
Requirements-driven Verification Methodology
(for Standards Compliance)

Mike Bartley, TVS

Next Generation Design and Verification Today

2

Agenda

 Motivation
- Why Requirements Driven Verification?

 Introduction to Safety
- The Safety Standards
- What do we need to do? And deliver?

 Supporting Requirements Driven Verification with Advanced
Verification Techniques

 Tool Support

 Advantages of Requirements Driven Verification

3

An Overview of Verification Approaches

Metric Driven Verification

Directed
Testing

Coverage
Driven
Verification

Constrained
random

verification Feature
Driven

Verification

Assertion-
based

verification
Formal

property based
verification

4

Why Requirements Driven Verification?

 Metric Driven Verification
- Allows us to define targets
- And monitor progress

 Coverage Driven Verification
- Most common metric driven verification approach
- Code Coverage
- Functional coverage

- Might be related to features

 Feature Driven Verification
- Features MIGHT be related to spec

- Is that relationship captured?

- Are features related to requirements?

The metrics can become
the end rather than the
means to the end

How often have do you
chase a coverage goal
with limited ROI?

Shouldn’t everything we do be related to a requirement?

5

Sequential Development Flow

Product Reqs

System Spec

Unit Build

Unit Spec Unit Verif
Spec Unit Verif

Integration
Verif Spec

System
Verif Spec

Requirements
Verif

Requirements
Verif Spec

Integration
Verif

System Verif

Static Analysis

6

Shift-Left “Sequential” Development Flow

Product Reqs

System Spec

Unit Build

Unit Spec Unit Verif
Spec Unit Verif

Integration
Verif Spec

System
Verif Spec

Acceptance
VerifRequirements

Verif Spec

Integration
Verif

System Verif

Static Analysis

Should we
consider
iterative
flows?

7

Safety Standards

 IEC61508: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related
Systems
 DO254/DO178: Hardware/Software considerations in airborne

systems and equipment certification
 EN50128: Software for railway control and protection systems
 IEC60880: Software aspects for computer-based systems

performing category A functions
 IEC62304: Medical device software -- Software life cycle

processes
 ISO26262: Road vehicles – Functional safety

8

Introduction to Safety

The life cycle processes are identified

Objectives and outputs for each process are
described
- Objectives are mandatory
- But vary by Integrity Level
- For higher Integrity Levels, some Objectives
require Independence

9

Key Elements

Plans & Standards
Requirements
Design Specifications
Reviews and Analyses
Testing (against specifications)

- At different levels of hierarchy
- Test Coverage Criteria
- Requirements Traceability
- Independence

10

Key Deliverables

 Hardware Verification Plan
 Validation and Verification Standards
 Hardware Traceability Data
 Hardware Review and Analysis Procedures
 Hardware Review and Analysis Results
 Hardware Test Procedures
 Hardware Test Results
 Hardware Acceptance Test Criteria
 Problem Reports
 Hardware Configuration Management Records
 Hardware Process Assurance Records

11

Requirements Engineering Definitions
Requirement:

1. A condition or capability needed by a user to solve a problem or achieve an objective
2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification or other formally imposed
documents

3. A documented representation of a condition or capability as in (1) or (2)
[IEEE Std.610.12-1990]

Stakeholder*:
 A stakeholder of a system is a person or an organization that has an (direct or indirect)

influence on the requirements of the system

Requirements Engineering:
 Requirements engineering is a systematic and disciplined approach to the specification

and management of requirements with the following goals:
1. Knowing the relevant requirements, achieving a consensus among the Stakeholders about

these requirements, documenting them according to given standards, and managing them
systematically

2. Understanding and documenting the stakeholders’ desires and needs, then
specifying and managing requirements to minimize the risk of delivering a system
that does not meet the stakeholders’ desires and needs

* All Definitions taken from IREB

12

Requirements Engineering

13

Variants, Reuse & Communication

14

Issues

Conflicts

Comprehension

15

Data Integrity

16

Requirement

Atomic Sub
requirement

Atomic sub
requirement

Top level
test plan

Grouped
sub plan

Atomic
test plan

Atomic
test plan

Single
sub plan

Atomic
test plan

?

