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Tutorial Topics
• Introduction to SystemVerilog Assertions (SVAs)

• Planning SVA development

• Implementation

• SVA verification using SVAUnit

• SVA test patterns
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Introduction to SystemVerilog 
Assertions 

(SVAs)
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Assertions and Properties

• What is an assertion?

• What is a property?
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assert (a |-> b) 
else $error("Assertion failed!")

property p_example;
a |-> b
endproperty



Simple Assertion Example
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property req_to_rise_p;
@(posedge clk)
$rose(req) |-> ##[1:3] $rose(ack);

endproperty

ASSERT_LABEL: assert property (req_to_rise_p)
else `uvm_error("ERR", "Assertion failed")



Types of SystemVerilog 
Assertions

• Immediate

• Concurrent
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assert (expression) pass_statement 
[else fail_statement] 



Assertions Are Used

• In a verification component

• In a formal proof kit

• In RTL generation
“Revisiting Regular Expressions in SyntHorus2: from PSL SEREs to 
Hardware” (Fatemeh (Negin) Javaheri, Katell Morin-Allory, Dominique 
Borrione)

• For test patterns generation
“Towards a Toolchain for Assertion-Driven Test Sequence Generation” (Laurence 
PIERRE)
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SVAs Advantages

• Fast

• Non-intrusive

• Flexible

• Coverable
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Planning SVA Development
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Identify Design Characteristics

• Defined in a document (design specification)

• Known or specified by the designer

• The most common format is of the form cause and 
effect: antecedent |-> consequent

• Antecedent:

• Consequent:
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$rose(req)

##[1:3] $rose(ack)



Keep it Simple. Partition!

• Complex assertions are typically constructed from 
complex sequences and properties.
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a ##1 b[*1:2] |=> c ##1 d[*1:2] |=> $fell(a)

sequence seq(arg1, arg2);
arg1 ##1 arg2[*1:2];
endsequence

seq(a, b) |=> seq(c, d) |=> $fell(a)



Implementation

2/29/2016 Andra Radu - AMIQ Consulting          Ionuț Ciocîrlan - AMIQ Consulting 13



Coding Guidelines

• Avoid duplicating design logic in assertions

• Avoid infinite assertions

• Reset considerations

• Mind the sampling clock
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Coding Guidelines (contd.)

• Always check for unknown condition (‘X’)

• Assertion naming 

• Detailed assertion messages

• Assertion encapsulation
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Best Practices

• Review the SVA with the designer to avoid DS 
misinterpretation 

• Use strong in assertions that may never complete:

• Properties should not hold under certain conditions 
(reset, enable switch)
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assert property ( req |-> strong(##[1:$] ack));

assert property ( 
@(posedge clk) disable iff (!setup || !rst_n) 

req |-> strong(##[1:$] ack)
);



Best Practices (contd.)

• Avoid overlapping assertions that contradict each 
other
CPU_0:
CPU_1:
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assert property (WRITE |=> ERROR);

assert property (WRITE |=> !ERROR);

assert property (WRITE and CPU==0 |=> ERROR);

assert property (WRITE and CPU==1 |=> !ERROR);



Best Practices (contd.)

• Use the $sampled() function in action blocks 
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Active

Inactive

NBA

Observed

Re-active

Re-inactive

Postponed

Preponed
Previous timeslot

Next timeslot

assert property ( @(posedge clk) ack == 0 ) 
else 

`uvm_error("ERROR", $sformatf("Assertion   
failed. ack is %d", $sampled(ack)));



Assertion Example

• AMBA APB protocol specification:

The bus only remains in the SETUP state for one clock 
cycle and always moves to the ACCESS state on the 
next rising edge of the clock.
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Assertion Example (contd.)

• Antecedent (the SETUP phase)

• Consequent (the ACCESS phase)
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sequence setup_phase_s;
$rose(psel) and $rose(pwrite)
and (!penable) and (!pready);

endsequence

sequence access_phase_s;
$rose(penable)  and $rose(pready) and
$stable(pwrite) and $stable(pwdata)and
$stable(paddr)  and $stable(psel);

endsequence



Assertion Example (contd.)

• The property can be expressed as:

• The assertion will look like:
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property access_to_setup_p;
@(posedge clk) disable iff (reset)
setup_phase_s |=> access_phase_s;

endproperty

assert property (access_to_setup_p)
else `uvm_error("ERR", "Assertion failed")



Does It Work as Intended?
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SVA Verification with SVAUnit

2/29/2016 Andra Radu - AMIQ Consulting          Ionuț Ciocîrlan - AMIQ Consulting 23



SVA Verification Challenges
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Clear separation between 
validation and SVA definition 
code

Easy to:
- Update
- Enhance
- Disable

Results should be:
- Deterministic 
- Repeatable

Predictable



Introducing SVAUnit

• Structured framework for Unit Testing for SVAs

• Allows the user to decouple the SVA definition from its 
validation code

• UVM compliant package written in SystemVerilog

• Encapsulate each SVA testing scenario inside an unit 
test

• Easily controlled and supervised using a simple API
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SVAUnit Infrastructure
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SVAUnit Testbench

SVAUnit Test Suite

SVAUnit Unit TestSVAUnit Test

test()

SVA interface handle

Interface 
containing 

SVA
Interface 

containing 
SVA

SVAUnit Test

SVAUnit 
Test 
Suite

ReportsReports

ReportsReports

• SVAUnit Testbench
- Enables SVAUnit
- Instantiates SVA

interface
- Starts test

• SVAUnit Test
- Contains the SVA 

scenario

• SVAUnit Test Suite
- Test and test suite 

container



Example Specification

• AMBA APB protocol specification:

