
SVA Advanced Topics: SVAUnit
and Assertions for Formal

SystemVerilog Assertions
Verification with SVAUnit

Andra Radu Ionuț Ciocîrlan

Tutorial Topics
• Introduction to SystemVerilog Assertions (SVAs)

• Planning SVA development

• Implementation

• SVA verification using SVAUnit

• SVA test patterns

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 3

Introduction to SystemVerilog
Assertions

(SVAs)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 4

Assertions and Properties

• What is an assertion?

• What is a property?

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 5

assert (a |-> b)
else $error("Assertion failed!")

property p_example;
a |-> b
endproperty

Simple Assertion Example

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 6

property req_to_rise_p;
@(posedge clk)
$rose(req) |-> ##[1:3] $rose(ack);

endproperty

ASSERT_LABEL: assert property (req_to_rise_p)
else `uvm_error("ERR", "Assertion failed")

Types of SystemVerilog
Assertions

• Immediate

• Concurrent

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 7

assert (expression) pass_statement
[else fail_statement]

Assertions Are Used

• In a verification component

• In a formal proof kit

• In RTL generation
“Revisiting Regular Expressions in SyntHorus2: from PSL SEREs to
Hardware” (Fatemeh (Negin) Javaheri, Katell Morin-Allory, Dominique
Borrione)

• For test patterns generation
“Towards a Toolchain for Assertion-Driven Test Sequence Generation” (Laurence
PIERRE)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 8

SVAs Advantages

• Fast

• Non-intrusive

• Flexible

• Coverable

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 9

Planning SVA Development

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 10

Identify Design Characteristics

• Defined in a document (design specification)

• Known or specified by the designer

• The most common format is of the form cause and
effect: antecedent |-> consequent

• Antecedent:

• Consequent:
2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 11

$rose(req)

##[1:3] $rose(ack)

Keep it Simple. Partition!

• Complex assertions are typically constructed from
complex sequences and properties.

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 12

a ##1 b[*1:2] |=> c ##1 d[*1:2] |=> $fell(a)

sequence seq(arg1, arg2);
arg1 ##1 arg2[*1:2];
endsequence

seq(a, b) |=> seq(c, d) |=> $fell(a)

Implementation

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 13

Coding Guidelines

• Avoid duplicating design logic in assertions

• Avoid infinite assertions

• Reset considerations

• Mind the sampling clock

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 14

Coding Guidelines (contd.)

• Always check for unknown condition (‘X’)

• Assertion naming

• Detailed assertion messages

• Assertion encapsulation

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 15

Best Practices

• Review the SVA with the designer to avoid DS
misinterpretation

• Use strong in assertions that may never complete:

• Properties should not hold under certain conditions
(reset, enable switch)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 16

assert property (req |-> strong(##[1:$] ack));

assert property (
@(posedge clk) disable iff (!setup || !rst_n)

req |-> strong(##[1:$] ack)
);

Best Practices (contd.)

• Avoid overlapping assertions that contradict each
other
CPU_0:
CPU_1:

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 17

assert property (WRITE |=> ERROR);

assert property (WRITE |=> !ERROR);

assert property (WRITE and CPU==0 |=> ERROR);

assert property (WRITE and CPU==1 |=> !ERROR);

Best Practices (contd.)

• Use the $sampled() function in action blocks

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 18

Active

Inactive

NBA

Observed

Re-active

Re-inactive

Postponed

Preponed
Previous timeslot

Next timeslot

assert property (@(posedge clk) ack == 0)
else

`uvm_error("ERROR", $sformatf("Assertion
failed. ack is %d", $sampled(ack)));

Assertion Example

• AMBA APB protocol specification:

The bus only remains in the SETUP state for one clock
cycle and always moves to the ACCESS state on the
next rising edge of the clock.

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 19

Assertion Example (contd.)

• Antecedent (the SETUP phase)

• Consequent (the ACCESS phase)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 20

sequence setup_phase_s;
$rose(psel) and $rose(pwrite)
and (!penable) and (!pready);

endsequence

sequence access_phase_s;
$rose(penable) and $rose(pready) and
$stable(pwrite) and $stable(pwdata)and
$stable(paddr) and $stable(psel);

endsequence

Assertion Example (contd.)

• The property can be expressed as:

• The assertion will look like:

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 21

property access_to_setup_p;
@(posedge clk) disable iff (reset)
setup_phase_s |=> access_phase_s;

endproperty

assert property (access_to_setup_p)
else `uvm_error("ERR", "Assertion failed")

Does It Work as Intended?

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 22

SVA Verification with SVAUnit

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 23

SVA Verification Challenges

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 24

Clear separation between
validation and SVA definition
code

Easy to:
- Update
- Enhance
- Disable

Results should be:
- Deterministic
- Repeatable

Predictable

Introducing SVAUnit

• Structured framework for Unit Testing for SVAs

• Allows the user to decouple the SVA definition from its
validation code

• UVM compliant package written in SystemVerilog

• Encapsulate each SVA testing scenario inside an unit
test

• Easily controlled and supervised using a simple API
2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 25

SVAUnit Infrastructure

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 26

SVAUnit Testbench

SVAUnit Test Suite

SVAUnit Unit TestSVAUnit Test

test()

SVA interface handle

Interface
containing

SVA
Interface

containing
SVA

SVAUnit Test

SVAUnit
Test
Suite

ReportsReports

ReportsReports

• SVAUnit Testbench
- Enables SVAUnit
- Instantiates SVA

interface
- Starts test

• SVAUnit Test
- Contains the SVA

scenario

• SVAUnit Test Suite
- Test and test suite

container

Example Specification

• AMBA APB protocol specification:

The bus only remains in the SETUP state for one clock
cycle and always moves to the ACCESS state on the
next rising edge of the clock.