19

Functional Hazard

Function
- What function ensures requirement is achieved

Functional Failures
- No Function

- HAZARD : Doesn't do what its designed to

- Incorrect Function
- HAZARD : Incorrectly does an incorrect function

Situational Analysis
- Usage situation - when is it likely to happen
- People at risk – who can be hurt by a failure

20

Lane Keeping assistant example
Identify hazards

Hazard : Doesn’t stay in lane
Situation : Unintended lane change
UID : 123
Severity : S3
Rationale : Unintended change due to speed at which the

system is active or required may be life
threatening to multiple parties

Exposure : E4
Rationale : Possibility of occurrence over any frequency or

duration of travel in car
Control : C3
Rationale : May be required override for danger situation -

short time scale to consider appropriate other
actions and system not reacting to request

ASIL : ASIL D

Hazard Level Analysis

21

Safety Requirements

Safety goal

The Drivers and other road users shall not be exposed to
unreasonable risk due to unintended lane change

Safe State

The Vehicle shall remain in the lane in which they intended

Functional goal

Avoid Undemanded Steering

Functional Safety Requirement
System shall detect excessive motor torque

22

Requirement Quality Gateway

• Requirements are expensive
- ROI
- Quality Criteria :

- Unambiguous
- Testable (verifiable)
- Clear (concise, terse, simple, precise)
- Correct
- Understandable
- Feasible (realistic, possible)
- Independent
- Atomic
- Necessary
- Implementation-free (abstract)

• How do we check for quality
- Boilerplates
- Manual inspection (review)
- model rule checker (if model based)

Shift left

23

Considerations

 Requirements stages

 Data management

 Where to store/communicate

 Change management

 Visualisation

 Process/Flow

 Communication

 How to prove

24

IP2 Simulations

SOC
Simulations

Assertions

Requirements Driven Verification And Test

Requirements Engineering Flow

Parameteric
testing

Manual
review Directed

testing Formal
testing

IP1 Simulations

Functional
coverage

Structural
coverage

Test scripts

Integration
testing

Where?
Pass?
Metadata?

25

Variant Management

Requirements Database

Variant x
xml

Variant x
asureSgn

Variant y
xml

Variant z
xml

Variant a
xml

Copy of
Variant x

asureSgn

Variant y
asureSgn

Partial import of
just top-level
requirements

Import of
feature level
requirements

Complete import
include all
mappingRefine

& map

Becomes

27

Supporting Advanced Verification

 Constrained random verification with automated checks based on models
or scoreboards, etc.

 Coverage driven verification based on functional coverage models and
code coverage metrics.

 Assertion-based verification.

 Formal property based verification.

28

Supporting Advanced Verification

29

Tracking

Metrics can be:
• From HW verification
• From Silicon validation
• From SW testing

Req1 Feat1 Feat1.1 Goal1 Metric1
Metric2
Metric3

Feat1.2 Goal2

Feat2Req2 Metric6

75%
50%
0%

Metric4
Feat1.3 Goal3

Goal4
Metric5

30

Track Progress on Requirements Signoff

31

Supporting Hierarchical Verification

 A requirement might be signed off at multiple levels of hierarchy during
the hardware development
- Block
- Subsystem
- SoC
- System

- Including Software

- Post Silicon

32

Tool Support Requirements

 Requirements -> test plan

 Data Integrity, hierarchy, data translation

 Change management – instant update

 Live database

 Tailored Documented proof

 Allows reviews of implementation document against test plan

 Mapping

 Test management

 Compliance / Audit Management

33

asureSIGN Dataflow

34

asureSIGNTM Solution Built on UCIS

Requirements Engineering Flow

UCDB

XML

UCIS

LOG

asureVIEWTM

Map

Analyse

Compare

Translate

Identify

Thank you!

Using UCIS to Combine Verification Data
from Multiple Tools

Mike Bartley, TVS

Next Generation Design and Verification Today

2UCIS Technical Committee

 Verification is hard
- <insert standard slide: 70+%, increasing complexity, yadda, yadda, yadda>

 Variety of verification techniques and methods
- Directed and constrained-random simulation
- Formal verification
- Testbench methodologies

Motivation for UCIS

Code
Coverage

Conditional
Coverage

Formal
Verification
Coverage

• What coverage overlaps?
• What coverage is missing?

Functional
Coverage

3UCIS Technical Committee

 Verification is hard
- <insert standard slide: 70+%, increasing complexity, yadda, yadda, yadda>

 Variety of verification techniques and methods
- Directed and constrained-random simulation
- Formal verification
- Testbench methodologies

 Design and verification engineers need coverage metrics:
- What has been checked, what remains to be checked?
- How many engineers do we need?
- How much time do we need?
- Where best to direct verification resources?
- What is the best tool or method to efficiently cover problem areas?

