
Introduction to the OCP Protocol
Drew Wingard, Sonics, Inc.

OCP: The Journey Continues

Agenda

Welcome and Intro to the OCP protocol
Drew Wingard, Sonics
Verification support for OCP

Steve McMaster, Synopsys
TLM 2.0 SystemC support for OCP

Herve Alexanian, Sonics
 IP-XACT support for OCP

Prashant Karandikar, Texas Instruments
OCP futures and closing

Drew Wingard, Sonics

© 2014 Sonics, Inc. March 3, 20142

A Quick Trip Down Memory Lane

Since early 1997, Sonics has been a semiconductor IP
supplier focused on selling interconnect networks for
SoC applications
Since Sonics’ products help customers integrate IP from

lots of sources (including customers!), we’ve always had
a strong focus on IP core interfaces
This leads us directly to the story of OCP…

3 © 2014 Sonics, Inc. March 3, 2014

Why is an IP Interface Socket Needed?

Thousands of cores (M)
 10’s (100’s?) of interconnects/buses (N)
O (M x N) bridges must be designed
Don’t forget signaling protocols, data widths, clock

frequency, endian ordering, loading, control flow, etc.

Too much customization for effective reuse

4 © 2014 Sonics, Inc. March 3, 2014

Networking Approach

O(M x N) effort becomes O(M + N) effort
Reduced work, enhanced reuse

5

SOC
Integrator

Bus Transfer Protocol

Physical Bus

IP Core

Transaction Protocol Open Core Protocol

Core 1 Core M

Bus 1 Bus N

Imp. 1 Imp. 2

Core
Designer

© 2014 Sonics, Inc. March 3, 2014

VSIA On-Chip Bus WG Presentation

Sonics Module Interface is a Virtual Component Interface
specifically designed to:
- Isolate VCs from logical and physical bus requirements (i.e., be a bus

wrapper)
- Specify both basic and advanced functionality

- Minimize area overhead for simple VCs
- Improve performance for complex VCs

- Provide structure for user-defined enhancements
- Allow “black box” verification and testing
- Interface should be symmetric, so VCs can also connect directly to

each other (i.e., without an on-chip bus)

6 © 2014 Sonics, Inc. March 3, 2014

VSIA Model and Sonics Integration
Architecture

7

Silicon
Backplane
Protocol

Physical Bus

Transaction
Protocol

Bus Transfer
Protocol

Sonics Module
Interface

VSIA On-chip
Bus Model

Sonics
Integration

Architecture

Physical
Bus

The Sonics Silicon Backplane is a proprietary communication protocol that
facilitates connection of VC cores with widely varying performance requirements

Bus
Wrapper

Virtual
Component

© 2014 Sonics, Inc. March 3, 2014

Sonics Module Interface

8

Virtual
Component

Virtual
Component

Virtual
Component

On-Chip Bus

Slave

Master SlaveSlave

Slave

Master

Master MasterInitiator Target

Module
Interface Request

Response

© 2014 Sonics, Inc. March 3, 2014

Additions: Threads
 A thread is a sequence of transfers that must occur in-order with

respect to one another
 Transfers in different threads may occur out-of-order
 Threads can represent:

- Separate, independent streams
- Separate operation types
- Combinations of the above
 Thread Identifiers are Layer 2 (Point-to-point)
 Additional signals to support threads

- Master passes ReqThreadID as tag with request (≤ 4 bits)
- Slave returns RespThreadID with response
- Optional ThreadBusy bit vectors for thread status

9

Non-blocking
flow control

© 2014 Sonics, Inc. March 3, 2014

Testbench Example

10

ConnID ThreadID Cmd Addr (Length) (Data)

0x1F 0x2 bfill32 0x1000 8 0x12345678

0x1F 0x2 bread32 0x1FFF 8

0x10 0x1 read8 0x8

0x10 0x1 write8 0x2008 0xFF

Transaction-based
verification

Perl-based assembler / disassembler
Behavioral Verilog VC cores
Protocol checker at interface

© 2014 Sonics, Inc. March 3, 2014

Conclusions

Wide adoption of any standardized VC interface depends
on two technical measures
- Area efficiency for simple/low-performance VCs
- Performance capability for complex/high-performance VCs
Sonics Module Interface defines:

- Small core of mandatory signals
- Wide range of optional signals
- Structure method for extension
- Logical and electrical protocols

- Necessary for validation
- Allows true “black box” VC-based design and testing

11

Highly
configurable

© 2014 Sonics, Inc. March 3, 2014

What Happened to Sonics Module
Interface?

Re-named “Open Core Protocol” in 1999
OCP-IP announced 2001

- Original GSC: MIPS, Nokia, Sonics, TI, UMC
- Reached well over 170 members
- Assets transferred to Accellera, Oct. 2013
Basic OCP protocol is the same as SMI

- OCP 2.0 added significant improvements to burst model

12 © 2014 Sonics, Inc. March 3, 2014

OCP-IP Promotion, 2001

13 © 2014 Sonics, Inc. March 3, 2014

OCP-IP Contributions

 Open Core Protocol Specification
- An IP core interface used on at least 5 billion ICs so far…
- Substantial work on scalability, optimality and non-ambiguity via explicit

configurability
 Transaction-level Modeling (TLM)

- Groundbreaking white paper on TLM modeling (2002)
- Definition, implementation and distribution of SystemC channel
- Substantial contributions to OSCI TLM 2.0 standard
 Metadata Capture

- “rtl.conf” metadata to describe interface: part of specification since 1999
- Substantial contributions to IP-XACT (pending IEEE1685-2014)
 Also: multi-core debug, NoC benchmarking

14 © 2014 Sonics, Inc. March 3, 2014

INTRODUCTION TO OCP

15 © 2014 Sonics, Inc. March 3, 2014

OCP Goals

 Bus Independent
- Support point-to-point, bus, cross-bar, etc.
 Scalable

- Choose field widths based upon IP core needs
 Configurable

- Simple cores get simple interfaces
 Synthesis/Timing Analysis Friendly

- Avoid problems at core boundaries
 Encompass entire core/system interface needs