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 27

Example APB Interface

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 28

interface apb_if (input pclk);

logic psel;

logic pwrite;

logic penable;

logic pready;

logic [`ADDR_WIDTH-1 :0] paddr;
logic [`WDATA_WIDTH-1:0] pwdata;

endinterface

APB sequences definitions

APB property definition

APB assertion definition

APB Sequences Definitions

• Antecedent (the SETUP phase)

• Consequent (the ACCESS phase)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 29

sequence setup_phase_s;
$rose(psel) and $rose(pwrite)
and (!penable) and (!pready);

endsequence

sequence access_phase_s;
$rose(penable) and $rose(pready) and
$stable(pwrite) and $stable(pwdata)and
$stable(paddr) and $stable(psel);

endsequence

APB Property & Assertion
Definitions

• The property can be expressed as:

• The assertion will look like:

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 30

property access_to_setup_p;
@(posedge clk) disable iff (reset)
setup_phase_s |=> access_phase_s;

endproperty

assert property (access_to_setup_p)
else `uvm_error("ERR", "Assertion failed")

Example of SVAUnit
Testbench

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 31

module top;
// Instantiate the SVAUnit framework
`SVAUNIT_UTILS
...

// APB interface with the SVA we want to test
apb_if an_apb_if(.clk(clock));

initial begin
// Register interface with the uvm_config_db
uvm_config_db#(virtual an_if)::
set(uvm_root::get(), "*", "VIF", an_apb_if);

// Start the scenarios
run_test();

end

...
endmodule

Example of SVAUnit Test

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 32

class ut1 extends svaunit_test;
// The virtual interface used to drive the signals
virtual apb_if apb_vif;

function void build_phase(input uvm_phase phase);
// Retrieve the interface handle from the uvm_config_db
if (!uvm_config_db#(virtual an_if)::get(this, "", "VIF", apb_vif))
`uvm_fatal("UT1_NO_VIF_ERR", "SVA interface is not set!")

// Test will run by default;
disable_test();

endfunction

task test();
// Initialize signals
// Create scenarios for SVA verification

endtask
endclass

APB – SVAUnit Test Steps

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 33

Enable the APB SVA

Initialize the interface signals

Generate setup phase stimuli

Generate access phase stimuli

SVA checks based on generated stimuli

Enable SVA and Initialize
Signals

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 34

...

// Enable the APB SVA
vpiw.disable_all_assertions();
vpiw.enable_assertion("APB_PHASES");

// Initialize signals
task initialize_signals();
apb_vif.paddr <= 32'b0;
apb_vif.pwdata <= 32'b0;
apb_vif.pwrite <= 1'b0;
apb_vif.penable <= 1'b0;
apb_vif.psel <= 1'b0;

endtask

...

Generate Setup Phase
Stimuli

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 35

...

task generate_setup_phase_stimuli(bit valid);
...
// Stimuli for valid SVA scenario
valid == 1 ->
pwrite == 1 && psel == 1 && penable == 0 && pready == 0;

// Stimuli for invalid SVA scenario
valid == 0 ->
pwrite != 1 || psel != 1 || penable != 0 || pready != 0;

...
endtask

...

Generate Access Phase
Stimuli

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 36

...

task generate_access_phase_stimuli(bit valid);
...

// Constrained stimuli for valid SVA scenario
valid == 1 ->
pwdata == apb_vif.pwdata && paddr == apb_vif.paddr &&
pwrite == 1 && psel == 1 && penable == 1 && pready == 1;

// Constrained stimuli for invalid SVA scenario
valid == 0 ->
pwdata != apb_vif.pwdata || paddr != apb_vif.paddr ||
pwrite != 1 || psel != 1 || penable != 1 || pready != 1;
...

endtask
...

SVA State Checking

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 37

...

if (valid_setup_phase)
if (valid_access_phase)
vpiw.fail_if_sva_not_succeeded("APB_PHASES",

"The assertion should have succeeded!");
else
vpiw.fail_if_sva_succeeded("APB_PHASES",

"The assertion should have failed!");
else
vpiw.pass_if_sva_not_started("APB_PHASES",

"The assertion should not have started!");

...

Example of SVAUnit Test
Suite

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 38

class uts extends svaunit_test_suite;
// Instantiate the SVAUnit tests
ut1 ut1;
...
ut10 ut10;

function void build_phase(input uvm_phase phase);
// Create the tests using UVM factory
ut1 = ut1::type_id::create("ut1", this);
...
ut10 = ut10::type_id::create("ut10", this);

// Register tests in suite
`add_test(ut1);
...
`add_test(ut10);

endfunction

endclass

SVAUnit Test API

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 39

• disable_all_assertions();
• enable_assertion(sva_name);
• enable_all_assertions();

. . .
CONTROL

• fail_if_sva_does_not_exists(sva_name, error_msg);
• pass_if_sva_not_succeeded(sva_name, error_msg);
• pass/fail_if(expression, error_msg);

. . .
CHECK

• print_status();
• print_sva();
• print_report();

. . .
REPORT

SVAUnit Flow

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 40

Instantiate test in Test Suite

Create an SVAUnit Test Suite

Register tests in test suite

Scan report

Simulate
Create SVAUnit Testbench

Create an SVAUnit Test

Implement test() task

Error Reporting

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 41

Name of SVAUnit
check

Custom error
message

Name of SVA under
test

SVAUnit test path

Hierarchy Report

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 42

Test Scenarios Exercised

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 43

SVAs and Checks Exercised

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 44

SVA Test Patterns

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 45

Simple Implication Test

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 46

• a and b |=> c

repeat (test_loop_count) begin
randomize(stimuli_for_a, stimuli_for_b, stimuli_for_c);

interface.a <= stimuli_for_a;
interface.b <= stimuli_for_b;
@(posedge an_vif.clk);

interface.c <= stimuli_for_c;
@(posedge interface.clk);