Motivation for UCIS

4UCIS Technical Committee

Unified Cases and Data Flow
 Generate

- Single verification run, single/multiple
coverage types

- Multiple verification runs

 Access
- Using UCIS Application

Programming Interface (API)
- Using Interchange Format (XML

Interchange Format)

 Analyze
- Report unhit coverage points
- Track progress of coverage over

time

 Merge
- Across runs, components, tools

interchange file Unified Coverage
Database

Simulation Static Checks Formal
Verification

Emulation

Report generation RTL Annotation Test plan update

UCIS API

UCIS API

Coverage producers

Coverage consumers

UCIS file
(.ucd + .ucm)

UCIS OPEN

UCIS Library

mySQL DBasureSign

Open the Coverage DB

Start Reading the DB

ucisT db =
ucis_Open(string_pointer_to_db_name);

UCIS file
(.ucd + .ucm)

UCIS CALL BACK

UCIS Library

mySQL DBasureSign

Traverse the Coverage DB,
using Callback mechanism

Master Function

ucis_CallBack(db, NULL,
master_function_to_be_called_back, NULL);

UCIS file
(.ucd + .ucm)

UCIS CALL BACK

UCIS Library

mySQL DB
asureSign

Traversal of Coverage DB,
scans the Data based on
reasons

UCIS reasons for Callback
• INITDB: Start of DB, apply

initial settings
• DU: Design unit scope
• TEST: Test data history object
• SCOPE: Scope object
• CVBIN: Cover item
• ENDSCOPE: Scope end

including design units
• ENDDB: End of DB

Defined Reasons in Callback
area

UCIS file
(.ucd + .ucm)

UCIS CALL BACK

UCIS Library

mySQL DB

asureSign

Cover Items captured on the
basis of Design and Scope

TOGGLE BRANCH EXPR
COND INSTANCE PROCESS
COVERGROUP COVERINSTANCE COVERPOINT

CROSS COVER ASSERT
INTERFACE FSM DU_MODULE
DU_ARCH DU_PACKAGE DU_PROGRAM

PROGRAM PACKAGE TASK
BLOCK FUNCTION FORKJOIN
GENERATE GENERIC CLASS
DU_INTERFACE FSM_STATES FSM_TRANS

COVBLOCK CVGBINSCOPE

Cover Items captured based on
Classification Criteria

TOGGLE BRANCH EXPR
COND INSTANCE PROCESS
COVERGROUP COVERINSTANCE COVERPOINT
CROSS COVER ASSERT
INTERFACE FSM DU_MODULE
DU_ARCH DU_PACKAGE DU_PROGRAM
PROGRAM PACKAGE TASK
BLOCK FUNCTION FORKJOIN
GENERATE GENERIC CLASS
DU_INTERFACE FSM_STATES FSM_TRANS
COVBLOCK CVGBINSCOPE

Classification
Criteria:

• Design Unit
• HDL Scope
• Cover Scope

• Functional
• Structural
• Assertion

Cover Items captured based on
Classification Criteria

TOGGLE BRANCH EXPR
COND INSTANCE PROCESS
COVERGROUP COVERINSTANCE COVERPOINT
CROSS COVER ASSERT
INTERFACE FSM DU_MODULE
DU_ARCH DU_PACKAGE DU_PROGRAM
PROGRAM PACKAGE TASK
BLOCK FUNCTION FORKJOIN
GENERATE GENERIC CLASS
DU_INTERFACE FSM_STATES FSM_TRANS
COVBLOCK CVGBINSCOPE

Classification Criteria:
• Design Unit

• asureSign only
uses instance
and module
coverage

• HDL Scope
• Cover Scope

• Functional
• Structural
• Assertion

Based on Kind tool captures:
• Individual Cover Items
• Aggregated Cover Items

Based on Kind tool captures:
• Individual Cover Items
• Aggregated Cover Items

Information

• Coverage Kind
• Coverage Name
• Simulation Path
• File name
• Design Type
• Line Number
• Hits

G
et

 S
tri

ng
 P

ro
pe

rty
G

et
 H

an
dl

e
Pr

op
er

ty
G

et
 S

co
pe

 T
yp

e
G

et
 In

te
rn

al
 In

tP
ro

pe
rty

G
et

 S
co

pe
 S

ou
rc

e
In

fo
G

et
 In

tP
ro

pe
rty

G
et

 F
ile

 N
am

e
G

et
 C

ov
er

 D
at

a
So

ur
ce

 It
er

at
e

So
ur

ce
 S

ca
n

Fr
ee

 It
er

at
or

U
C

IS
 L

ib
ra

ry

UCIS file
(.ucd + .ucm)

Information Captured for each
Cover Items using Library

UCIS file
(.ucd + .ucm)