The bus only remains in the SETUP state for one clock 
cycle and always moves to the ACCESS state on the 
next rising edge of the clock.
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Example APB Interface
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interface apb_if (input pclk);

logic psel;

logic pwrite;

logic penable;

logic pready;

logic [`ADDR_WIDTH-1 :0] paddr;
logic [`WDATA_WIDTH-1:0] pwdata;

endinterface

APB sequences definitions

APB property definition

APB assertion definition



APB Sequences Definitions

• Antecedent (the SETUP phase)

• Consequent (the ACCESS phase)
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sequence setup_phase_s;
$rose(psel) and $rose(pwrite)
and (!penable) and (!pready);

endsequence

sequence access_phase_s;
$rose(penable)  and $rose(pready) and
$stable(pwrite) and $stable(pwdata)and
$stable(paddr)  and $stable(psel);

endsequence



APB Property & Assertion 
Definitions

• The property can be expressed as:

• The assertion will look like:
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property access_to_setup_p;
@(posedge clk) disable iff (reset)
setup_phase_s |=> access_phase_s;

endproperty

assert property (access_to_setup_p)
else `uvm_error("ERR", "Assertion failed")



Example of SVAUnit 
Testbench
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module top;
// Instantiate the SVAUnit framework
`SVAUNIT_UTILS
...

// APB interface with the SVA we want to test
apb_if an_apb_if(.clk(clock));

initial begin
// Register interface with the uvm_config_db
uvm_config_db#(virtual an_if)::
set(uvm_root::get(), "*", "VIF", an_apb_if);

// Start the scenarios
run_test();

end

...
endmodule



Example of SVAUnit Test
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class ut1 extends svaunit_test;
// The virtual interface used to drive the signals
virtual apb_if apb_vif;

function void build_phase(input uvm_phase phase);
// Retrieve the interface handle from the uvm_config_db
if (!uvm_config_db#(virtual an_if)::get(this, "", "VIF", apb_vif))
`uvm_fatal("UT1_NO_VIF_ERR", "SVA interface is not set!")

// Test will run by default; 
disable_test();

endfunction

task test();
// Initialize signals
// Create scenarios for SVA verification

endtask
endclass



APB – SVAUnit Test Steps
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Enable the APB SVA

Initialize the interface signals

Generate setup phase stimuli

Generate access phase stimuli

SVA checks based on generated stimuli



Enable SVA and Initialize 
Signals
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...

// Enable the APB SVA
vpiw.disable_all_assertions();
vpiw.enable_assertion("APB_PHASES");

// Initialize signals
task initialize_signals();
apb_vif.paddr <= 32'b0;
apb_vif.pwdata <= 32'b0;
apb_vif.pwrite <=  1'b0;
apb_vif.penable <=  1'b0;
apb_vif.psel <=  1'b0;

endtask

...



Generate Setup Phase 
Stimuli
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...

task generate_setup_phase_stimuli(bit valid);
...
// Stimuli for valid SVA scenario
valid == 1 ->  
pwrite == 1 && psel == 1 && penable == 0 && pready == 0;

// Stimuli for invalid SVA scenario
valid == 0 -> 
pwrite != 1 || psel != 1 || penable != 0 || pready != 0;

...
endtask

...



Generate Access Phase 
Stimuli
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...

task generate_access_phase_stimuli(bit valid);
...

// Constrained stimuli for valid SVA scenario
valid == 1  ->  
pwdata == apb_vif.pwdata && paddr == apb_vif.paddr &&
pwrite == 1 && psel == 1 && penable == 1 && pready == 1;

// Constrained stimuli for invalid SVA scenario
valid == 0 -> 
pwdata != apb_vif.pwdata ||  paddr != apb_vif.paddr ||
pwrite != 1 || psel != 1 || penable != 1 || pready != 1;
...

endtask
...



SVA State Checking
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...

if (valid_setup_phase)
if (valid_access_phase)
vpiw.fail_if_sva_not_succeeded("APB_PHASES",

"The assertion should have succeeded!");
else
vpiw.fail_if_sva_succeeded("APB_PHASES",

"The assertion should have failed!");
else
vpiw.pass_if_sva_not_started("APB_PHASES",

"The assertion should not have started!");

...



Example of SVAUnit Test 
Suite
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class uts extends svaunit_test_suite;
// Instantiate the SVAUnit tests
ut1 ut1;
...
ut10 ut10;

function void build_phase(input uvm_phase phase);
// Create the tests using UVM factory
ut1 = ut1::type_id::create("ut1", this);
...
ut10 = ut10::type_id::create("ut10", this);

// Register tests in suite
`add_test(ut1);
...
`add_test(ut10);

endfunction

endclass



SVAUnit Test API
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• disable_all_assertions();
• enable_assertion(sva_name);
• enable_all_assertions();

. . .
CONTROL

• fail_if_sva_does_not_exists(sva_name, error_msg);
• pass_if_sva_not_succeeded(sva_name, error_msg);
• pass/fail_if(expression, error_msg); 

. . .
CHECK

• print_status();
• print_sva();
• print_report();

. . .
REPORT



SVAUnit Flow
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Instantiate test in Test Suite

Create an SVAUnit Test Suite

Register tests in test suite

Scan report

Simulate
Create SVAUnit Testbench

Create an  SVAUnit Test

Implement test() task



Error Reporting
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Name of SVAUnit 
check