@(posedge interface.clk);
if (stimuli_for_a == 1 && stimuli_for_b == 1)
if (stimuli_for_c == 1)

vpiw.fail_if_sva_not_succeeded("IMPLICATION_ASSERT",
"The assertion should have succeeded!");

else
vpiw.fail_if_sva_succeeded("IMPLICATION_ASSERT",

"The assertion should have failed!");
else

vpiw.pass_if_sva_not_started("IMPLICATION_ASSERT",
"The assertion should not have started!");

end

Multi-thread
Antecedent/Consequent

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 47

• $rose(a) ##[1:4] b |-> ##[1:3] c
repeat (test_loop_count) begin

// Generate valid delays for asserting b and c signals
randomize(delay_for_b inside {[1:4]}, delay_for_c inside {[1:3]});
interface.a <= 1;

repeat (delay_for_b)
@(posedge interface.clk);

interface.b <= 1;

vpiw.pass_if_sva_started_but_not_finished("MULTITHREAD_ASSERT",
"The assertion should have started but not finished!");

repeat (delay_for_c)
@(posedge interface.clk);

interface.c <= 1;

vpiw.pass_if_sva_succeeded("MULTITHREAD_ASSERT",
"The assertion should have succeeded!");

end

Multi-thread
Antecedent/Consequent (contd.)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 48

• $rose(a) ##[1:4] b |-> ##[1:3] c
repeat (test_loop_count) begin

// Generate invalid delays for asserting b and c signals
randomize(delay_for_b inside {[0:10]}, delay_for_c inside {0,[4:10]});
interface.a <= 1;

repeat (delay_for_b)
@(posedge interface.clk);

interface.b <= 1;

vpiw.pass_if_sva_not_succeeded("MULTITHREAD_ASSERT",
"The assertion should have failed!");

repeat (delay_for_c)
@(posedge interface.clk);

interface.c <= 1;

if (delay_for_b < 5)
vpiw.fail_if_sva_succeeded("MULTITHREAD_ASSERT",

"The assertion should have failed!");
end

Consecutive Repetition

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 49

• a |-> b[*1:2] ##1 c
repeat (test_loop_count) begin

randomize(stimuli_for_a, stimuli_for_c, number_of_b_cycles <= 2);

interface.a <= stimuli_for_a;

repeat (number_of_b_cycles) begin
randomize(stimuli_for_b)
interface.b <= stimuli_for_b;
if (stimuli_for_b == 1) number_of_b_assertions += 1;

@(posedge interface.clk);
end

if (stimuli_for_a == 1 && number_of_b_assertions == number_of_b_cycles &&
number_of_b_assertions > 0)

vpiw.pass_if_sva_started_but_not_finished("IMPLICATION_ASSERT",
"The assertion should have started but not finished!");

@(posedge interface.clk);

... // (continued on the next slide)

Consecutive Repetition
(contd.)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 50

• a |-> b[*1:2] ##1 c

...

// (continued from previous slide)

interface.c <= stimuli_for_c;

@(posedge interface.clk);

if (stimuli_for_a == 1)

if (number_of_b_assertions != number_of_b_cycles ||

number_of_b_assertions == 0 ||

stimuli_for_c == 0)

vpiw.fail_if_sva_succeeded("IMPLICATION_ASSERT",

"The assertion should have failed!");

else

vpiw.fail_if_sva_not_succeeded("IMPLICATION_ASSERT",

"The assertion should have succeeded!");

end // end of test repeat loop

Repetition Range with Zero

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 51

• a |-> b[*0:2] ##1 c
repeat (test_loop_count) begin

randomize(stimuli_for_a, stimuli_for_c, number_of_b_cycles <= 2);

interface.a <= stimuli_for_a;

repeat (number_of_b_cycles) begin
randomize(stimuli_for_b)
interface.b <= stimuli_for_b;
if (stimuli_for_b == 1) number_of_b_assertions += 1;

@(posedge interface.clk);
end

if (stimuli_for_a == 1 && number_of_b_assertions == number_of_b_cycles)
&& number_of_b_assertions > 0)

vpiw.pass_if_sva_started_but_not_finished("IMPLICATION_ASSERT",
"The assertion should have started but not finished!");

@(posedge interface.clk);

... // (continued on the next slide)

Repetition Range with Zero
(contd.)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 52

• a |-> b[*0:2] ##1 c

...

// (continued from previous slide)

interface.c <= stimuli_for_c;

@(posedge interface.clk);

if (stimuli_for_a == 1)

if (number_of_b_assertions != number_of_b_cycles ||

number_of_b_assertions == 0 ||

stimuli_for_c == 0)

vpiw.fail_if_sva_succeeded("REPETITION_RANGE0_ASSERT",

"The assertion should have failed!");

else

vpiw.fail_if_sva_not_succeeded("REPETITION_RANGE0_ASSERT",

"The assertion should have succeeded!");

end // end of test repeat loop

Sequence Disjunction

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 53

• a |=> (b ##1 c) or (d ##1 e)
repeat (test_loop_count) begin

randomize(stimuli_for_a, stimuli_for_b, stimuli_for_c, stimuli_for_d, stimuli_for_e);

interface.a <= stimuli_for_a;

@(posedge interface.clk);

fork

begin

end

begin

end

join

end

Stimuli for branch: (b ##1 c)

SVA state check based on branch stimuli

Stimuli for branch: (d ##1 e)

SVA state check based on branch stimuli

Sequence Disjunction
(contd.)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 54

• a |=> (b ##1 c) or (d ##1 e)

...