UCIS Close

UCIS Library

mySQL
DB

asureSign

•Record 1
•Record 2
•Record 3
•Record 4
•.
•.
•.
•.Record n

Captured information is passed
to DB in form of Records

Data
Analyser

- Analyser
- Filter

- Merger
- Writer

asureSign

• Requirements
• Features

• Goals

asureSign uses
Captured Data
from all sources,
and relates it to
Requirements via
Features and
Goals

mySQL
DB

14

Advantages of Requirements Driven Verif

 Requirements Management

 Verification Management

 Project Management

 Impact Analysis

 Product Line Engineering

 Variant Management

 Improved Product Sign-Off

15

Conclusions #1
 Requirements Driven Verification

- Compliance to various hardware (and software) safety standards
- IEC61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
- DO254/DO178: Hardware/Software considerations in airborne systems and equipment certification
- EN50128: Software for railway control and protection systems
- IEC60880: Software aspects for computer-based systems performing category A functions
- IEC62304: Medical device software -- Software life cycle processes
- ISO26262: Road vehicles – Functional safety

- And ….
- Identify test holes and test orphans
- Track the status of the whole verification effort (planning, writing, execution)
- Build historical perspective for more accurate predictions
- Better reporting of requirements status
- Risk-based testing
- Prioritisation and Risk Analysis
- Filtering Requirements based on Customers and releases
- Impact and conflict analysis

16

Conclusions #2

 Advanced verification techniques can be deployed in Requirements
Driven Verification
- Requirements engineering tools to capture the verification plan & mapping
- Verification management tools to automate collection of results

 More info
- CRYSTAL http://www.crystal-artemis.eu/
- White Paper http://www.testandverification.com/wp-content/uploads/tvs-white-

paper-asureSIGN.pdf

http://www.crystal-artemis.eu/

Thank you!

UVM REG: Path Towards Coverage
Automation in AMS Simulations

Kyle Newman, Texas Instruments

Next Generation Design and Verification Today

2

Agenda

UVM REG Overview

Automated UVM REG Generation

UVM REG Support Tasks

What are Phantom Coverage Registers (PCRs)?

PCR Testbench Architecture

PCR Usage in Mixed Signal Simulation Environment

Simulation and Coverage Results Examples

Conclusion

Discussion and Feedback

3

UVM_REG Components

• Set of UVM (System Verilog) register class library
• Register specification spreadsheet
• Automatic generation utilities for creation of UVM register environment
• Provides models for all registers including functional coverage
• Provides all APIs needed to access register model and easily interface to the DVE
• Includes a set of built-in sequences to do basic tests on all registers

Register
Specification

Automated
Generation

Utility

DUT Specific
UVM Register

Classes including
Coverage

DUT / DVE

Register Model

PCR UVM
Register
Classes

including
Coverage

UVM
Sequence

UVM Class
Libraries

4

Automated UVM REG Generation

IP-XACT File
(xml)

Automated
Extract Utility

gen_xml.pl

UVM_REG
Classes

DUT & PCR
REGISTER

MODEL

• An individual uvm_reg class is
created for each register

• Each field is modeled with the
specified access RW, RO …

• Functional covergroup is created
for each register field

• A register model is also created
that mirrors the DUT registers and
models PCR registers

• The register model implements all
APIs necessary to read, write and
check each register

NAME DESCRIPTION ADDRESS SIZE ACCESS RESET(VALUE) RESET(MASK) FIELDNAME FIELDOFFSET WIDTH
FIELD

ACCESS
FIELD
NAME

FIELD
OFFSET WIDTH FIELDACCESS

REG_1 GLOBAL 0x01 8 RW 0x00 0xFF CMD 0 8 RW

PCR_FSM FSM 0x10 8 RW 0x00 0xFF STATE 0 8 RW

PCR_BG_ASSERT BANDGAP_ASSERT 0x20 5 RW 0x00 0x1F VALID 4 1 RO TRIM 0 4 RW

5

UVM REG Support Tasks
Task Purpose
write() / read() Write or read value to DUT through register interface BFM

set() / get() Zero time access to set or get desired value from the register model

peek() / poke() Zero time backdoor access to get or set DUT register value using
specified hdl path

Peek and Poke are the only tasks
needed for “Phantom Coverage Registers”

6

What are Phantom Coverage Registers (PCRs)?

Phantom Coverage Registers (PCRs) are design
verification “only” registers for coverage collection and
dynamic stimulus generation

Coverage is automatically collected when peek()/poke()
accesses are done on PCRs

Using peek()/poke() accesses on PCRs in zero time,
important DUT (analog & digital) signals can be monitored
for DV

PCR registers are not HW registers but require an
hdl_path to be defined to each bit in the PCR as design
verification registers

7

What are Phantom Coverage Registers (PCRs)? (Cont.)