Custom error 
message

Name of SVA under 
test

SVAUnit test path



Hierarchy Report
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Test Scenarios Exercised
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SVAs and Checks Exercised
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SVA Test Patterns
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Simple Implication Test 
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• a and b |=> c

repeat (test_loop_count) begin
randomize(stimuli_for_a, stimuli_for_b, stimuli_for_c);

interface.a <= stimuli_for_a;
interface.b <= stimuli_for_b;
@(posedge an_vif.clk);

interface.c <= stimuli_for_c;
@(posedge interface.clk);

@(posedge interface.clk);
if (stimuli_for_a == 1 && stimuli_for_b == 1)
if (stimuli_for_c == 1)

vpiw.fail_if_sva_not_succeeded("IMPLICATION_ASSERT", 
"The assertion should have succeeded!");

else
vpiw.fail_if_sva_succeeded("IMPLICATION_ASSERT", 

"The assertion should have failed!");
else

vpiw.pass_if_sva_not_started("IMPLICATION_ASSERT", 
"The assertion should not have started!");

end



Multi-thread 
Antecedent/Consequent
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• $rose(a) ##[1:4] b |-> ##[1:3] c
repeat (test_loop_count) begin

// Generate valid delays for asserting b and c signals
randomize(delay_for_b inside {[1:4]}, delay_for_c inside {[1:3]}); 
interface.a <= 1;

repeat (delay_for_b)
@(posedge interface.clk);

interface.b <= 1;

vpiw.pass_if_sva_started_but_not_finished("MULTITHREAD_ASSERT", 
"The assertion should have started but not finished!");

repeat (delay_for_c)
@(posedge interface.clk);

interface.c <= 1;

vpiw.pass_if_sva_succeeded("MULTITHREAD_ASSERT", 
"The assertion should have succeeded!");

end



Multi-thread 
Antecedent/Consequent (contd.)
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• $rose(a) ##[1:4] b |-> ##[1:3] c
repeat (test_loop_count) begin

// Generate invalid delays for asserting b and c signals
randomize(delay_for_b inside {[0:10]}, delay_for_c inside {0,[4:10]}); 
interface.a <= 1;

repeat (delay_for_b)
@(posedge interface.clk);

interface.b <= 1;

vpiw.pass_if_sva_not_succeeded("MULTITHREAD_ASSERT", 
"The assertion should have failed!");

repeat (delay_for_c)
@(posedge interface.clk);

interface.c <= 1;

if (delay_for_b < 5)
vpiw.fail_if_sva_succeeded("MULTITHREAD_ASSERT", 

"The assertion should have failed!");
end



Consecutive Repetition
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• a |-> b[*1:2] ##1 c
repeat (test_loop_count) begin

randomize(stimuli_for_a, stimuli_for_c, number_of_b_cycles <= 2);

interface.a <= stimuli_for_a;

repeat (number_of_b_cycles) begin
randomize(stimuli_for_b)
interface.b <= stimuli_for_b;
if (stimuli_for_b == 1) number_of_b_assertions += 1;

@(posedge interface.clk);
end

if (stimuli_for_a == 1 && number_of_b_assertions == number_of_b_cycles &&
number_of_b_assertions > 0) 

vpiw.pass_if_sva_started_but_not_finished("IMPLICATION_ASSERT", 
"The assertion should have started but not finished!");

@(posedge interface.clk);

... // (continued on the next slide)



Consecutive Repetition 
(contd.)

2/29/2016 Andra Radu - AMIQ Consulting          Ionuț Ciocîrlan - AMIQ Consulting 50

• a |-> b[*1:2] ##1 c

...

// (continued from previous slide)

interface.c  <= stimuli_for_c;

@(posedge interface.clk);

if (stimuli_for_a == 1)

if (number_of_b_assertions != number_of_b_cycles ||

number_of_b_assertions == 0 ||

stimuli_for_c == 0)

vpiw.fail_if_sva_succeeded("IMPLICATION_ASSERT", 

"The assertion should have failed!");

else

vpiw.fail_if_sva_not_succeeded("IMPLICATION_ASSERT", 

"The assertion should have succeeded!");

end // end of test repeat loop



Repetition Range with Zero
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• a |-> b[*0:2] ##1 c
repeat (test_loop_count) begin

randomize(stimuli_for_a, stimuli_for_c, number_of_b_cycles <= 2);

interface.a <= stimuli_for_a;

repeat (number_of_b_cycles) begin
randomize(stimuli_for_b)
interface.b <= stimuli_for_b;
if (stimuli_for_b == 1) number_of_b_assertions += 1;

@(posedge interface.clk);
end

if (stimuli_for_a == 1 && number_of_b_assertions == number_of_b_cycles)
&& number_of_b_assertions > 0) 

vpiw.pass_if_sva_started_but_not_finished("IMPLICATION_ASSERT", 
"The assertion should have started but not finished!");

@(posedge interface.clk);

... // (continued on the next slide)



Repetition Range with Zero 
(contd.)
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• a |-> b[*0:2] ##1 c

...

// (continued from previous slide)

interface.c <= stimuli_for_c;

@(posedge interface.clk);

if (stimuli_for_a == 1)

if (number_of_b_assertions != number_of_b_cycles ||

number_of_b_assertions == 0 ||

stimuli_for_c == 0)

vpiw.fail_if_sva_succeeded("REPETITION_RANGE0_ASSERT", 

"The assertion should have failed!");

else

vpiw.fail_if_sva_not_succeeded("REPETITION_RANGE0_ASSERT", 

"The assertion should have succeeded!");

end // end of test repeat loop



Sequence Disjunction
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• a |=> (b ##1 c) or (d ##1 e)
repeat (test_loop_count) begin

randomize(stimuli_for_a, stimuli_for_b, stimuli_for_c, stimuli_for_d, stimuli_for_e);

interface.a <= stimuli_for_a;

@(posedge interface.clk);

fork

begin

end

begin

end

join

end

Stimuli for branch: (b ##1 c)

SVA state check based on branch stimuli

Stimuli for branch: (d ##1 e)

SVA state check based on branch stimuli



Sequence Disjunction 
(contd.)
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• a |=> (b ##1 c) or (d ##1 e)

...

