherever possible. UPF is like HDL, the author’s
explanation in the form of comments might be useful to the end
user

• Indent command options appropriately to make them readable.
Keep it readable

• Try to break up the UPF into functional boundaries if possible
instead of having a long file. Again, think how we would write RTL.
It is never easy to debug a big-flat design with no hierarchies.

Modularize

3 March 2014Using UPF for Low Power Design and Verification 199© 2014 Broadcom

Adopting UPF*

Shreedhar Ramachandra
Staff Engineer

Synopsys

3 March 2014Using UPF for Low Power Design and Verification © 2014 Synopsys 200

* Slides contributed by Jon Worthington

Recommendations for Adopting UPF

1) Determine the domains needed by identifying
areas of the design that will have different supply
needs.
– Sometimes cells that have the same supply requirements

may actually benefit to being in a unique domain if there are
other reasons to treat them differently. Such as if they reside
in a very different physical regions of the chip, or require a
different set of strategies or power states to apply to them.

– Consider the hierarchy connections between cells of the same
domain. Should they really cross a different domain just
because they need to traverse logic hierarchy? An extra level
of hierarchy my help here.

3 March 2014Using UPF for Low Power Design and Verification 201© 2014 Synopsys

Recommendations for Adopting UPF

 Make sure you build a UPF that is common to both your
verification and implementation flow
– you want to verify what you are implementing.

 Build the complete power state table –
– In verification you check for the correctness and completeness of your power

state table and in implementation, static checking you take the power state
table as golden for all the optimization. So start with a complete PST.

 Analyze your protection requirements early
– so that you can build generic isolation policies that still give you optimum

results without redundant isolation cells.

 Check your libraries.
– You should have libraries characterized at all corners based on all the

combinations of voltages on the supply nets to make sure that the power
intent is implementable and that you have protection cells to meet the
requirements of your power intent.

3 March 2014Using UPF for Low Power Design and Verification 202© 2014 Synopsys

Recommendations for Adopting UPF

Make sure the power architecture your implement
will actually save power.
– Ensure the saved power outweighs the additional power

consumed by iso cells, level shifters, and power switches

Make sure the power intent you create aligns with
the physical implementation of your design.
– As an example, at the RTL level ISO cells and LS can be

specified in a wide range of locations. But in the physical
implementation, these cells will require special power
connections that can have real impact on the physical design.

3 March 2014Using UPF for Low Power Design and Verification 203© 2014 Synopsys

Tip: Align Power Domains and Logic Hierarchy

iso

A C

TOP

B

 Multi-element power domains can lead
to unexpected “intra-domain” isolation
create_power_domain RED –elements {A B}

A C

TOP

B

 These can often be avoided with a
different approach
create_power_domain RED –elements {.}

BLUE

TOP

BA DC

RED

 Better to align power domains with logic
hierarchy if at all possible
create_power_domain RED –elements {RED}
create_power_domain BLUE –elements {BLUE}

D

E

C
create_power_domain BLUE –elements {C}

204

Failing that, use -diff_supply_only option
or the -source/-sink filters

3 March 2014Using UPF for Low Power Design and Verification © 2014 ARM Ltd

Where We Go From Here

John Biggs
Senior Principal Engineer

ARM

© 2014 ARM Ltd 3 March 2014Using UPF for Low Power Design and Verification 205

IEEE 1801 (UPF) timeline

3 March 2014Using UPF for Low Power Design and Verification 206

20162009 2010 2011 2012 2013 20142006 2007 2008 2015

UPF-1.0
Donated
to IEEE

IEEE1801-2009
(AKA UPF-2.0)

Published

UPF-1.0
Kick off
Meeting

Accellera
UPF-1.0

Published

New Project
Revision of
1801-2009

1801-2013
(AKA UPF-2.1)

Published

1801-2016
(AKA UPF-3.0)

Planned

New Project
Revision of
1801-2013

CPF-2.0
Donated
to IEEE

1801a-2014
(Amendment)

Planned

New Project
Amendment of

1801-2013

© 2014 ARM Ltd

P1801 Work Group Plans

1801-2013 Amendment PAR (2014)
– Project on the agenda for approval at the March 2014 IEEE-SA

board meeting
– Correct technical/editorial errors and inconsistencies
– Address a small number of critical enhancements

1801 Full Revision PAR (2015/16)
– Project approved at the June 2013 IEEE-SA board meeting
– Extend scope of “Power Intent” up towards System Level
– Add power modeling and estimation capabilities

• SAIF integration and extension
– Consider further UPF/CPF methodology convergence
– Enhance and extend Low Power Methodology Annex

2073 March 2014Using UPF for Low Power Design and Verification © 2014 ARM Ltd

System Level Power Intent

Depends on perspective
– SW Centric: abstract, task, transaction/event based
– HW Centric: detailed, component, state/level based

Bridge the gap
– Top down: Add detail to the abstract SW centric

world of system performance modelling.
– Bottom up: Add abstraction to detailed HW centric

world of RTL+UPF implementation

Extend UPF as far as is appropriate
– Raise abstraction level of “power intent”
– Need a better understanding of the system level requirements.

Working closely with the IEEE Low Power Study Group
– Helping to coordinate various standard activities in this area
– Si2/LPC, Liberty, IP-XACT IEEE1666 SystemC

3 March 2014Using UPF for Low Power Design and Verification 208© 2014 ARM Ltd

System Energy Analysis & Optimization

Applications

Middleware
& OS

Drivers

Hardware
Platforms

SoC

IP

Sy
st

em
 P

ow
er

 M
an

ag
em

en
t

Hardware Centric Optimization:
Low power design and verification
Component level power optimization
Power aware SoC component integration and optimization
Macro model enhancements for low power design

System Centric Analysis and Optimization:
Energy aware heterogeneous multi-core architecture exploration
Energy aware hardware-software partitioning
Energy aware SoC hardware architecture and exploration
Memory system topology and interconnect optimization
Scenario driven power state space optimization
Power Management Unit (and PMIC) architecture and design
Dedicated hardware (ASIP) for energy efficiency

Software Centric Analysis and Optimization:
Software impacts on energy consumption – trend based analysis
Detecting and correcting energy bugs in software
System power management (RFTS/DVFS) optimization
OS level system and runtime power management bring-up

Source: Alan Gibbons, Synopsys Inc.

3 March 2014Using UPF for Low Power Design and Verification 209© 2014 Synopsys

System Level Power Subcommittee

Formed Feb 2014
– 18 people from 11 Entities, Chair: Alan Gibbons, Synopsys
– Requirements gathering phase

• Focus on Virtual Prototyping
– Face2Face meeting April 8/9/10th in UK

Near term objectives:
– Identify practical use models
– Determine accuracy and granularity requirements
– Scope and extent of standardisation?

• Power model structure, consumption data, activation, interfaces...
– Evaluate feasibility of extending 1801 to meet requirements

• Deliver proposal on specific extensions to 1801 Work Group
– Develop and prototype specific examples

3 March 2014Using UPF for Low Power Design and Verification 210© 2014 ARM Ltd

211

Interested in working on UPF?
Join the working group!

Send email to info@p1801.org
http://standards.ieee.org/develop/wg/UPF.html