Unique hdl_paths for each PCR bit provides an extremely
flexible yet simple methodology for collecting coverage
data

PCRs are defined in Excel spreadsheet which allows for
easy management and quick automatic regeneration of the
SV code

PCR bits can represent state of a particular electrical/digital
node in the DUT or even a Pass/Fail status from a
testbench checker or assertion (PSL or SV)

Status bits in PCRs can be accessed or polled by testcases
for automatic stimulus adjustment based on DUT state

8

PCR_BG_ASSERT

PCR_block1

PCR Testbench Architecture

// Register definition
class PCR_BG_ASSERT_type extends uvm_reg;
rand uvm_reg_field VALID;

covergroup wr_cg;
option.per_instance=1;
VALID : coverpoint VALID value[0:0];

endgroup

virtual function void sample(uvm_reg_data_t data, byte_en,

bit is _read, uvm_reg_map map);
super.sample(data, byte_en, is_read, map);
if(!is_read) wr_cg.sample();

endfunction

endclass : PCR_BG_ASSERT_type

class rf_type extends uvm_reg_block;
// Automatic SV code from generator

endclass : rf_type

Coverage Data
Testcase Checkers Analog

Assertions
Digital

Assertions

PCR_block2

PCR_blockn

ZERO TIME

Auto Generated
PCR Access and
Coverage Code

9

Benefits of PCR Methodology

PCR
Benefits

• Leverages UVM REG Methodologies
• PCRs defined in excel spreadsheetsReuse

Coverage

• Early coverage metrics available
• Secondary Cross Coverage (e.g. A/D, D/A)
• Grouping of related assertions

Internal
Node

Visibility

• HDL paths can be maintained in
spreadsheets matching design hierarchy

• Test suite independent of HDL paths

Dynamic
Stimulus

Generation

• Test stimulus can be modified realtime
based on feedback from the PCRs for
corner case testing

10

Band Gap Testbench Example

BANDGAP

This band gap reference has a 4 input trim that with a 10mV range to vary VREF from 1.25V to 1.40V.

power
supply

vunit

Verilog AMS
Testbench

vddgnd
Register Control

Environment

UVM Env

PSL
Assertions

Register Model

UVM Test

PCR_BG_ASSERT
BG_TRIM [3:0]

BG_VALID

BG_VREF

Dynamic
Stimulus

Generation

Iref

This example illustrates how to use the PCR methodology to verify a simple band gap voltage reference.

11

Stimulus and Coverage Test Cases Example

class bg_test extends uvm_test;
uvm_status_e status;
uvm_reg regs[$];
bit [7:0] rval; bit [7:0] data;

top_env env;

…. Standard UVM overhead …
task run_phase(uvm_phase phase);
super.run_phase(phase);

phase.raise_objection(this);
// Set HDL path for backdoor register access
env.reg_model.rf.set_hdl_path_root("tb_top.dut");

// Set PCR_BG_ASSERT HDL Path
env.reg_model.rf.PCR_BG_ASSERT.add_hdl_path('{ '{"BG_TRIM", 0, 4},

'{"BG_VALID", 4, 1} });

env.reg_model.rf.PCR_BG_ASSERT.set_coverage(UVM_CVR_REG_BITS);

for(int trim=0;trim<=15;trim++) begin
env.reg_model.rf.PCR_BG_ASSERT.poke(status, trim);
#10ns; // Allow time for BG output to stablize
env.reg_model.rf.PCR_BG_ASSERT.peek(status, rval);
env.reg_model.rf.sample_values();
#1us;

end

phase.drop_objection(this);
endtask:run_phase

endclass:bg_test

This code represents
the basic test case
methodology for
sampling or
depositing data in the
PCR for coverage
collection and
stimulus generation
using UVM REG zero
time access tasks.

Requires
uvm_status

and data
declaration

hdl_path
defined for PCR

data

Stimulus generation
performed via “poke()” and

coverage collected via
“peek()” and

“sample_data()” PCR
tasks

class bg_test extends uvm_test;
uvm_status_e status;
uvm_reg regs[$];
bit [7:0] rval; bit [7:0] data;

top_env env;

…. Standard UVM overhead …
task run_phase(uvm_phase phase);
super.run_phase(phase);

phase.raise_objection(this);
// Set HDL path for backdoor register access
env.reg_model.rf.set_hdl_path_root("tb_top.dut");

// Set PCR_BG_ASSERT HDL Path
env.reg_model.rf.PCR_BG_ASSERT.add_hdl_path('{ '{"BG_TRIM", 0, 4},