// Stimuli for branch (b ##1 c)

fork

begin

interface.b  <= stimuli_for_b;

@(posedge interface.clk);

interface.c  <= stimuli_for_c;

@(posedge interface.clk);

@(posedge interface.clk);

// SVA state check based on branch stimuli

sva_check_phase(interface.a, interface.b, interface.c);

end

join



Sequence Disjunction 
(contd.)
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• a |=> (b ##1 c) or (d ##1 e)

...

// Stimuli for branch (d ##1 e)

fork

begin

interface.b  <= stimuli_for_d;

@(posedge interface.clk);

interface.c  <= stimuli_for_e;

@(posedge interface.clk);

@(posedge interface.clk);

// SVA state check based on branch stimuli

sva_check_phase(interface.a, interface.d, interface.e);

end

join



Sequence Disjunction 
(contd.)
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• a |=> (b ##1 c) or (d ##1 e)

// SVA state checking task used in each fork branch

task sva_check_phase(bit stimuli_a, bit stimuli_b, bit stimuli_c);

if (stimuli_a)

if (stimuli_b && stimuli_c)

vpiw.pass_if_sva_succeeded("DISJUNCTION_ASSERT", 

"The assertion should have succeeded");

else

vpiw.fail_if_sva_succeeded("DISJUNCTION_ASSERT", 

"The assertion should have failed");

endtask



Tools Integration
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Simulator independent!



Availability
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• SVAUnit is an open-source 
package released by AMIQ 
Consulting

• We provide:
- SystemVerilog and simulator 

integration codes
- AMBA-APB assertion package
- Code templates and examples
- HTML documentation for API

https://github.com/amiq-consulting/svaunit



Conclusions

• SVAUnit decouples the checking logic from SVA 
definition code

• Safety net for eventual code refactoring
• Can also be used as self-checking documentation on 

how SVAs work
• Quick learning curve
• Easy-to-use and flexible API
• Speed up verification closure 
• Boost verification quality
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Thank you!

2/29/2016 Andra Radu - AMIQ Consulting          Ionuț Ciocîrlan - AMIQ Consulting 60



FORMAL SPECIFICATION, 
SYSTEM VERILOG 

ASSERTIONS & COVERAGE
By Calderón-Rico, Rodrigo & Tapia Sanchez, Israel G.





OBJECTIVE

 Learn how to define objects by 
specifying their properties 
which are formally described. 

 Using the formal specification 
for assertion or coverage 
purposes with real examples 
and gain comparisons versus 
other methods as scripting and 
SystemVerilog always blocks.

OBJECT 

Applications: 
Assertions + 

Coverage + …
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AGENDA
I. Introduction

Why do we need formal 
specification?

 Formal Specification Components

 Layers of Assertion Language

 Temporal Logic

II. Language constructs

 Definition

 Boolean logic connectors

 Temporal logic connectors

 Sequence Specification

 Sequence Declaration

 Property Declaration

IV. Property

 Basics

 Property construction

 Examples

V. Assertion Language

 Introduction

 Assert Language

VI. Comparative Results

III. Sequence
 Basics
 Sequence construction.

o Temporal logic connectors
o Additional sequence features

 USB Examples



I - INTRODUCTION



WHY DO WE NEED FORMAL 
SPECIFICATION?

Formal specification languages are used to describe design properties
unambiguously and precisely.

Usually properties are written as part of the high level design specifications in a
text document. But writing specification in a natural language is ambiguous.

Consider the following typical property specification: Each request should be
granted in four clock cycles. This specification is ambiguous:

 Do we count four clock cycles starting from the cycle when the request was
issued, or from the next cycle?

 Do we require that the grant is issued during the first four cycles or exactly at
the fourth cycle?

 May two requests be served by the same grant or should they be served by
two separate grants?
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 The same specification written in SystemVerilog Asserions(SVA) is unambiguous:

assert property( @( posedge clk ) request |-> ##4 grant );

 This specification defines a clocked, or concurrent assertion, and it reads: when
request is issued, it should be followed by grant in the fourth clock cycle measured
from the clock cycle when request was issued.

 Because of the formal nature of SVA, specifications can be interpreted by tools, and
what is more important, understood by humans. When the specifications are formally
defined, there is no place for misunderstanding.
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FORMAL SPECIFICATION 
COMPONENTS

Abstract descriptions are aimed to specify 
an abstract behavior as it defines what

happens and when, without specifying how

exactly happened.

Abstract descriptions are encapsulated in 
properties.

A group of properties may describe a 
complete model.

Application:

Pre-si verification: The model created via 
formal properties is a way of creating 
evidence suggesting that a system either does 
or does not have some behavior.

Formal 
Specification

Language

Properties

Abstract 
descriptions
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Booleans

Simple Logic 
Expressions

Sequences

Values Changing 
Over Time

Properties

Implication of 
Sequences

Assertion 
Statements

LAYERS OF SVA ASSERTION 
LANGUAGE

Action!
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Formal 
Specification

Boolean 
Logic

and

or

not

Temporal 
Logic

Boolean logic 
through time

TEMPORAL LOGIC
 One can associate temporal logic to a path

through the time where a sequence of
events occur in a specified order. The events
are constructed via Boolean logic.