// Stimuli for branch (b ##1 c)

fork

begin

interface.b <= stimuli_for_b;

@(posedge interface.clk);

interface.c <= stimuli_for_c;

@(posedge interface.clk);

@(posedge interface.clk);

// SVA state check based on branch stimuli

sva_check_phase(interface.a, interface.b, interface.c);

end

join

Sequence Disjunction
(contd.)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 55

• a |=> (b ##1 c) or (d ##1 e)

...

// Stimuli for branch (d ##1 e)

fork

begin

interface.b <= stimuli_for_d;

@(posedge interface.clk);

interface.c <= stimuli_for_e;

@(posedge interface.clk);

@(posedge interface.clk);

// SVA state check based on branch stimuli

sva_check_phase(interface.a, interface.d, interface.e);

end

join

Sequence Disjunction
(contd.)

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 56

• a |=> (b ##1 c) or (d ##1 e)

// SVA state checking task used in each fork branch

task sva_check_phase(bit stimuli_a, bit stimuli_b, bit stimuli_c);

if (stimuli_a)

if (stimuli_b && stimuli_c)

vpiw.pass_if_sva_succeeded("DISJUNCTION_ASSERT",

"The assertion should have succeeded");

else

vpiw.fail_if_sva_succeeded("DISJUNCTION_ASSERT",

"The assertion should have failed");

endtask

Tools Integration

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 57

Simulator independent!

Availability

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 58

• SVAUnit is an open-source
package released by AMIQ
Consulting

• We provide:
- SystemVerilog and simulator

integration codes
- AMBA-APB assertion package
- Code templates and examples
- HTML documentation for API

https://github.com/amiq-consulting/svaunit

Conclusions

• SVAUnit decouples the checking logic from SVA
definition code

• Safety net for eventual code refactoring
• Can also be used as self-checking documentation on

how SVAs work
• Quick learning curve
• Easy-to-use and flexible API
• Speed up verification closure
• Boost verification quality

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 59

Thank you!

2/29/2016 Andra Radu - AMIQ Consulting Ionuț Ciocîrlan - AMIQ Consulting 60

FORMAL SPECIFICATION,
SYSTEM VERILOG

ASSERTIONS & COVERAGE
By Calderón-Rico, Rodrigo & Tapia Sanchez, Israel G.

OBJECTIVE

 Learn how to define objects by
specifying their properties
which are formally described.

 Using the formal specification
for assertion or coverage
purposes with real examples
and gain comparisons versus
other methods as scripting and
SystemVerilog always blocks.

OBJECT

Applications:
Assertions +

Coverage + …

3

AGENDA
I. Introduction

Why do we need formal
specification?

 Formal Specification Components

 Layers of Assertion Language

 Temporal Logic

II. Language constructs

 Definition

 Boolean logic connectors

 Temporal logic connectors

 Sequence Specification

 Sequence Declaration

 Property Declaration

IV. Property

 Basics

 Property construction

 Examples

V. Assertion Language

 Introduction

 Assert Language

VI. Comparative Results

III. Sequence
 Basics
 Sequence construction.

o Temporal logic connectors
o Additional sequence features

 USB Examples

I - INTRODUCTION

WHY DO WE NEED FORMAL
SPECIFICATION?

Formal specification languages are used to describe design properties
unambiguously and precisely.

Usually properties are written as part of the high level design specifications in a
text document. But writing specification in a natural language is ambiguous.

Consider the following typical property specification: Each request should be
granted in four clock cycles. This specification is ambiguous:

 Do we count four clock cycles starting from the cycle when the request was
issued, or from the next cycle?

 Do we require that the grant is issued during the first four cycles or exactly at
the fourth cycle?

 May two requests be served by the same grant or should they be served by
two separate grants?

6

 The same specification written in SystemVerilog Asserions(SVA) is unambiguous:

assert property(@(posedge clk) request |-> ##4 grant);

 This specification defines a clocked, or concurrent assertion, and it reads: when
request is issued, it should be followed by grant in the fourth clock cycle measured
from the clock cycle when request was issued.

 Because of the formal nature of SVA, specifications can be interpreted by tools, and
what is more important, understood by humans. When the specifications are formally
defined, there is no place for misunderstanding.

7

FORMAL SPECIFICATION
COMPONENTS

Abstract descriptions are aimed to specify
an abstract behavior as it defines what

happens and when, without specifying how

exactly happened.

Abstract descriptions are encapsulated in
properties.

A group of properties may describe a
complete model.

Application:

Pre-si verification: The model created via
formal properties is a way of creating
evidence suggesting that a system either does
or does not have some behavior.

Formal
Specification

Language

Properties

Abstract
descriptions

8

Booleans

Simple Logic
Expressions

Sequences

Values Changing
Over Time

Properties

Implication of
Sequences

Assertion
Statements

LAYERS OF SVA ASSERTION
LANGUAGE

Action!

9

Formal
Specification

Boolean
Logic

and

or

not

Temporal
Logic

Boolean logic
through time

TEMPORAL LOGIC
 One can associate temporal logic to a path

through the time where a sequence of
events occur in a specified order. The events
are constructed via Boolean logic.

 Kripke structures (nondeterministic finite
state machines) set a model to evaluate
temporal logic in discrete time.

Note: Any temporal logic statement is assumed to
be in the context of discrete time, and may or may
not be specified in a discrete event context.

A

B

ABD

C

Start

10

A

B

A

C

D

AB

B

C

C

A B A B

The tree structure can help to unfold a
state diagram in order to separate
possible different paths.

A single tree branch can be understood
as a realization of one possible path
through time.

11

II - LANGUAGE CONSTRUCTS

 The chosen language is SystemVerilog (SV).

SystemVerilog is a unified hardware design, specification, and verification language.

• Abstracts a detailed specification of the design.
• Specification of assertions coverage and testbench verification that is based on
manual or automatic methodologies.

The syntax defined in SV is to generate abstract descriptions (properties).