'{"BG_VALID", 4, 1} });

env.reg_model.rf.PCR_BG_ASSERT.set_coverage(UVM_CVR_REG_BITS);

for(int trim=0;trim<=15;trim++) begin
env.reg_model.rf.PCR_BG_ASSERT.poke(status, trim);
#10ns; // Allow time for BG output to stablize
env.reg_model.rf.PCR_BG_ASSERT.peek(status, rval);
env.reg_model.rf.sample_values();
#1us;

end

phase.drop_objection(this);
endtask:run_phase

endclass:bg_test

Requires
uvm_status

and data
declaration

12

Band Gap Under Test

Notice that assertion failed for
BG_TRIM = 9, 10, 14 and 15

13

Band Gap Under Test with PCR

PCR also captures assertion failure,
but now allows secondary

cross coverage to be collected between
BG_TRIM and BG_VALID signals!

14

Simulation Results Log File

UVM_INFO@10100000: reporter [RegModel] Poked register "reg_model.rf.PCR_BG_ASSERT": 'h0000000000000001

UVM_INFO@10200000: reporter [RegModel] Peeked register "reg_model.rf.PCR_BG_ASSERT": 'h0000000000000011

UVM_INFO@20200000: reporter [RegModel] Poked register "reg_model.rf.PCR_BG_ASSERT": 'h0000000000000002

UVM_INFO@20200000: reporter [RegModel] Peeked register "reg_model.rf.PCR_BG_ASSERT": 'h0000000000000012

UVM_INFO@101000000: reporter [RegModel] Poked register "reg_model.rf.PCR_BG_ASSERT": 'h000000000000000a

ncsim: *E,ASRTST (../tb/vunit.pslvlog,11): (time 10100 NS) Assertion tb_top.dut.BG_VREF_ERROR has failed BG VREF FAILURE

UVM_INFO@101100000: reporter [RegModel] Peeked register "reg_model.rf.PCR_BG_ASSERT": 'h000000000000000a

BG_TRIM value poked into bits 0-3 of PCR

“Peek” reads back 1’b1 in bit 4 indicating BG output is valid

Assertion Fails and “Peek” reads back 1’b0
in bit 4 indicating BG output is invalid

15

Dynamic Stimulus Generation

BG_VALID signal is used to adjust
current reference when failure occurs BG_VREF now passes where it

previously failed without
Dynamic Adjustment!

16

Coverage Collection

By creating a single PCR that contains both BG_TRIM and BG_VALID, cross coverage
can be collected by adding a cross statement to the auto generated coverage code.

PCR_BG_ASSERT
BG_VALID BG_TRIM

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

covergroup wr_cg;
TRIM : coverpoint TRIM.value[3:0];
BG_VALID : coverpoint BG_VALID.value[0:0];
CROSS_TRIM_BG_VALID: cross TRIM, BG_VALID;

endgroup

Cross coverage statement added
to auto generated coverage code.

BG_VALID coverage is updated
when sample_data() is called in

PCR_BG_ASSERT PCR

Auto Generated
Covergroup

17

PCR Cross Coverage Results

0% coverage buckets correlate with
Simulation Failures!

18

Conclusion

PCRs can be created in the design planning stage which
provides early and accurate coverage metrics

PCRs allow for easier management of assertion based
coverage collection

PCRs leverage existing DV methodologies to make them
more efficient and reusable

PCRs allows Dynamic Stimulus Generation for critical
corner case generation

19

Contributors

• Asad Khan (MGTS)
• Ravi Makam
• Zhipeng Ye
• Jonathan King
• Paul Howard

All the Business Unit folks who got us to this point!

Thank you!

New Developments in UPF 3.0

Erich Marschner, Vice-Chair, IEEE P1801 WG

Next Generation Design and Verification Today

2

P1801: IEEE-SA Entity Based Work Group

© 2014 ARM Ltd

3

IEEE 1801 (UPF) timeline

20162009 2010 2011 2012 2013 20142006 2007 2008 2015

UPF-1.0
Donated
to IEEE

IEEE1801-2009
(AKA UPF-2.0)

Published

UPF-1.0
Kick off
Meeting

Accellera
UPF-1.0

Published

New Project
Revision of
1801-2009

1801-2013
(AKA UPF-2.1)

Published

CPF-2.0
Donated
to IEEE

1801a-2014
(AKA UPF-2.2)

Published

New Project
Amendment of

1801-2013

1801-2015
(AKA UPF-3.0)

Planned

New Project
Revision of
1801-2013

4

Agenda

Successive Refinement
- Elaborating the UPF 2.0 Concept

Power State Definition and Refinement
- Power State Definition with add_power_state
- Power State Composition

Component Level Power Modeling
- Power States and Power Consumption Functions

UPF 1.0 Design Flow
 RTL is augmented with UPF

- To define power management architecture

 RTL + UPF verification
- To ensure that power architecture completely

supports planned power states of design
- To ensure that design works correctly under

power management

 RTL + UPF implementation
- Synthesis, test insertion, place & route, etc.
- UPF may be updated by user or tool

 NL + UPF verification
- Power aware equivalence checking, static

analysis, simulation, emulation, etc.