 Kripke structures (nondeterministic finite
state machines) set a model to evaluate
temporal logic in discrete time.

Note: Any temporal logic statement is assumed to
be in the context of discrete time, and may or may
not be specified in a discrete event context.

A

B

ABD

C

Start
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A

B

A

C

D

AB

B

C

C

A B A B

The tree structure can help to unfold a
state diagram in order to separate
possible different paths.

A single tree branch can be understood 
as a realization of one possible path 
through time.
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II - LANGUAGE CONSTRUCTS



 The chosen language is SystemVerilog (SV). 

SystemVerilog is a unified hardware design, specification, and verification language.

• Abstracts a detailed specification of the design.
• Specification of assertions coverage and testbench verification that is based on
manual or automatic methodologies.

The syntax defined in SV is to generate abstract descriptions (properties).

Definition

Boolean logic connectors
 and

 or

 Non-temporal implication:
expression 1 |-> expression 2 (if 1 then 2)
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 Distribution:

expression dist { dist_list } ;

dist_list :=   dist_item { , dist_item }
dist_item :=   value_range [ dist_weight ]
dist_weight :=  (:= expression) |  (:/ expression)

The distribution operator dist evaluates to true if the value of the expression is 
contained in the set; otherwise, it evaluates to false.

Example:

usb_symbol dist {100 := 1, 200 := 2, 300 := 5}

It means usb_symbol is equal to 100, 200, or 300 with weighted ratio of  
1-2-5.
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 Delay range :  ##

## integral_number or  identifier 

## ( constant_expression )

## [  cycle_delay_const_range_expression ]

 Temporal implication:              expression 1 |=> expression 2 

 Consecutive repetition:            [* const_or_range_expression ]

 Non-consecutive repetition:     [= const_or_range_expression ]

 Go-to repetition:                   [ - > const_or_range_expression ]

TEMPORAL LOGIC CONNECTORS
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Sequence specification (temporal sequence)

 throughout

 within

 first_match

 intersect

Sequence declaration:

 sequence name [( sequence_variables )] endsequence

 Encapsulates a temporal proposition to make it reusable.

Property declaration:

 property name [( property_variables )] endproperty

 Encapsulates an abstract description to make it reusable.

16



III - SEQUENCE



BASICS

Event  A

Event  B

Event  A

Event  B

Event  C

Properties are very often constructed out of sequential behaviors, thus, the
sequence feature provides the capability to build and manipulate
sequential behaviors.

18



In SV a sequence can be declared in:  

I. a module, 
II. an interface,  
III. a program, 
IV. a clocking block, 
V. a package
VI. a compilation-unit scope

Example:

sequence basics_c;
@( posedge clk ) A_STATE ##1 B_STATE ##1 A_STATE ##1 B_STATE ##1 C_STATE;
endsequence
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Boolean expression e defines the simplest sequence – a Boolean sequence

 This sequence has a match at its initial point if e is true
 Otherwise, it does not have any satisfaction points at all

Sequence Construction

TRUE if e is 
present!
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Temporal logic connector

Sequences can be composed by concatenation. The concatenation specifies a delay, using 
##. It is used as follows:

## integral_number or identifier
## ( constant_expression )
## [ cycle_delay_const_range_expression ]

cycle_delay_const_range_expression := const:const or const:$

Example:
r ##1 s

There is a match of sequence “r ##1 s” if there is a match of sequence r and there is 
a match of sequence s starting from the clock tick immediately following the match of 
r

$ represents a 
non-zero and 
finite number

21



Sequence fusion:
r ##0 s 
The fusion of sequences r and s, is matched if for some match of sequence r there is a 
match of sequence s starting from the clock tick where the match of r happened

Multiple Delays: 
r ##n s
r is true on current tick, s will be true on the nth tick after r

Example: 
r ##2 s
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Initial Delay: 
##n s 
Specify the number of clock ticks to 
be skipped before beginning a 
sequence match.

Example: ##3 s

Example:               

req ##1  gnt ##1  !req

Range: 
r ##[ M : N ] s
means that if r is true on current tick, s will be true M to N ticks from current tick 

23



Example:
a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b

by simplification the previous sequence results in:
( a ##2 b ) [*5]

r ##[*M : N ] s
Repeat r at least M times and as many as N times consecutively

r ##[ *M : $ ]

Repeat r an unknown number of times but at least M times

24



Go to Repetition:
r  ## 1 s [->N ] ##1 t  
Means r followed by exactly N not necessarily consecutive s’s with last s
followed the next tick by t

r ##1 s [->M : N ] ##1 t 
Means r  followed by at least M, at most N s’s  followed next tick by t 

Example:  e [->2]

Non-Consecutive Repetition
r  ## 1 s [= N ] ##1 t  

Means r followed by exactly N not necessarily consecutive s’s with last s followed 
sometime by t

r ##1 s [= M : N ] ##1 t 
Means r  followed by at least M, at most N s’s followed some time by t “t does not 
have to follow immediately after the last s”
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a b c

[->2:10]

How can we interpret the following sequence?
a ##1 b [=2:10] ##1 c

clk

a

b

c

seq

What does the following sequence mean?
a ##1 b [->2:10] ##1 c

Watch out for 
the number of 

threads!
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And

The binary operator and is used when both operands are expected to match, but the end 
times of the operand sequences can be different.