Definition

Boolean logic connectors
 and

 or

 Non-temporal implication:
expression 1 |-> expression 2 (if 1 then 2)

13

 Distribution:

expression dist { dist_list } ;

dist_list := dist_item { , dist_item }
dist_item := value_range [dist_weight]
dist_weight := (:= expression) | (:/ expression)

The distribution operator dist evaluates to true if the value of the expression is
contained in the set; otherwise, it evaluates to false.

Example:

usb_symbol dist {100 := 1, 200 := 2, 300 := 5}

It means usb_symbol is equal to 100, 200, or 300 with weighted ratio of
1-2-5.

14

 Delay range : ##

integral_number or identifier

(constant_expression)

[cycle_delay_const_range_expression]

 Temporal implication: expression 1 |=> expression 2

 Consecutive repetition: [* const_or_range_expression]

 Non-consecutive repetition: [= const_or_range_expression]

 Go-to repetition: [- > const_or_range_expression]

TEMPORAL LOGIC CONNECTORS

15

Sequence specification (temporal sequence)

 throughout

 within

 first_match

 intersect

Sequence declaration:

 sequence name [(sequence_variables)] endsequence

 Encapsulates a temporal proposition to make it reusable.

Property declaration:

 property name [(property_variables)] endproperty

 Encapsulates an abstract description to make it reusable.

16

III - SEQUENCE

BASICS

Event A

Event B

Event A

Event B

Event C

Properties are very often constructed out of sequential behaviors, thus, the
sequence feature provides the capability to build and manipulate
sequential behaviors.

18

In SV a sequence can be declared in:

I. a module,
II. an interface,
III. a program,
IV. a clocking block,
V. a package
VI. a compilation-unit scope

Example:

sequence basics_c;
@(posedge clk) A_STATE ##1 B_STATE ##1 A_STATE ##1 B_STATE ##1 C_STATE;
endsequence

19

Boolean expression e defines the simplest sequence – a Boolean sequence

 This sequence has a match at its initial point if e is true
 Otherwise, it does not have any satisfaction points at all

Sequence Construction

TRUE if e is
present!

20

Temporal logic connector

Sequences can be composed by concatenation. The concatenation specifies a delay, using
##. It is used as follows:

integral_number or identifier
(constant_expression)
[cycle_delay_const_range_expression]

cycle_delay_const_range_expression := const:const or const:$

Example:
r ##1 s

There is a match of sequence “r ##1 s” if there is a match of sequence r and there is
a match of sequence s starting from the clock tick immediately following the match of
r

$ represents a
non-zero and
finite number

21

Sequence fusion:
r ##0 s
The fusion of sequences r and s, is matched if for some match of sequence r there is a
match of sequence s starting from the clock tick where the match of r happened

Multiple Delays:
r ##n s
r is true on current tick, s will be true on the nth tick after r

Example:
r ##2 s

22

Initial Delay:
##n s
Specify the number of clock ticks to
be skipped before beginning a
sequence match.

Example: ##3 s

Example:

req ##1 gnt ##1 !req

Range:
r ##[M : N] s
means that if r is true on current tick, s will be true M to N ticks from current tick

23

Example:
a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b

by simplification the previous sequence results in:
(a ##2 b) [*5]

r ##[*M : N] s
Repeat r at least M times and as many as N times consecutively

r ##[*M : $]

Repeat r an unknown number of times but at least M times

24

Go to Repetition:
r ## 1 s [->N] ##1 t
Means r followed by exactly N not necessarily consecutive s’s with last s
followed the next tick by t

r ##1 s [->M : N] ##1 t
Means r followed by at least M, at most N s’s followed next tick by t

Example: e [->2]

Non-Consecutive Repetition
r ## 1 s [= N] ##1 t

Means r followed by exactly N not necessarily consecutive s’s with last s followed
sometime by t

r ##1 s [= M : N] ##1 t
Means r followed by at least M, at most N s’s followed some time by t “t does not
have to follow immediately after the last s”

25

a b c

[->2:10]

How can we interpret the following sequence?
a ##1 b [=2:10] ##1 c

clk

a

b

c

seq

What does the following sequence mean?
a ##1 b [->2:10] ##1 c

Watch out for
the number of

threads!

26

And

The binary operator and is used when both operands are expected to match, but the end
times of the operand sequences can be different.

It is used as follows:

Sequence A and Sequence B

where both operands must be sequences.

Sequence A Start End

Sequence B Start … End

27

One can say:

a) The operand sequences start at the same time.
b) When one of the operand sequences matches, it waits for the other to match.
c) The end time of the composite sequence is the end time of the operand sequence that

completes last.

Example:

(te1 ##2 te2) and (te3 ##2 te4 ##2 te5)

What if the two operands are Boolean expresions? How does the and operation behave?

28

Intersect

The binary operator intersect is used when both operand sequences are expected
to match, and the end times of the operand sequences must be the same. It is used
in the same way as the and operation.

Sequence
A Start … End

Sequence
B Start … End

One can conclude that the additional requirement on the length of the sequences is
the basic difference between and operation and intersect operation.

Example:

(te1 ##[1:5] te2) intersect (te3 ##2 te4 ##2 te5)

29

Throughout

Sequences often occur under the assumptions of some conditions for correct behavior.
A logical condition must hold true, for instance, while processing a transaction.

It is used as follows:
expression_or_dist throughout sequence_expr

where an expression or distribution must hold true during the whole sequence.

Or

The operator or is used when at least one of the two operand sequences is
expected to match. It is used in the same way as the and operation [1].

te1 or te2

30

Sequence Start … End

Condition True True True

One can understand the throughout condition
as two processes that run in parallel.

Within

The containment of a sequence within another
sequence is expressed with the within
operation. This condition is used as follows:

(sequence_expr) within (sequence_expr)

Sequence A

Sequence B

One can conclude that:

a)The start point of the match of seq1 must
be no earlier than the start point of the
match of seq2.

b)The end point of the match of seq1 must
be no later than the end point of the
match of seq2.