UPF

UPF

UPF

Si
m

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Netlist

Synthesis

Netlist

Place & Route

RTL

5

UPF 1.0 Flow Issues
 Power Aware Verification requires complete

supply distribution network
- Supplies determine when each power domain

is on (normal) or off (corrupted)

 Supply networks are not defined
until system implementation

- Part of integrating the whole system together

 So power aware verification cannot begin
until implementation is specified

- Limits how much the schedule can be
shortened by parallel development

- Must be redone entirely if the design is
retargetted to a different technology

 And debugging power management issues
becomes more difficult

- Is a failure due to
- Incorrect implementation?
- A power management architecture flaw?
- Misuse of an IP block?
- Some combination of the above?

UPF

UPF

UPF

Si
m

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Netlist

Synthesis

Netlist

Place & Route

RTL

6

UPF 1.0 Power Intent Specification
 Power Domain definitions

- elements
- supply connections

 Supply Ports and Supply Nets
- and their connections

 Power Switches
- supply connections
- control inputs

 Isolation Strategies
- clamp values
- supply connections
- control inputs

 Level Shifting Strategies
- supply connections

 Retention Strategies
- supply connections
- control inputs

 Port States
- states
- voltages

 Power State Tables (PSTs)
- combinations of port states

UPF

IP Usage Requirements

Power Mgmt Architecture

System Implementation

All of these are
intermingled in a

UPF 1.0 file

And IP Usage
Requirements are

minimal

7

Constraint
UPF

Solution: Partition UPF into Layers
 IP Usage Requirements

- For any given IP block,
- How can this IP be used in a power-managed design?
- What must the design ensure so the IP block can function

correctly?

 Power Management Architecture
- For each IP instance in the design,

- What power states will it be in?
- What state will be retained?
- What ports will be isolated
- What control logic will be involved?

 System Implementation
- For the system as a whole,

- What technology will be used?
- What does this imply about voltages, level shifters, and

isolation cell locations?
- How will power be supplied to the system?

These three can be
separated in

UPF 2.0

IP Usage
Requirements are
covered in UPF 2.0

Configuration
UPF Implementation

UPF

+ +

8

9

Successive Refinement of Power Intent

IP Provider:
 Creates IP source

 Creates low power
implementation
constraints

IP Licensee/User:
 Configures IP for context

 Validates configuration

 Freezes “Golden Source”

 Implements configuration

 Verifies implementation
against “Golden Source”

RTL

Constraint
UPF

+
Configuration
UPF

+

Implementation
UPF

+

Implementation
UPF

Implementation
UPF

Si
m

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Netlist

Synthesis

Netlist

P&R

Soft IP Golden Source

IP Creation1 IP Configuration2 IP Implementation3

RTL
Constraint

UPF

RTL
Constraint

Configuration
UPF

© 2013 ARM Ltd

10

UPF Command Layers
 Constraint UPF

— Atomic power domains
— Clamp value requirements
— Retention requirements
— Fundamental power states
— Legal/illegal states/transitions

 Configuration UPF
— Actual power domains
— Additional domain supplies
— Additional power states
— Isolation and Retention strategies
— Control signals for power mgmt

 Implementation UPF
— Voltage updates for power states
— Level Shifter strategies
— Mapping to Library power mgmt cells
— Location updates for Isolation
— Supply ports, nets, switches, and sets
— Port states and Power state tables

 Constraint Commands
— create_power_domain
— set_port_attributes
— set_design_attributes
— set_retention_elements
— add_power_state
— describe_state_transition

 Configuration Commands
— create_composite_domain
— create_power_domain -update
— add_power_state -update
— set_isolation
— set_retention
— create_logic_port
— create_logic_net
— connect_logic_net

 Implementation Commands
— add_power_state -update
— set_level_shifter
— map_retention
— use_interface_cell
— set_isolation -update
— create_supply_port
— create_supply_net
— create_power_switch
— create_supply_set
— associate_supply_set
— add_port_state
— create_pst, add_pst_state