- Data, control, and test flows

© 2014 Sonics, Inc. March 3, 201416

OCP Concepts

 Point-to-point, uni-directional, synchronous
- Easy physical implementation
 Master/Slave, request/response

- Well-defined, simple roles
 Extensions

- Added functionality to support cores with more complex interface
requirements

 Configurability
- Match a core’s requirements exactly
- Tailor design to required features only

17 © 2014 Sonics, Inc. March 3, 2014

Protocol Elements

 A signal specification
- Definition of set of roles (masters, slaves) that can be played in attaching to

OCP
- Definition of set of signals (fields) that may be present in the interface, including

how each role relates to them
 A transfer specification

- Definition of what types of information transfers (transactions) can be performed
- Definition of how the signals are to be used for each transaction type
 A configuration specification

- Specification of what combinations of signals are permitted
 A syntax specification

- Specification of file syntax for describing core and its interfaces configurations
- Specification of file syntax for describing timing of all interface pins

18 © 2014 Sonics, Inc. March 3, 2014

OCP: A Complete Socket

 3 specs in 1: separate groups of
signals
- Dataflow

- Transfer of data with RD or WR

- Sideband (control and status)
- Misc. communication among cores
- Interrupt, Flags, Errors …

- Test (scan, jtag, etc.)

All communication is
synchronous to a clock input to
the core

19 © 2014 Sonics, Inc. March 3, 2014

Dataflow Protocol Hierarchy

20

SIGNAL

PHASE

TRANSFER

TRANSACTION

SIGNAL …SIGNAL

PHASE … PHASE

TRANSFER … TRANSFER

Signals simultaneously active (in a cycle)
are grouped in signal GROUPS

GROUPS of signals define a PHASE
(can last more than 1 cycle)

Multiple PHASES define
a TRANSFER;

A TRANSACTION is a group
of transfers belonging logically
together (like bursts)

…GROUPGROUPGROUP

© 2014 Sonics, Inc. March 3, 2014

Point-to-Point Transaction Interface

 OCP includes a set of dataflow signals that
connect entities of complementary roles

 Three data dataflow roles:
- Master

- Initiates transactions
- Slave

- Services transactions
- Monitor

- Watches transactions

 By convention, when OCP bundle is shown
(rather than it wires), an arrow shows
direction of transfer
- Signal prefix M = master outputs
- Signal prefix S = slave outputs

21

Master

OCP

Slave

monitor

© 2014 Sonics, Inc. March 3, 2014

OCP Transaction Types

 One or more transfers build a transaction
 Bursts

- Reads
- Writes

- Posted (with or without response)
- Non-posted

- Broadcast
 Semaphores

- Read-modify-write
- Blocking
- Non-blocking

 Configuration specifies explicitly which transactions are allowed
- Read only or Write only
- FIFO-like Write only (push) or Read only (pop) without address

22 © 2014 Sonics, Inc. March 3, 2014

OCP Read Transfer

Master sends a request to slave
- Designates Read command
- Specifies an address
Slave returns a response to master

- Indicates success or failure
- Includes copy of the addressed data, if successful

Master

request

Slave

monitor
response data

23 © 2014 Sonics, Inc. March 3, 2014

OCP Write (Posted) Transfer

Master sends a request to slave
- Designates Write command
- Specifies an address

Master sends data to slave
- If write response is not needed, the master

presumes the write is complete
- If write response is needed, it indicates write

success speculatively
- Subject to posted write exceptions

Slave stores to the addressed location
with the provided data

Master

data

Slave

request response

monitor

24 © 2014 Sonics, Inc. March 3, 2014

OCP Non-Posted Write Transfer

Master sends a request to slave
- Designates Non Posted Write command
- Specifies an address

Master sends data to slave

Slave modifies the addressed location
with the provided data

Slave must return a response to master
- OCP must be configured for write responses
- Fully synchronized write (response after write

complete)

25

Master

data

Slave

request response

monitor

© 2014 Sonics, Inc. March 3, 2014

OCP Burst Transaction

All reads, writes and broadcasts can be grouped in
bursts
Bursts have a length and an address sequence
Bursts of length 1 (one OCP word) are legal

- Partial word transfer also possible
 3 categories of bursts are supported

- SRMD – Always precise
- MRMD – Precise
- MRMD – Imprecise
Burst sequence types

- INCR, WRAP, STRM ….

26 © 2014 Sonics, Inc. March 3, 2014

Split Transactions (i.e., Independent
Request/Response)

 OCP Transfers are split into phases
- Request phase
- Data phase
- Response phase
 Transfer Pipelining

- Determined by the number of “outstanding” transaction both master and slave
can support

- Each transfer proceeds from phase to phase in a prescribed sequence
- One transfer doesn’t need to complete all its phases before another transfer can

start
- Permits very high performance (bandwidth) socket interface regardless of

system latency
- OCP spec. doesn’t limit the max number of outstanding transactions

27 © 2014 Sonics, Inc. March 3, 2014

Signal Groups
 OCP avoids phase interference by

supporting each phase with its own
independent set of signals (including flow
control)
- Request phase
- Data phase signal group
- Response phase signal group

 Arrows only show phase initiation
direction
- Each phase may have both inputs and outputs

Master

data

Slave

request response

monitor

28 © 2014 Sonics, Inc. March 3, 2014

Phase Configurability

Not all phases need to be implemented:
Request phase must always be present
Data phase is optional

- Present if phase valid signal is present (MDataValid)
- If phase not present, phase payload (MData) moves

with request phase
Response phase is optional

- Present if phase valid signal is present (SResp)
- If phase not present, transactions requiring response not supported