31

How can we describe the following condition?

!trdy [*7] within ($fell(irdy) ##1 !irdy[*8])

ADDITIONAL SEQUENCE FEATURES

32

II. Manipulating data in a sequence.

Example:
sequence add_3;
a ##1 (b[->1], x = pipe_in) ##1 c[*2] ##0 (pipe_out == x + 3);

endsequence

I. Detecting and using end point of a sequence could ease to describe a complex
sequence that uses the first as a start point.

Example:

sequence s;
a ##1 b ##1 c;

endsequence

sequence rule;
@(posedge sysclk) trans ##1 start_trans ##1 s.ended ##1 end_trans;

endsequence

33

USB Examples

USB3.1 LFPS Zero Detection

// LOW_DURATION_1:16 LOW_DURATION_2:18
// HIGH_DURATION_1:102 HIGH_DURATION_2:104

sequence lfps_zero_detection_c;
@(posedge clk)(
(!oP_txelecidleAux) [*LOW_DURATION_1:LOW_DURATION_2] ##1
(oP_txelecidleAux) [*HIGH_DURATION_1:HIGH_DURATION_2] ##1
(!oP_txelecidleAux)

);
Endsequence : lfps_zero_detection_c

35

USB3.1 LFPS ONE DETECTION

// LOW_DURATION_1:16 LOW_DURATION_2:18
// HIGH_DURATION_1:180 HIGH_DURATION_2:184

sequence lfps_one_detection_c;
@(posedge clk)(
(!oP_txelecidleAux) [*LOW_DURATION_1:LOW_DURATION_2] ##1
(oP_txelecidleAux) [*HIGH_DURATION_1:HIGH_DURATION_2] ##1
(!oP_txelecidleAux)

);
Endsequence : lfps_one_detection_c

36

USB3.1 TSEQ DETECTION

// TSEQ_A_SEQUENCE: 87878787

sequence tseqA_detection_seq;
@(posedge clk)(
Data == TSEQ_A_SEQUENCE

);
endsequence

// TSEQ_B_SEQUENCE: 87870000

sequence tseqB_detection_seq;
@(posedge clk)(
Data == TSEQ_B_SEQUENCE

);
endsequence

sequence tseq_detection_seq;
@(posedge clk)(
tseqA_detection_seq ##1
tseqB_detection_seq ##1
tseqA_detection_seq ##1
tseqA_detection_seq

);
endsequence

37

IV - PROPERTY

Definition:
A property defines an abstract behavior of the design. The result of property
evaluation is either true or false.

 The property definition is based on
propositional and temporal logic which
deal with simple declarative propositions
or simple declarative propositions through
time respectively.

 Note: The combination of some
propositional/temporal logic elements
with generate for can leads to first-order
logic which covers predicates and
quantification.

Property

Logic
Proposition

Temporal
Proposition

Logic
Proposition

Temporal
Proposition

Temporal
Proposition

Logic
Proposition

Basics

39

Propositional
or/and

Temporal
Logic

Quantifiers First Order
Logic

A predicate resembles a function that returns either True or False.

 First-order logic allows reasoning about properties that are shared by many objects,
through the use of variables.

 First-order logic is distinguished from propositional logic by its use of quantifiers; each
interpretation of first-order logic includes a domain of discourse over which the quantifiers
range.

40

 In SV a property can be declared in:
• a module,
• an interface,
• a program,
• a clocking block,
• a package and a compilation-unit scope [1].

A property declaration by itself does not produce any result.

 There are seven kinds of properties: sequence, negation, disjunction, conjunction, if...else,
implication, and instantiation (reusable properties).

A property declaration is as follows:

property rule6_with_no_type(x, y);
##1 x |-> ##[2:10] y;

endproperty : rule6_with_no_type

41

Property Type: Sequence

A property that is a sequence evaluates to true if, and only if, there is a nonempty match
of the sequence. A sequence that admits an empty match is not allowed as a property.

Example:
property prop_seq;
@(posedge clk) $rose(rqst) ##1 $rose(gnt);

Endproperty : prop_seq

Property Type: Negation

For each evaluation attempt of the property, there is an evaluation attempt of
property_expr. The keyword not states that the evaluation of the property returns the
opposite of the evaluation of the underlying property_expr.

Example:
property prop_not;

@(posedge clk) not property_expr;
endproperty : prop_not

Property Construction

42

Property Type: Disjunction

A property is a disjunction if it has the form:

property_expr1 or property_expr2

The property evaluates to true if, and only if, at least one of property_expr1 and
property_expr2 evaluates to true.

Property Type: Conjunction

A property is a conjunction if it has the form:

property_expr1 and property_expr2

The property evaluates to true if, and only if, both property_expr1 and
property_expr2 evaluate to true.

43

Property Type: If ... Else

A property is an if...else if it has either the form:

if (expression_or_dist) property_expr1

or the form

if (expression_or_dist) property_expr1 else property_expr2

A property of the first form evaluates to true if, and only if, either expression_or_dist
evaluates to false or property_expr1 evaluates to true.

A property of the second form evaluates to true if, and only if, either
expression_or_dist evaluates to true and property_expr1 evaluates to true or
expression_or_dist evaluates to false and property_expr2 evaluates to true.

44

Property Type: Implication

The implication construct specifies that the checking of a property is performed
conditionally on the match of a sequential antecedent.

This clause is used to precondition monitoring of a property expression and is allowed at
the property level. The result of the implication is either true or false.

Two forms of implication are provided: overlapped using operator |-> and non-
overlapped using operator |=>. Therefore, a property is an implication if it has either
the form (non-temporal)

sequence_expr |-> property_expr

or the form (temporal)

sequence_expr |=> property_expr

Antecedent
(Sequence)

Consequent
(property_expr)

45

Property Type: Instantiation

An instance of a named property can be used as a property_expr or property_spec.