It is used as follows:

Sequence A and Sequence B

where both operands must be sequences. 

Sequence A Start End

Sequence B Start … End

27



One can say:

a) The operand sequences start at the same time. 
b) When one of the operand sequences matches, it waits for the other to match. 
c) The end time of the composite sequence is the end time of the operand sequence that 

completes last.

Example:  

( te1 ##2 te2 ) and ( te3 ##2 te4 ##2 te5 )

What if the two operands are Boolean expresions? How does the and operation behave?

28



Intersect

The binary operator intersect is used when both operand sequences are expected 
to match, and the end times of the operand sequences must be the same. It is used
in the same way as the and operation.

Sequence 
A Start … End

Sequence 
B Start … End

One can conclude that the additional requirement on the length of the sequences is 
the basic difference between and operation and intersect operation. 

Example: 

( te1 ##[1:5] te2 ) intersect ( te3 ##2 te4 ##2 te5 )

29



Throughout

Sequences often occur under the assumptions of some conditions for correct behavior. 
A logical condition must hold true, for instance, while processing a transaction.

It is used as follows:
expression_or_dist throughout sequence_expr

where an expression or distribution must hold true during the whole sequence.

Or

The operator or is used when at least one of the two operand sequences is 
expected to match. It is used in the same way as the and operation [1].

te1 or te2
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Sequence Start … End

Condition True True True

One can understand the throughout condition 
as two processes that run in parallel.

Within

The containment of a sequence within another 
sequence is expressed with the within
operation. This condition is used as follows:

(sequence_expr) within (sequence_expr)

Sequence A

Sequence B

One can conclude that:

a)The start point of the match of seq1 must 
be no earlier than the start point of the 
match of seq2.

b)The end point of the match of seq1 must 
be no later than the end point of the 
match of seq2.
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How can we describe the following condition?

!trdy [*7] within ( $fell(irdy) ##1 !irdy[*8] )

ADDITIONAL SEQUENCE FEATURES
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II. Manipulating data in a sequence.

Example:
sequence add_3;
a ##1 ( b[->1], x = pipe_in) ##1 c[*2] ##0 ( pipe_out == x + 3);

endsequence

I. Detecting and using end point of a sequence could ease to describe a complex 
sequence that uses the first as a start point.

Example:

sequence s;
a ##1 b ##1 c;

endsequence

sequence rule;
@(posedge sysclk) trans ##1 start_trans ##1 s.ended ##1  end_trans;

endsequence
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USB Examples



USB3.1 LFPS Zero Detection

// LOW_DURATION_1:16         LOW_DURATION_2:18
// HIGH_DURATION_1:102      HIGH_DURATION_2:104

sequence lfps_zero_detection_c;
@(posedge clk)(
(!oP_txelecidleAux) [*LOW_DURATION_1:LOW_DURATION_2]   ##1
(oP_txelecidleAux)  [*HIGH_DURATION_1:HIGH_DURATION_2] ##1
(!oP_txelecidleAux)

);
Endsequence : lfps_zero_detection_c
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USB3.1 LFPS ONE DETECTION

// LOW_DURATION_1:16         LOW_DURATION_2:18
// HIGH_DURATION_1:180      HIGH_DURATION_2:184

sequence lfps_one_detection_c;
@(posedge clk)(
(!oP_txelecidleAux) [*LOW_DURATION_1:LOW_DURATION_2]   ##1
(oP_txelecidleAux)  [*HIGH_DURATION_1:HIGH_DURATION_2] ##1
(!oP_txelecidleAux)

);
Endsequence : lfps_one_detection_c
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USB3.1 TSEQ DETECTION

// TSEQ_A_SEQUENCE: 87878787

sequence tseqA_detection_seq;
@(posedge clk)(
Data == TSEQ_A_SEQUENCE

);
endsequence

// TSEQ_B_SEQUENCE: 87870000

sequence tseqB_detection_seq;
@(posedge clk)(
Data == TSEQ_B_SEQUENCE

);
endsequence

sequence tseq_detection_seq;
@(posedge clk)(
tseqA_detection_seq ##1 
tseqB_detection_seq ##1 
tseqA_detection_seq ##1 
tseqA_detection_seq

);
endsequence
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IV - PROPERTY



Definition:
A property defines an abstract behavior of the design. The result of property 
evaluation is either true or false.

 The property definition is based on
propositional and temporal logic which
deal with simple declarative propositions
or simple declarative propositions through
time respectively.

 Note: The combination of some
propositional/temporal logic elements
with generate for can leads to first-order
logic which covers predicates and
quantification.

Property

Logic
Proposition

Temporal
Proposition

Logic
Proposition

Temporal
Proposition

Temporal
Proposition

Logic
Proposition

Basics
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Propositional 
or/and 

Temporal 
Logic

Quantifiers First Order 
Logic

A predicate resembles a function that returns either True or False. 

 First-order logic allows reasoning about properties that are shared by many objects, 
through the use of variables.

 First-order logic is distinguished from propositional logic by its use of quantifiers; each 
interpretation of first-order logic includes a domain of discourse over which the quantifiers 
range.  

40



 In SV a property can be declared in: 
• a module, 
• an interface, 
• a program, 
• a clocking block, 
• a package and a compilation-unit scope [1]. 

A property declaration by itself does not produce any result.

 There are seven kinds of properties: sequence, negation, disjunction, conjunction, if...else, 
implication, and instantiation (reusable properties).

A property declaration is as follows:

property rule6_with_no_type(x, y);
##1 x |-> ##[2:10] y;

endproperty : rule6_with_no_type
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Property Type: Sequence

A property that is a sequence evaluates to true if, and only if, there is a nonempty match
of the sequence. A sequence that admits an empty match is not allowed as a property.