- Any read type commands
- Non-posted writes & writes with responses

29 © 2014 Sonics, Inc. March 3, 2014

Signaling Protocol

 When does a phase start and how does it end?
- Each OCP signal group (phase) has one signal field indicating whether the

phase is valid or not
- All other fields belonging to a phase including the accept signal which is a

don’t_care when the phase is not valid
- No retraction: Once a phase is activated, the signal activating the phase and all

other signals belonging to the same group (payload) must be held constant.

idleValid

Accept

- Payload fields- -

idle

- - -

command

payload

don’t_care don’t_careaccepted

30 © 2014 Sonics, Inc. March 3, 2014

The Valid signals:
MCmd, MDataValid and SResp

MCmd[2:0] Command

000 IDLE

001 WRITE

010 READ

011 READEX

100 READ-LINKED

101 WRITE-NON-POST

110 WRITE-CONDITIONAL

111 BROADCAST

SResp[1:0] Response code

00 NULL

01 DVA

10 FAIL

11 ERROR

MDataValid Write Data Phase

0 Write Data not Valid

1 Write Data Valid

31 © 2014 Sonics, Inc. March 3, 2014

The Accept signals:
SCmdAccept, SDataAccept and MRespAccept

Handshake
field

Request
phase

Data
phase

Response
phase

Valid MCmd MDataValid SResp

Accept SCmdAccept SDataAccept MRespAccept

Payload Request
Group Signals

Datahandshake
Group Signals

Response
Group Signals

Phase Sender

(e.g. the master
for a request)

Phase Receiver

(e.g. the slave
for a request)

valid
accept

payload

32 © 2014 Sonics, Inc. March 3, 2014

Phases of simple transfers: RD, WR

Read
• Command, Address
• Command Accept
• Response, Data

Master Slave

Ti
m

e

• Command, Address,
Data

• Command Accept

Write (posted):

Ti
m

e

33 © 2014 Sonics, Inc. March 3, 2014

Simple Write & Read Transfer

Request
Phase

Response
Phase

Request
Phase

R
eq

ue
st

Ph
as

e
R

es
po

ns
e

Ph
as

e

Data accepted
automatically

34 © 2014 Sonics, Inc. March 3, 2014

OCP Non-Posted Write (WRNP)

35 © 2014 Sonics, Inc. March 3, 2014

Address and Data in OCP World

Addresses granularity is 8 bits (1 byte)
Parameter data_wdth indicates the number of bits in an

OCP word
Word size is the natural transfer unit across the OCP

socket
Parameter addr_wdth indicates the number of address

bits generated by a core.
- OCP addresses are byte addresses aligned to an OCP word

- So a core can address OCP words
data_wdth/8
2 addr_wdth

36 © 2014 Sonics, Inc. March 3, 2014

Byte Enables

The basic OCP data transfer size is a word
• Corresponds to the OCP parameter data_wdth

Use one signal per byte lane for partial access
- MByteEn for read or both in MRMD
- MDataByteEn for write in SRMD
Any combination of byte enables is legal (general byte

enables)
- Example: byte enable = 0x35 on an 8-byte OCP
- Example: byte enable = 0x0 is legal, too
 If needed, use force_aligned parameter to restrict the

combinations
- Aligned to powers-of-two

37 © 2014 Sonics, Inc. March 3, 2014

Ordering and Pipelining

 An OCP transfer is a complete request/response interaction
 Successive OCP transfers are strictly ordered on a thread
 Response return order mirrors the request order
 Successive transfer phases can be pipelined (Multiple requests can

be outstanding before the first response returns, assuming the slave
accepts the commands)

Master

Slave

1 2 3 4

1 2 3 4

time

Without tags / threads, everything has to be processed / returned in order.

38 © 2014 Sonics, Inc. March 3, 2014

OCP Bursts Details

 Bursts are a set of transfers:
- Assembled into a transaction
 3 categories of bursts are supported

- SRMD
- Single Request Multiple Data (packet) style
- Precise length without early termination

- Precise MRMD
- Precise length without early termination
- Multiple Request Multiple Data

- Imprecise MRMD
- Speculative length
- Since it’s imprecise, it must be MRMD style
- Possible early termination

- Network application detecting packet CRC error

39 © 2014 Sonics, Inc. March 3, 2014

Bursts in OCP

 MBurstSeq encodes one of the 7 burst address sequences:
1. Incrementing bursts for block rd/wr - packing
2. Custom(packed) - packing
3. Wrapping - packing
4. Custom(not packed) - non-packing
5. Exclusive OR - packing
6. Streaming - no packing
7. Unknown - no packing
8. BLCK - packing
 MBurstLength encodes the number of transfers in the burst

- Cannot change during the burst if burst is precise
- May only be an hint when burst is imprecise
- Need 5 bits to support 16 words burst (i.e., 5’b10000)

40 © 2014 Sonics, Inc. March 3, 2014

Bursts in OCP (cont.)

Optional framing information
- MReqLast, SRespLast, MDataLast indicate the end of a burst
- If burst is imprecise, last transfer is indicated by MBurstLength=1
- If burst is precise, use it to terminate a transaction without counting

save some area
 If an initiator may change its burst type dynamically, on a

burst-by-burst basis…. additional signals are needed
- MRMD / SRMD (MBurstSingleReq)
- Precise / imprecise (MBurstPrecise)
 If a burst can be chopped by the Interconnect, Atomicity

attributes (i.e., MAtomicLength) allow control of the
chopping process

41 © 2014 Sonics, Inc. March 3, 2014

MRMD Read Burst

 Could be imprecise or precise
 Response phase can’t begin before Request phase begins
 Response phase can’t end before Request phase ends