In general, the instance is legal provided the body property_spec of the named
property can be substituted in place of the instance, with actual arguments substituted
for formal arguments, and result in a legal property_expr or property_spec, ignoring
local variable declarations.

46

Example
I. Objective: Data Transfer Master Target Bus Operation
II. Functional Details:

• Data Transfer includes multiple data phases
• Data phase completes on rising edge of clk when irdy && (trdy || stop)
• All signals are active low

The end of a data phase can be expressed as follows:

property data_end;
@(posedge mclk) data_phase |-> ((irdy==0) && ($fell(trdy) || $fell(stop)));

endproperty

47

V. ASSERTION LANGUAGE

INTRODUCTION

Definition : The assertion language is
used to specify the correct behavior of
the system under consideration.

Design Under Test
(DUT)

DUT
Assertion

Description

DUT
Assertion

Description
DUT Assertion

Description

49

Assertions are used to express the design intent. In addition, assertions can be used to
provide functional coverage and generate input stimulus for validation. [1]

 By covering properties one can check if a certain design specification was
stimulated (functional coverage).

 When the model is restricted to certain assumptions the input stimulus are
restricted (generated) as well, i.e. using properties inside constraint blocks to
restrict random stimulus generation [1].

With SVA a timing accurate input/output model description for a design (what,
when) can be done, without providing any details about how the job is done.

50

ASSERT LANGUAGE

• Immediate assertions: Follow simulation event semantics for their execution and
are executed like a statement in a procedural block [1].

• Concurrent assertions: This assertions are based on clock semantics and use
sampled values of variables. This simplify the evaluation of a circuit description
[1].

51

Assert
Language

Immediate

It may not contain
temporal

expressions

May be inserted
anywhere in the
procedural code

Evaluated as
statement

Concurrent

It may contain
temporal

expressions

Samples
variables on

clocking events

52

IMMEDIATE ASSERTIONS

If the non-temporal expression evaluates to X, Z, or 0, then it is interpreted as being false,
and the assertion is said to fail. Otherwise, the expression is interpreted as being true, and
the assertion is said to pass.

SystemVerilog syntax:

[label:] assert (<immediate_property> [disable iff <disable_condition>]) <action_block>
disable_condition := expression
immediate_property := non_temporal_logic_expression | non_temporal_property_name
action_block := statement_or_null [else statement]

53

Assertion name
(Label)

Condition to
check Fail statement

Pass and Fail statements are
optional. May be also blocks

Pass statement

Guard expression

Example:

default_usb_check:

assert ((usb_set == 0) disable iff (rst)) $display ("%m passed"); else $error("%m failed“);

54

Severity System Tasks
Because the assertion is a statement that something must be true, the failure of an
assertion shall have a severity associated with it. By default, the severity of an assertion
failure is error.

Other severity levels can be specified by including one of the following severity system
tasks in the fail statement:

 $fatal is a run-time fatal.
 $error is a run-time error.
 $warning is a run-time warning, which can be suppressed in a tool-specific

manner.
 $info indicates that the assertion failure carries no specific severity.

The severity system tasks use the same syntax as $display and they can be used with
both immediate and concurrent assertions

55

ii. CONCURRENT ASSERTIONS

Temporal • Describe behavior that spans over time.
• The evaluation model is based on a clock.

The values of
variables used in

the evaluation are
the sampled values.

• A predictable result can be obtained from the evaluation.

SystemVerilog syntax:

[label:] assert property (property_spec) action_block

See full description [1, A.2.10]

property_spec ::= [clocking_event] [disable iff (expression_or_dist)] property_expr

57

Assertion
name (Label)

Sampling
event

Pass
statement

Fail
statement

Assertion
body

Asynchronous
reset

Example:

my_concurrent_check:

assert property (@ (posedge clk) disable iff (rst) not (a ##1 b))
$info (“Property p passed”); else $error (“Property p failed”);

58

SAMPLING
The values of variables used in assertions are sampled in the Preponed* region of a time
slot, and the assertions are evaluated during the Observe* region. Action blocks are
scheduled in Reactive region.

Sampling Evaluation

For concurrent assertions, the following statements apply:

 It is important to ensure that the defined clock behavior is glitch free. Otherwise,
wrong values can be sampled.

 If a variable that appears in the expression for clock also appears in an expression
with an assertion, the values of the two usages of the variable can be different. The
current value of the variable is used in the clock expression, while the sampled value
of the variable is used within the assertion.

Actions

* See [1, chap 9]

59

VERIFICATION STATEMENTS

Verification
Statements

assert

Function: On each
evaluation ensure that

property holds.
Intent: Property checker

for DUT RTL.

assume

Function: On each
evaluation ensure that

property holds.
Intent: as an assumption
for environment (external

user).

cover

Function: Monitor the
property for evaluations.

Intent: Indicate if a
property was evaluated

during a simulation trace.

A property on its own is never
evaluated, it must be used within a
verification statement for this to
occur. A verification statement
states the verification function
(intent) to be performed on the
property.

60

Assert
The purpose of the assert statement is to check the equivalence between the abstract
description (property) and the functional description (RTL) during formal analysis and
dynamic simulations.

Ensures design correctness

Formal Verification: Mathematically proves the property’s
correctness

Design Verification: Checks property’s correctness for a given
simulation trace.

61

The assert statement follows this syntax:

Example:

assert property (property_spec) action_block
See full description [1, A.2.10]

property abc(a,b,c);
disable iff (a == 2) @(posedge clk) not (b ##1 c);

endproperty

env_prop: assert property (abc (rst,in1,in2))
$display(“env_prop passed.“); else $display(“ env_prop failed.“);

62

The purpose of the assume statement is to allow properties to be considered as
assumptions (oriented to external drivers/responders) for formal analysis as well as
for dynamic simulation tools.