Example:
property prop_seq;
@(posedge clk) $rose(rqst) ##1 $rose(gnt); 

Endproperty : prop_seq

Property Type: Negation

For each evaluation attempt of the property, there is an evaluation attempt of
property_expr. The keyword not states that the evaluation of the property returns the
opposite of the evaluation of the underlying property_expr.

Example:
property prop_not;

@(posedge clk) not property_expr;
endproperty : prop_not

Property Construction
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Property Type: Disjunction

A property is a disjunction if it has the form:

property_expr1 or property_expr2

The property evaluates to true if, and only if, at least one of property_expr1 and
property_expr2 evaluates to true.

Property Type: Conjunction

A property is a conjunction if it has the form:

property_expr1 and property_expr2

The property evaluates to true if, and only if, both property_expr1 and 
property_expr2 evaluate to true.
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Property Type: If ... Else

A property is an if...else if it has either the form:

if (expression_or_dist) property_expr1

or the form

if (expression_or_dist) property_expr1 else property_expr2

A property of the first form evaluates to true if, and only if, either expression_or_dist
evaluates to false or property_expr1 evaluates to true.

A property of the second form evaluates to true if, and only if, either
expression_or_dist evaluates to true and property_expr1 evaluates to true or
expression_or_dist evaluates to false and property_expr2 evaluates to true.
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Property Type: Implication

The implication construct specifies that the checking of a property is performed
conditionally on the match of a sequential antecedent.

This clause is used to precondition monitoring of a property expression and is allowed at
the property level. The result of the implication is either true or false.

Two forms of implication are provided: overlapped using operator |-> and non-
overlapped using operator |=>. Therefore, a property is an implication if it has either
the form (non-temporal)

sequence_expr |-> property_expr

or the form (temporal)

sequence_expr |=> property_expr

Antecedent 
(Sequence)

Consequent   
(property_expr)
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Property Type: Instantiation

An instance of a named property can be used as a property_expr or property_spec.

In general, the instance is legal provided the body property_spec of the named
property can be substituted in place of the instance, with actual arguments substituted
for formal arguments, and result in a legal property_expr or property_spec, ignoring
local variable declarations.
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Example
I. Objective:  Data Transfer Master  Target Bus Operation
II. Functional Details: 

• Data Transfer includes multiple data phases
• Data phase completes on rising edge of clk when irdy && ( trdy || stop )
• All signals are active low

The end of a data phase can be expressed as follows:

property data_end;
@(posedge mclk) data_phase |-> ((irdy==0) && ($fell(trdy) || $fell(stop)));

endproperty
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V. ASSERTION  LANGUAGE



INTRODUCTION

Definition :  The assertion language is 
used to specify the correct behavior of 
the system under consideration.

Design Under Test 
(DUT)

DUT 
Assertion 

Description

DUT 
Assertion 

Description
DUT Assertion 

Description
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Assertions are used to express the design intent. In addition, assertions can be used to
provide functional coverage and generate input stimulus for validation. [1]

 By covering properties one can check if a certain design specification was
stimulated (functional coverage).

 When the model is restricted to certain assumptions the input stimulus are
restricted (generated) as well, i.e. using properties inside constraint blocks to
restrict random stimulus generation [1].

With SVA a timing accurate input/output model description for a design (what,
when) can be done, without providing any details about how the job is done.
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ASSERT LANGUAGE

• Immediate assertions: Follow simulation event semantics for their execution and
are executed like a statement in a procedural block [1].

• Concurrent assertions: This assertions are based on clock semantics and use
sampled values of variables. This simplify the evaluation of a circuit description
[1].
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Assert 
Language 

Immediate

It may not contain 
temporal 

expressions

May be inserted
anywhere in the 
procedural code

Evaluated as 
statement

Concurrent

It may contain 
temporal 

expressions

Samples
variables on 

clocking events
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IMMEDIATE ASSERTIONS

If the non-temporal expression evaluates to X, Z, or 0, then it is interpreted as being false, 
and the assertion is said to fail. Otherwise, the expression is interpreted as being true, and 
the assertion is said to pass.

SystemVerilog syntax:

[label:] assert ( <immediate_property> [disable iff <disable_condition>] ) <action_block> 
disable_condition := expression 
immediate_property := non_temporal_logic_expression | non_temporal_property_name
action_block := statement_or_null [else statement]
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Assertion name 
(Label)

Condition to 
check Fail statement

Pass and Fail statements are
optional. May be also blocks

Pass statement

Guard expression

Example:

default_usb_check:

assert ( (usb_set == 0) disable iff (rst)) $display ("%m passed");  else $error( "%m failed“ );
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Severity System Tasks
Because the assertion is a statement that something must be true, the failure of an 
assertion shall have a severity associated with it. By default, the severity of an assertion 
failure is error. 

Other severity levels can be specified by including one of the following severity system 
tasks in the fail statement:

 $fatal is a run-time fatal.
 $error is a run-time error.
 $warning is a run-time warning, which can be suppressed in a tool-specific 

manner.
 $info indicates that the assertion failure carries no specific severity.

The severity system tasks use the same syntax as $display and they can be used with 
both immediate and concurrent assertions
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ii. CONCURRENT ASSERTIONS

Temporal • Describe behavior that spans over time.
• The evaluation model is based on a clock.

The values of 
variables used in 

the evaluation are 
the sampled values.

• A predictable result can be obtained from the evaluation.