Read A0 Read A1 Read A2 Read A3Request phase

D0 D1 D2 D3

Data phase

Response phase

42 © 2014 Sonics, Inc. March 3, 2014

2D Burst Sequences

 OCP BLCK burst sequence

 Mostly useful in Digital Media
Application to achieve higher
DRAM efficiency

 Each transaction specifies burst
length, height and stride

Multimedia Application
Example

0 1 2 3 29 30 31

32 33 34 35 61 62 63

64 65 66 67 93 94 95

96 97 98 99 125 126 127

128 129 130 131 155 156 157

Scan Line Length= 32 OCP Words w/data width = 128 bit

2x3 Block
Access

61 62

93 94

125 126
MBlockHeight=3

MBurstLength=2

MBurstStride
= 0x200

2x2 Block
Access

43 © 2014 Sonics, Inc. March 3, 2014

2D Burst Sequences

44 © 2014 Sonics, Inc. March 3, 2014

OCP Tags
 OCP Tag is similar to AXI ID

 Allow out-of-order responses within a single
thread

 Shared flow control for tags within phase

 “Light weighted Thread”

 Often associated with internal buffer number

 Use MTagInOrder and STagInOrder if orders
need to be maintained

 Use tag_interleave_size parameter to control
interleaving of responses between different
tags within a burst

Master

Slave

OCP

monitor

Buf1 Buf2 Buf3

45 © 2014 Sonics, Inc. March 3, 2014

Tags and Ordering

 If MTagInOrder = 1’b1, ordering is required and the xTagIDs are
don’t_care
 If MTagInOrder = 1’b0, use MTagID and STagID to keep track of each

request/response

Tag1

MTag
In

order

Master
Tag4

MTag
in

order

Slave

TIME

STag
in

order Tag1

STag
in

order Tag4

46 © 2014 Sonics, Inc. March 3, 2014

OCP Threads

47

Master

Slave

OCP

monitor

 Master can represent a collection of actual
physical or logical masters that share a single
set of OCP wires
- Bridge from bus
- Sub-system (DSP with DMA)
 Threads can be seen as multiple logical OCP

connections (virtual channels) using the same
physical socket
 From system point of view, each thread may

represent a QoS level
 Transaction execution order is maintained

within each thread
 Thread interactions can be minimized using

non-blocking flow control
© 2014 Sonics, Inc. March 3, 2014

Threads and Ordering

 Strict ordering within a thread
Thread 1: A, B →1A, 1B
Thread 2: A, B →2A, 2B
 No ordering restriction between threads

1A, 1B, 2A, 2B →1A, 2A, 2B, 1B

Thread 2

Master

Thread 1

Slave

TIME

A BA BB AA B

48 © 2014 Sonics, Inc. March 3, 2014

Non-blocking Flow Control

 A core may be busy on thread X but still able to accept requests for thread Y
 In order to prevent blocking, the slave can use the optional SThreadBusy

signals (one bit per thread) to indicate which thread(s) are busy.
- A Master should not issue requests to any busy thread so the interface will NOT block
- But it may still choose to do so Non-blocking with hints
 Similar arrangement exists in each non-blocking phase

- SDataThreadBusy for data phase
- MThreadBusy for response phase
 ThreadBusyExact offers the most efficient implementation

- The Busy indication is PRECISE
- Both master and slave MUST obey the rule
- Each presented request/data/response MUST be accepted

- The most power efficient

49 © 2014 Sonics, Inc. March 3, 2014

Request, Response and Data Qualifiers
(In-band Extensions)

 MReqInfo: OCP allows requests to be qualified by additional, user-
defined, data that will be routed along with the command
- Examples: security/protection mode, cacheability, priority
 SRespInfo: same purpose as MReqInfo, but for response phase
 MDataInfo / SDataInfo

- Allows 2 kinds of info to be transmitted with the data, per-byte and per-word,
typically for ECC/Parity
- mdatainfo_wdth defines the overall width
- mdatainfobyte_wdth defines the width for each byte

50 © 2014 Sonics, Inc. March 3, 2014

Connection Identifier

 Connection (MConnID) is a tag that travels with a request:
- Usually an unique identifier for the master
- Can be dynamically assigned by the master or assigned by the network
- Should be delivered “as is” by the network
- So the slave can know the master ID of a given request
 Example uses

- Quality of Service determination
- Security/protection identification
- Debug

51 © 2014 Sonics, Inc. March 3, 2014

Sideband Signals

 Generation and delivery synchronous to OCP clock
 Transit asynchronous to data flow
 Signal Types

- Reset
- Interrupt
- Error
- Core Flags
- Connection
- Control/Status

52 © 2014 Sonics, Inc. March 3, 2014

Divided Clocking

53 © 2014 Sonics, Inc. March 3, 2014

Reset

 Reset de-assertion is synchronous to the OCP clock
- Assertion can be asynchronous
 This is NOT normally the reset for the core but of the socket

- Should be seen as a protocol signal, used to restart transactions from scratch,
clearing any transaction history

 Must be asserted for at least 16 cycles
 OCP Reset

- Is mandatory!
- Can be driven by the master (MReset_n)
- OR can be driven by the slave (SReset_n)
- OR can be driven by both master and slave (voting reset)

54 © 2014 Sonics, Inc. March 3, 2014

Flags

 Master and Slave flags (MFlags and SFlags) are generic, out-of-band
signals driven by master and slave, respectively
 Examples of use

- High-level flow control
- Multiple interrupts
- Handshaking
- Narrow data links
 OCP puts no restriction on their use
 Typically for hardware-to-hardware interactions

55 © 2014 Sonics, Inc. March 3, 2014

Connection Protocol –
Safe Power Transitions

 MConnect/SConnect/SWait/ConnectCap
- Master state transition: M_OFF, M_WAIT, M_DISC and M_CON
- Slave votes for connect/dis-connect: S_DISC and S_CON
- Slave delayed state transition: S_OK and S_WAIT
- Connect Cap 0 (statically connected), 1 (dynamic)

56 © 2014 Sonics, Inc. March 3, 2014

Test Signals

 Mainly for hard macros...
 Scan

- With one or more chains
 IEEE 1149 (JTAG)

- Standard JTAG interface
 Clock control

- Used to supply a different clock for chip test

57 © 2014 Sonics, Inc. March 3, 2014

SUPPORTING TOOLING

58 © 2014 Sonics, Inc. March 3, 2014

OCP Related Tools (SOLV)