Assume

Specifies requirements for the
environment.

Formal Verification

• Restricts the model.
• The property is considered as a

hypothesis to prove the asserted
properties

Design Verification

• It is treated the same as assertions.
• There is no requirement on the tools

to report successes of the assumed
properties.

63

Example:

A simple synchronous request and acknowledge protocol, where variable req can be
raised at any time and must stay asserted until ack is asserted. In the next clock cycle,
both req and ack must be deasserted.

Properties governing req are as follows:

property pr1;
@(posedge clk)
!reset_n |-> !req; // when reset_n is asserted (0),keep req 0

endproperty

The assume statement follows this syntax:

No action blocks!!!
but messaging is allowed

assume property (property_spec) ; See full description [1, A.2.10]

64

The following properties are assumed:

assume_req1: assume property (pr1);
assume_req2: assume property (pr2);
assume_req3: assume property (pr3);

property pr2;
// one cycle after ack, req must be deasserted
@(posedge clk) ack |=> !req;

endproperty

property pr3;
// hold req asserted until and including ack asserted
@(posedge clk) req |-> req[*1:$] ##0 ack;

endproperty

65

Cover
 The purpose of the cover is

to monitor properties of the
design for coverage, i.e. to
count the number of times a
property was evaluated
(disregarding the result of
the evaluation).

 The tools can gather
information about the
evaluation and report the
results at the end of
simulation.

Able to
detect
events

SVA

Find
WitnessFormal Verification

Find a run
showing the
property
may be
satisfied

Get
Indication

of
occurrence

Design Verification

66

The cover statement follows this syntax:

Example:

cover property (property_spec) statement_or_null
See full description [1, A.2.10]

cover property (@ (posedge clk) !rst throughout req ##1 ack);

67

VI. COMPARATIVE RESULTS

Formal Temporal Logic
vs

Scripting

• Just comparing code to represent the
sequence model:
• ~3.5x gain

• Considering the built of coverage,
assertion and the sequence
encapsulation:
• ~1.7x gain

Formal Temporal Logic
vs

Structural Modeling (Scoreboard)

• Just comparing code to represent the
sequence model:
• ~6x gain

• Considering the built of coverage,
assertion and the sequence
encapsulation:
• ~3x gain

Figure of Merit: Number of Code Lines

Additional Multiplication Gain Factor:
Each time a library sequence is used!!!

68

CODING EFFORT RESULTS

Perl required lines to
Process a simple sequence

of 1’s and 0’s:
41 Code Lines

SV required lines to process a
simple sequence of 1’s and 0’s
without using “temporal” logic:

74 Code Lines

69

Using formal temporal
logic to process a simple
sequence of 1’s and 0’s:

16 Code Lines!

Perl VS. Formal temporal
logic (using SystemVerilog) :

2.5 x less coding effort

Verilog VS. Formal temporal
logic (using SystemVerilog):

4.6 x less coding effort

70

THANK YOU!

	part1_ciocirian
	SVA Advanced Topics: SVAUnit and Assertions for Formal�
	SystemVerilog Assertions Verification with SVAUnit
	Tutorial Topics
	�Introduction to SystemVerilog Assertions �(SVAs)�
	Assertions and Properties
	Simple Assertion Example
	Types of SystemVerilog Assertions
	Assertions Are Used
	SVAs Advantages
	Planning SVA Development
	Identify Design Characteristics
	Keep it Simple. Partition!
	Implementation
	Coding Guidelines
	Coding Guidelines (contd.)
	Best Practices
	Best Practices (contd.)
	Best Practices (contd.)
	Assertion Example
	Assertion Example (contd.)
	Assertion Example (contd.)
	Does It Work as Intended?
	SVA Verification with SVAUnit
	SVA Verification Challenges
	Introducing SVAUnit
	SVAUnit Infrastructure
	Example Specification
	Example APB Interface
	APB Sequences Definitions
	APB Property & Assertion Definitions
	Example of SVAUnit Testbench
	Example of SVAUnit Test
	APB – SVAUnit Test Steps
	Enable SVA and Initialize Signals
	Generate Setup Phase Stimuli
	Generate Access Phase Stimuli
	SVA State Checking
	Example of SVAUnit Test Suite
	SVAUnit Test API
	SVAUnit Flow
	Error Reporting
	Hierarchy Report
	Test Scenarios Exercised
	SVAs and Checks Exercised
	SVA Test Patterns
	Simple Implication Test
	Multi-thread Antecedent/Consequent
	Multi-thread Antecedent/Consequent (contd.)
	Consecutive Repetition
	Consecutive Repetition (contd.)
	Repetition Range with Zero
	Repetition Range with Zero (contd.)
	Sequence Disjunction
	Sequence Disjunction (contd.)
	Sequence Disjunction (contd.)
	Sequence Disjunction (contd.)
	Tools Integration
	Availability
	Conclusions
	Thank you!

	part2_calderon
	Formal Specification, �System Verilog Assertions & Coverage
	Slide Number 2
	Objective
	Agenda
	I - Introduction
	�Why do we need formal specification?
	Slide Number 7
	Formal Specification Components
	Layers of SVA Assertion Language
	Temporal Logic
	Slide Number 11
	II - Language Constructs
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Iii - Sequence
	BASICS
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Additional Sequence Features
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	IV - PROPERTY
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	V. Assertion Language
	Introduction
	Slide Number 50
	Assert Language
	Slide Number 52
	Immediate Assertions
	Slide Number 54
	Slide Number 55
	Concurrent Assertions
	Slide Number 57
	Sampling
	Verification Statements
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Coding Effort Results
	Slide Number 70
	Thank you!