SystemVerilog syntax:

[label:] assert property ( property_spec ) action_block

See full description [1, A.2.10]

property_spec ::= [clocking_event ] [ disable iff ( expression_or_dist ) ] property_expr
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Assertion 
name (Label)

Sampling 
event

Pass 
statement

Fail 
statement

Assertion
body

Asynchronous 
reset

Example:

my_concurrent_check: 

assert property ( @ ( posedge clk ) disable iff ( rst ) not ( a ##1 b ))
$info ( “Property p passed” ); else  $error ( “Property p failed”);

58



SAMPLING
The values of variables used in assertions are sampled in the Preponed* region of a time 
slot, and the assertions are evaluated during the Observe* region. Action blocks are 
scheduled in Reactive region.

Sampling Evaluation

For concurrent assertions, the following statements apply:

 It is important to ensure that the defined clock behavior is glitch free. Otherwise,
wrong values can be sampled.

 If a variable that appears in the expression for clock also appears in an expression
with an assertion, the values of the two usages of the variable can be different. The
current value of the variable is used in the clock expression, while the sampled value
of the variable is used within the assertion.

Actions

* See [1, chap 9]
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VERIFICATION STATEMENTS

Verification 
Statements

assert

Function: On each 
evaluation ensure that 

property holds.
Intent: Property checker 

for DUT RTL.

assume

Function: On each 
evaluation ensure that 

property holds.
Intent: as an assumption 
for environment (external 

user).

cover

Function: Monitor the 
property for evaluations.

Intent: Indicate if a 
property was evaluated 

during a simulation trace.

A property on its own is never
evaluated, it must be used within a
verification statement for this to
occur. A verification statement
states the verification function
(intent) to be performed on the
property.
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Assert
The purpose of the assert statement is to check the equivalence between the abstract 
description (property) and the functional description (RTL) during formal analysis and 
dynamic simulations.

Ensures design correctness

Formal Verification: Mathematically proves the property’s 
correctness

Design Verification: Checks property’s correctness for a given 
simulation trace.
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The assert statement follows this syntax:

Example:

assert property ( property_spec ) action_block
See full description [1, A.2.10]

property abc(a,b,c);
disable iff (a == 2) @(posedge clk) not (b ##1 c);

endproperty

env_prop: assert property ( abc ( rst,in1,in2 ) )
$display( “env_prop passed.“ ); else $display( “ env_prop failed.“ );
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The purpose of the assume statement is to allow properties to be considered as 
assumptions (oriented to external drivers/responders) for formal analysis as well as 
for dynamic simulation tools.

Assume

Specifies requirements for the 
environment.

Formal Verification

• Restricts the model.
• The property is considered as a 

hypothesis to prove the asserted 
properties

Design Verification

• It is treated the same as assertions.
• There is no requirement on the tools 

to report successes of the assumed 
properties.
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Example:  

A simple synchronous request and acknowledge protocol, where variable req can be 
raised at any time and must stay asserted until ack is asserted. In the next clock cycle, 
both req and ack must be deasserted.

Properties governing req are as follows:

property pr1;
@( posedge clk )
!reset_n |-> !req; // when reset_n is asserted (0),keep req 0

endproperty

The assume statement follows this syntax:

No action blocks!!!
but messaging is allowed

assume property ( property_spec ) ; See full description [1, A.2.10]
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The following properties are assumed:

assume_req1: assume property (pr1);
assume_req2: assume property (pr2);
assume_req3: assume property (pr3);

property pr2;
// one cycle after ack, req must be deasserted
@(posedge clk) ack |=> !req;

endproperty

property pr3;
// hold req asserted until and including ack asserted
@(posedge clk) req |-> req[*1:$] ##0 ack;

endproperty
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Cover
 The purpose of the cover is 

to monitor properties of the 
design for coverage, i.e. to 
count the number of times a 
property was evaluated 
(disregarding the result of 
the evaluation).

 The tools can gather 
information about the 
evaluation and report the 
results at the end of 
simulation. 

Able to 
detect 
events

SVA

Find 
WitnessFormal Verification

Find a run 
showing the 
property 
may be 
satisfied

Get 
Indication 

of 
occurrence

Design Verification

66



The cover statement follows this syntax:

Example:

cover property ( property_spec ) statement_or_null
See full description [1, A.2.10]

cover property ( @ ( posedge clk ) !rst throughout req ##1 ack );
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VI. COMPARATIVE RESULTS



Formal Temporal Logic
vs

Scripting

• Just comparing code to represent the 
sequence model:
• ~3.5x gain

• Considering the built of coverage, 
assertion and the sequence 
encapsulation:
• ~1.7x gain

Formal Temporal Logic
vs

Structural Modeling (Scoreboard)

• Just comparing code to represent the 
sequence model:
• ~6x gain

• Considering the built of coverage, 
assertion and the sequence 
encapsulation:
• ~3x gain

Figure of Merit: Number of Code Lines

Additional Multiplication Gain Factor:
Each time a library sequence is used!!!
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CODING EFFORT RESULTS

Perl required lines to 
Process  a simple sequence 

of 1’s and 0’s:
41 Code Lines

SV required lines to process a 
simple sequence of 1’s and 0’s 
without using “temporal” logic:

74 Code Lines
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Using formal temporal 
logic to process a simple 
sequence of 1’s and 0’s:

16 Code Lines!

Perl VS. Formal temporal 
logic (using SystemVerilog) :

2.5 x less coding effort

Verilog VS. Formal temporal 
logic (using SystemVerilog):

4.6 x less coding effort
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THANK YOU!
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