 OCP monitor/protocol checker
- Fully configurable monitor module useable in simulations
- Implemented using SystemVerilog Assertions (SVA)
- Can be attached to any OCP bundle
- Check protocol violations and produce trace files during simulation
 ocpdis

- Post processing tool to produce human readable assembly language
representation of OCP activity

- Support various formats
 ocpperf

- Post processing tool to produce performance analysis of OCP activity
- Latency, bandwidth or utilization

SOLV is a Sonics licensed product

59 © 2014 Sonics, Inc. March 3, 2014

Other Commercial Providers of
OCP Verification Technology

Cadence
Duolog
 Jasper
Magillem
Mentor
Synopsys

60 © 2014 Sonics, Inc. March 3, 2014

Thank you

Verification Support for OCP
Steve McMaster, Synopsys

OCP: The Journey Continues

OCP is Hard to Verify /
OCP is Easy to Verify !!!

 High configurability of OCP is intended to simplify the
development and verification of IP cores
- But on-chip network fabrics – and Verification IP – may need to support a

wide variety of configurations
- Profiles created to simplify configurability
 Verification challenges

- Configuration support
- High feature set
 Verification support

- Consistent semantics (vs. separate interfaces, e.g., AXI/AHB/APB)
- Specification provides complete verification properties
- Explicit configuration metadata avoids ambiguity

2 © 2014 Synopsys, Inc. March 3, 2014

Verification Support: Consistent Semantics

 While Specification covers a wide range of features, most capable
interfaces are a superset of less capable
- Features not enabled don’t impact enabled features
- Contrast this with AXI vs. AHB vs. APB
 Generally only one configuration which fits the communication

requirement
- May be alternatives to alter the efficiency, but basic flow remains consistent
 Result: Designer can build a design/VIP environment via basic

problem decomposition
- Refinements can be made without going back to the beginning

3 © 2014 Synopsys, Inc. March 3, 2014

Verification Support: Specification Provides
Complete Verification Properties

 Section 3 of OCP Specification devoted to verification
- Protocol compliance, configuration compliance and functional coverage chapters
- All rules/coverage points driven off configuration metadata
 Statistics for OCP 3.0

- Over 100 types of protocol compliance checks
- Over 100 sets of configuration compliance checks
- Over 200 functional coverage points
 Implemented by commercial VIP

4 © 2014 Synopsys, Inc. March 3, 2014

Verification Support: Explicit Configuration
Metadata Avoids Ambiguity

 Types of configuration metadata
- Presence/absence of signal
- Width of signal
- Supported capabilities of signal (e.g., burst sequences, command types)
 Metadata explicitly supports concepts of Master, Slave and Monitor
 Thus, feature subsets are explicit

- Much less extra handholding in testbench
- Better automatic constraining of VIP behavior
- Easier formal verification

5 © 2014 Synopsys, Inc. March 3, 2014

OCP VIP EXAMPLE
Synopsys VIP

6 © 2014 Synopsys, Inc. March 3, 2014

Synopsys OCP VIP History

 Synopsys OCP VIP is proven and established
- VIP originally released in 2005
- Includes support for OCP 2.0 up to 3.0

- Full range of possible configurations

- Provided at no-charge to OCP-IP members from 2007
- Integrated with OCP-IP’s CoreCreator II
- 2 licenses for each paid up member in good standing
- Not carried forward to Accellera

- Adopted by many OCP-IP members

7 © 2014 Synopsys, Inc. March 3, 2014

OCP Verification IP
 OCP 2.2 dataflow & sideband

transaction types
- ThreadBusy pipelined
- Asynchronous reset, Enable clock
- 2.2 Errata
- Block transactions (2D burst)
 OCP 3.0

- Reordering Responses for Transactions with Overlapping Addresses
- WRNP and WRC Transactions Legal when writresp_enable is 0
- Connect/Disconnect
 Monitor observes and reports on OCP bus activity

- Full built-In Functional Coverage of OCP-IP-defined functional coverage
groups

 Fully configurable
- Signals, Width, Number of concurrent transfers, Timeouts, Burst length, Burst

type, etc.

OCP (System/Core)

VIP SlaveVIP Master

VIP Monitor

Coverage report
of OCP Functional
Coverage Checklist

OCP Master i/fOCP Slave i/f

VIP Monitor

D
at

af
lo

w

Si
de

ba
nd

Te
st

D
at

af
lo

w

Si
de

ba
nd

Te
st

8 © 2014 Synopsys, Inc. March 3, 2014

Example OCP UVM Test Environment

OCP Env

Master Agent

DUT

Mstr DF Sequencer

Driver

Vi
rtu

al

Se
qu

en
ce

r

Configuration

Sideband Sequencer

Monitor

Test
Configuration
Scoreboard
Sequences

Test
Configuration
Scoreboard
Sequences

Test
Configuration
Scoreboard
Sequences

Sequence Collection

Slave Agent

Slv DF Sequencer

Driver

Vi
rtu

al

Se
qu

en
ce

r

Configuration

Sideband Sequencer

Monitor

9 © 2014 Synopsys, Inc. March 3, 2014

Protocol Aware Debug

 Simplified viewing of protocol activity
- View all layers with parent, child,

and sibling
- Browse multiple protocols at once

 Immediate error identification
- Spotlights errors on protocol-centric view
- Provides on-demand detailed information
- Extensive filtering to speed debug

 Unified debug
- Synchronized to log files with back annotation

of errors into protocol view
- Link to VIP documentation
- Can support customer VIP

Protocol Analyzer

Spotlights
errors

View all layers of
protocol

Simplified
Simulator-Independent

protocol view See parent-child-sibling
relationships

Synchronized to
Verdi/DVE

waveform view

Synchronized
log-file display

Multi Protocol Views for SOC debug
10 © 2014 Synopsys, Inc. March 3, 2014

Synopsys VIP Verification Plan
Full OCP-IP Spec Coverage

 Test Plan
- Derived from specification and

protocol-specific coverage
groups

 Automated back-
annotation of coverage
results

Coverage
Bins

Results

11 © 2014 Synopsys, Inc. March 3, 2014

Conclusion

OCP is complex
Protocol continues to be enhanced
Commercial VIP enables complete, productive

verification
- Aligned with customer demand for new versions of protocol
- Support for new languages and methodologies
- Enables productive debug
- Includes coverage and planning

12 © 2014 Synopsys, Inc. March 3, 2014

Thank you

SystemC TLM 2.0 Support for OCP
Herve Alexanian, Sonics, Inc.

OCP: The Journey Continues

OCP-IP and SystemC Brief History
Comparative

2 © 2014 Sonics, Inc. March 3, 2014

Modeling Layers – Terminology

 OCP-IP coined these terms to identify layers of transaction
representation
- TL4: Bursts transferred in one transport call. Blocking transport
- TL3: Similar representation but non-blocking.

Implies independent request and response paths
- TL2: Hybrid between TL3 and TL1. Intra-burst Timing
- TL1: Clock cycle-based. Every phase of the protocol is modeled
- TL0: Pin-level, using systemc representation that can map to Verilog
 Massive Confusion Alert!

- TL layers pre-date the OSCI TLM standards
- OCP-IP TL1 is not the same as TLM-1.0
- OCP-IP TL2 is not the same as TLM-2.0

3 © 2014 Sonics, Inc. March 3, 2014

Channel-based (pre-TLM)

 SystemC defined communication with interfaces, ports and channels
 OCP-IP defined custom Interfaces

- OCP_TL1_MasterIF, OCP_TL1_SlaveIF
- OCP_TL1_MonitorIF
- OCP_TL2_MasterIF, OCP_TL2_SlaveIF
 Interfaces templated on OCP data structures

- OCPRequestGrp, OCPDataGrp, OCPResponseGrp
- OCPTL2RequestGrp…
 Functionality implemented in a channel

4 © 2014 Sonics, Inc. March 3, 2014

OCP TL3 Channel

 Higher levels of abstraction evolved to use TLM concepts
- Performance Monitoring, concept of multiple monitors
 Using TLM-1.0 put/get interfaces
 Still a channel, still custom data structures

Master Slave
tlm_nonblocking_put_if

tlm_get_peek_if

tlm_get_peek_if

tlm_nonblocking_put_if

request

response

5 © 2014 Sonics, Inc. March 3, 2014

TLM-2.0 Concepts
 TLM-2.0 defines a modeling style and a number of concepts and classes
 Transport mechanism (required)

- Transactions passed by reference
- Implemented in sockets (no more channels)
- Defines abstract interface to pass transaction, phase and timing information
void b_transport(<TXN>&, sc_time&);

tlm_sync_enum nb_transport_fw(<TXN>&, tlm_phase&, sc_time&);

tlm_sync_enum nb_transport_bw(<TXN>&, tlm_phase&, sc_time&);

 TLM generic payload (very important)
- Common representation for all modeling layers
- Common basis with other protocols
- Allows custom extensions without inheritance

 Base protocol (BP)
- Defines 4 phases: BEGIN_REQ, END_REQ, BEGIN_RESP, END_RESP
- Suitable for approximately timed modeling
- Custom TLM phases can be defined

6 © 2014 Sonics, Inc. March 3, 2014

What Does OCP-IP Need to Do, Then?

 Define how to use TLM to model OCP transactions
- At higher levels of abstraction, not that much!
- Represent OCP transactions (bursts) with TLM generic payload
- Specify TLM extensions to TLM generic payload and Base protocol

- Extensions: Threads, tags, ConnID, burst modifiers
- Phases: Interface reset, data handshake, thread busy

 Facilitate Integration
- Layer Adapters

- TL0/TL1
- TL1/TL3
- Legacy adapter (to OCP-IP channel based modules)

- Help access other OCP-IP deliverables
- Tools (trace files, disassembly, debug)
- Protocol Checking

7 © 2014 Sonics, Inc. March 3, 2014

OCP SystemC Next Generation
Interface Standards

OCP-IP SystemC Interface OSCI TLM compatibility

TL0 Not specified separately for
SystemC from other HDLs None, this is the RTL level

TL1 OCP-IP TL1
Uses TLM-2 generic payload, sometimes with
extensions. Uses different protocol phases and rules
from OSCI TLM-2.0 BP. Uses nb_transport()

TL2 OCP-IP TL2

Uses TLM-2 generic payload, sometimes with
extensions. Extensions are a subset of the extensions
used at OCP-IP-TL1. Uses different protocol phases
and rules from OSCI TLM-2.0 BP and from OCP-IP-
TL1. Uses nb_transport()

TL3

OCP-IP TL3/TL4

Uses TLM-2 generic payload, sometimes with
extensions. Extensions are a subset of the extensions
used at OCP-IP-TL2. Uses the same protocol phases
and rules as OSCI-TLM-2.0 BP. Extensions may be
ignorable in which case OCP-IP-TL3 is directly
interoperable with OSCI-TLM-2.0-BP.
Uses nb_transport() and b_transport()

TL4

8 © 2014 Sonics, Inc. March 3, 2014

4-beat Burst Transaction Example
 OCP (data_wdth=64)

- MCmd=WR
- MAddr=0x00
- MBurstLength=4
- MBurstSeq=INCR

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

Wait: nothing OCP here!

9 © 2014 Sonics, Inc. March 3, 2014

Misaligned Burst
 What about this transaction?

- txn->get_address() == 4;
- txn->get_data_length() == 44;

 Legal TLM, but not OCP

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

WRONG!

10 © 2014 Sonics, Inc. March 3, 2014

Misaligned Burst
 Remember, transactions are passed by reference!

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

OCP (data_width=32)
MCmd=WR
Maddr=0x04
MBurstLength=11
MBurstSeq=INCR

If played on a 64-bit OCP, the
effective OCP address would be
0, and the first transfer would
have MDataByteEn=0xF0

11 © 2014 Sonics, Inc. March 3, 2014

4-beat WRAP Burst
 OCP (data_wdth=64)

- MCmd=WR
- MAddr=0x10
- MBurstLength=4
- MBurstSeq=WRAP

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

1
2

3
4

12 © 2014 Sonics, Inc. March 3, 2014

And So On…
Bursts are codified in reference manual

- STRM bursts
- XOR bursts
- BLCK bursts (2D)
- Legal Byte enable patterns
Other TLM payload extensions

- MThread
- MTag
- MReqinfo
- MConnID
- etc…

13 © 2014 Sonics, Inc. March 3, 2014

OCP TL1 Request Phase
BEGIN_REQ END_REQ

14 © 2014 Sonics, Inc. March 3, 2014

TL1 Phases

 TL1 only uses nb_transport_fw/nb_transport_bw
tlm::tlm_sync_enum

nb_transport_fw(tlm::tlm_generic_payload&, tlm::tlm_phase&,
sc_time&);

 The sc_time argument is always 0.
 A phase begins with a nb_transport_* call with ph=BEGIN_*
tlm::tlm_phase reqPh = tlm::BEGIN_REQ;

sc_core::sc_time zero(0, SC_NS);

tlm::tlm_sync_enum status = nb_transport_fw(txn, reqPh, zero);

tlm_::tlm_phase dataPh = ocpip::BEGIN_DATA;

status = nb_transport_fw(txn, dataPh, zero);

15 © 2014 Sonics, Inc. March 3, 2014

TL1 Phases

 A TL1 phase ends in 2 possible ways
 the nb_transport_ call returns tlm::TLM_UPDATED

- The tlm::tlm_phase argument MUST be changed. The only valid change is to
END_* (END_REQ/END_DATA/END_RESP)

- This means the phase ends immediately. This is the equivalent of a having the
accept signal at the same time as the valid is asserted.

- This is the only legal way for an OCP phase with ThreadBusy
 The nb_transport_call returns tlm::TLM_ACCEPTED

- This DOES NOT MEAN the phase is accepted! TLM_ACCEPTED simply means
the receiver has accounted for the phase

- The tlm::tlm_phase argument MUST NOT be changed. You can assert that!
- The receiver will send a END_* phase later via

- nb_transport_bw (to end a request or data phase)
- nb_transport_fw (to end a response phase)

16 © 2014 Sonics, Inc. March 3, 2014

OCP TL1 Data Handshake Phase
BEGIN_DATA END_DATA

17 © 2014 Sonics, Inc. March 3, 2014

OCP TL1 Response Phase

BEGIN_RESP

END_RESP

18 © 2014 Sonics, Inc. March 3, 2014

Non-dataflow Transfers

 OCP interface reset (MReset_n/SReset_n) and ThreadBusy
indications have to go through the socket
 This is done with custom TLM phases AND a dedicated transaction

object stored on the socket
 Certain configurations of OCP allow combinatorial timing arcs

between the master and slave. ThreadBusy is the most obvious
example
- The modeling kit defines OCP specific sockets, with a timing contract facility
- A component declares its phase specific “timing” at elaboration time
- This facility was adapted from the channel-based OCP-IP modeling kit

19 © 2014 Sonics, Inc. March 3, 2014

Thank you

IP-XACT Support for OCP
Prashant Karandikar, Texas Instruments

OCP: The Journey Continues

Agenda

 Introduction
OCP Vendor Extension
OCP Checkers
 rtl.conf support
 IEEE1685-2014*
Confluence of IEEE1685, IEEE1666 & OCP Standards

2 © 2014 Texas Instruments March 3, 2014

OCP Configurability

Except Basic Signal Group, all other extensions are optional

M
A
S
T
E
R

S
L
A
V
E

Basic

Simple Extensions

Burst Extensions

Tag Extensions

Thread Extensions

Connection Extensions

Cache Coherency
Extensions

Sideband & Test

3 © 2014 Texas Instruments March 3, 2014

OCP Parameters

 The OCP Specification defines, for each OCP interface, a certain
number of parameters

4 © 2014 Texas Instruments March 3, 2014

OCP Specification: Constraints

 The OCP-IP Specification also defines a certain number of
constraints between parameters checking the OCP
compliancy
 Examples:

- 2.1.2: byteen can only be enabled if sdata or mdata is also
enabled

- 2.1.5: byteen is only supported when data_wdth is a multiple of
8

- 2.1.23: The burstlength_wdth must be 0 if burstlength is
disabled and must be greater than 1 if burstlength is enabled

- …

5 © 2014 Texas Instruments March 3, 2014

IEEE1685 (2009 & 2014*)

 IP-XACT standard defines IP metadata description like
interfaces, registers, bit fields in the form of an XML
schema. It provides a common and language-neutral way
to describe IP, compatible with automated integration
techniques and enabling integrators to use IP from
multiple sources with IP-XACT enabled tools.

* Yet to release
6 © 2014 Texas Instruments March 3, 2014

IP-XACT/IEEE1685 Terminology

Component

Physical
Ports

Bus
Interface

Abstraction
Definition

Logical Ports

Port Map
Bus
Definition

Additional
Terminology
- Vendor Extension

7 © 2014 Texas Instruments March 3, 2014

IEEE1685-2009 OCP Vendor Extensions

The OCP MDWG defined vendor extensions to allow the definition of
these parameters and constraints:

 busDefinition defines:
- OCP parameters (with description, type, default value and associated

assertions)
 abstractionDefinition defines:

- OCP logical ports and associated parameterized constraints:
- portPresence: constraint indicating when this logical port should be mapped in an OCP

busInterface, depending on OCP parameter value(s)
- portWidth: width constraint of this logical port, depending on OCP parameter values

 component/busInterface:
- Parameterization of OCP parameters (through standard IP-XACT busInterface

parameters)

8 © 2014 Texas Instruments March 3, 2014

OCP Logical Port Definition (in abstractionDef)

9 © 2014 Texas Instruments March 3, 2014

OCP Parameter Definition (in busDefinition)

10 © 2014 Texas Instruments March 3, 2014

OCP Parameter Assertions (in OCP parameter)

11 © 2014 Texas Instruments March 3, 2014

What happens to RTL CONF ?Support for RTL CONF to IEEE1685
Bundle/Component

RTL CONF

rtlconf2xml.tcl

Intermediate xml

xml2absdef.xsl xml2busdef.xsl xml2component.xsl

Abstraction Def
IEEE 1685

Bus Def
IEEE 1685

Component
IEEE 1685

12 © 2014 Texas Instruments March 3, 2014

IEEE1685-2009 Support for OCP

 IEEE1685 Busdef & Abstractiondef for OCP2.2, OCP3.x
 Checkers

- OCP Interface configuration Checker
- Format for OCP parameters
- Port width constraint
- Port Presence constraint
- OCP Parameter assertions

- OCP Interface Interoperability Checker
- Master – Slave connection compatibility

 rtl.conf IP-XACT conversion to support migration

One standard file per
protocol version instead

one abs/bus def per OCP
configuration

Design-time
Protocol

Checkers

Legacy Support

13 © 2014 Texas Instruments March 3, 2014

IEEE1685-2014* Enhancements

Configurable Bus Interfaces
Support for TLM2 sockets
Multiple views of a component (RTL / TLM)

* Yet to release
14 © 2014 Texas Instruments March 3, 2014

OCP

Confluence of Standards

IP-XACT
IEEE1685

SystemC / TLM2
IEEE1666

15 © 2014 Texas Instruments March 3, 2014

SystemC , IP-XACT & OCP

Virtual Platforms for
Software Development

Cycle Accurate Platforms
for Verification,
Architecture Exploration

RTL

IEEE1685 IP-XACT IEEE1666
SystemC/

TLM2

OCP

16 © 2014 Texas Instruments March 3, 2014

Platform Assembly

thin wrapper

RTL Adapter

OSCI TLM 2.0
Core

Generic
OCP-IP TLM Core

3rd-Party
OCP-IP TLM Core

TLM Network on Chip Model

OCP-IP TLM CPU OCP-IP TLM Core

RTL Core

Trace Monitor

OCP trace file

CoreCreator II (R)

User Monitor

Debugger

OCP configuration file

TLM Model of System-on-Chip for Software
Development, Verification or Architecture Exploration

Key

OCP-IP Standard
Interface

OCP-IP SystemC
Object

Also available from
OCP-IP

Assembly for multi abstraction models possible with IEEE1685-2009
Assembly for multi view (same component with multiple abstractions) would
be possible in IEEE1685-2014
17 © 2014 Texas Instruments March 3, 2014

References
 OCP 3.0 Specification
 Using OCP and Coherence Extensions to Support System-Level Cache

Coherence by Chien-Chun (Joe) Chou, Sonics, Inc.; Konstantinos Aisopos, EE Dept.,
Princeton University; David Lau, MIPS Technologies; Yasuhiko Kurosawa, Toshiba
Corporation; and D. N. (Jay) Jayasimha, Sonics, Inc

 Spirit Consortium Documents http://www.spiritconsortium.org/tech/docs/
 Viewpoint: Capture OCP systems in IP-XACT 1.4 by Stéphane Guntz

http://eetimes.eu/showArticle.jhtml?articleID=218101268&queryText=spec
 IPXACT_representation_of_OCP by Stephane Guntz (Magillem Design Services),

Christophe Amerijckx (STMicroelectronics), Pascal Chauvet /Kamil Synek (Sonics),
Prashant Karandikar (Texas Instruments),Vesa Lahtinen (Nokia), Mark Noll (Synopsys)
http://www.ocpip.org/uploads/documents/IPXACT_representation_of_OCP_20081201.pps

 OCP TLM Kit practical implementation of TLM2.0
http://iscug.in/pdf_download.php?file=1 OCP_SLD_ISCUG_2012.ppt

18 © 2014 Texas Instruments March 3, 2014

Thank you

OCP Futures
Drew Wingard, Sonics, Inc.

OCP: The Journey Continues

Current Status

 Specification of record: OCP 3.0
- New: cache coherence extensions

- Proven for both snooping and directory-based system coherence
- New: connection protocol

- Enable master and slave to vote on when to safely disconnect (e.g., for power
state changes)

 OCP 3.1 completed Member Review before Accellera transfer
- New: compliance checks for coherence extensions
- New: barrier transaction extensions
- New: parameters to specify outstanding transaction counts
- Transition from “rtl.conf” to IP-XACT for metadata
- Awaiting release under Accellera procedures

2 © 2014 Sonics, Inc. March 3, 2014

Opportunities for Future Work

 Add more performance-oriented parameters
- Minimum, maximum latency
- Minimum, maximum throughput
- Focus: enabling automated system analysis and formal verification
 Create a serialized version of OCP

- Share signals between address/command and data
- Keep same protocol semantics at transaction level
- Provide better support for NoCs & 3D packages
 Add power control interface

- Standardize power state control signaling
- Include power management handshaking
 If interested to participate, please contact me via Accellera:

ocp_specification-wg-chair@lists.accellera.org

3 © 2014 Sonics, Inc. March 3, 2014

Summary

Open Core Protocol is the original, IP core-centric
interface socket
The high configurability of OCP allows it to span from

very simple interfaces up through very complex ones,
with many steps in between
Excellent commercial IP and verification support exists

for OCP from major EDA and IP suppliers
OCP has strong support for Accellera TLM and IP-XACT

standards

4 © 2014 Sonics, Inc. March 3, 2014

Thank you

	1 Intro to OCP - deleted hidden slides to fix numbering
	2 verification
	3 tlm-20-support
	4 ipxact support
	5_futures