UPF 1.0

UPF 2.0

11

IP

constraint
UPF

IP

constraint
UPF

IP1

IP1

constraint
UPF

Incremental Verification

IP1

Power Mgmt
Architecture

configuration
UPF

IP2 IP3

System

implementation
UPF

Power Aware
Verification

IP1 IP2 IP3

Power Aware
Verification

State-Based
(Logical) Voltage-Based

(Electrical)
Technology
Independent Technology

Dependent

…

12

Agenda

Successive Refinement
- Elaborating the UPF 2.0 Concept

Power State Definition and Refinement
- Power State Definition with add_power_state
- Power State Composition

Component Level Power Modeling
- Power States and Power Consumption Functions

13

What is a “Power State” ?
A named set of object states
 Each state has a

“defining expression”
 It refers to values of the

object’s “characteristic
elements”

 Some characteristic elements
may be don’t cares for a
given state

 Multiple object states
may satisfy the defining
expression

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A==1’b0
&&

B==1’b0

(A xor B)
==1’b1

A==1’b1
&&

B==1’b1

don’t
cares

S1

S2

S3

14

Power States as Sets

 Largest set = all possible object states
 Some of these states are legal states
 Subsets represent “more specific”

(or more refined) power states
 Refinement creates subsets by adding

more conditions to satisfy
 The innermost subset containing a given

object state represents the most specific
power state of that object

 Supersets represent “more general”
(or more abstract) power states

 Non-overlapping subsets represent
mutually exclusive power states

 Subset containment implies non-mutex
power states (subset => superset)

Possible State Space

15

Power State Definition Rules

You can:
 Define (legal) states
 Define explicitly illegal states
 Specify -complete to make

undefined states illegal
 Define Definite subset states

(existing state AND new condition)
 Define Indefinite superstates

([X]OR of existing states)
 Mark existing legal states illegal

You cannot:
 Create legal states in illegal state

space
 Define superstates that are the

AND of two or more existing states

Possible State Space

16

Applying These Concepts

 Same level states must be mutually exclusive
 Superstates contain (overlap) substates - non-mutex
 These principles allow state partitioning, hierarchical refinement

{All States}

Sleeping Soft Off

S1 S2 S3 S4
G0: Working

S0: Awaymode
G1: Sleeping

S1: Power on Suspend
S2: CPU off
S3: Standby
S4: Hibernation

G2: Soft Off
G3: Mech. Off

Working Mech Off

S0

Mutex

more abstract

more refined

name Fundamental Power States
name Refined Power States (Substates)

{All States} represents the set of all possible states;
the fundamental states are subsets of {All States}

Mutex

17

Defining Hierarchical Power States
add_power_state -model CPU

-state {UP -logic_expr {…} } \
-state {UP.ACTIVE -logic_expr {…} } \
-state {UP.ACTIVE.P0 -logic_expr {…} } \
-state {UP.ACTIVE.P1 -logic_expr {…} } \
-state {UP.ACTIVE.P2 -logic_expr {…} } \
-state {UP.IDLE -logic_expr {…} } \
-state {UP.CLKGATED -logic_expr {…} } \
-state {DOWN -logic_expr {…} } \
-state {DOWN.RET -logic_expr {…} }

UNDEFINED

ERROR

UP DOWN

ACTIVE IDLE CLKGATED RET

P1 P2P0

CPU

State if Mutex
Requirement is
Not Satisfied

Represents “All
Other States”

18

Agenda

Successive Refinement
- Elaborating the UPF 2.0 Concept

Power State Definition and Refinement
- Power State Definition with add_power_state
- Power State Composition

Component Level Power Modeling
- Power States and Power Consumption Functions

Power State Dependencies
 Instance

— Functional modes as power states
— Based on module states

 Module
— Functional modes as power states
— Based on component states, control inputs

 Composite Domain
— Functional modes as power states
— Based on subdomain states, control inputs

 Power Domain
— Operational modes as power states
— Based on supply set states, control inputs

 Supply Set
— Supply function combinations as power

states
— Based on individual supply function

electrical states (and voltages), clock
frequency, control inputs

 Supply Function
— Electrical states/voltages as power states
— Based upon supply net/port states/voltages
— Determined also by supply_on/off calls from

testbench (for unassociated supply sets)

 Supply Net
— Electrical states/voltages as power states
— Based upon supply net/port states/voltages
— Determined also by supply net resolution (for

resolved supply nets)

 Supply Port
— Electrical states/voltages as power states
— Determined by supply_on/off calls from

testbench (for primary supply inputs)
— Determined also by power switches

(for switch output ports)
— NOT based on port state definitions

– no way to refer to them today

Named power states (add_power_state)
Supply states (supply_net_type values)

19

Power State References
 Supply Set power states

— can refer to SS function supply states

 Power Domain power states
— can refer to supply set power states

 Composite Domain power states
— can refer to subdomain power states

and/or supply set power states

 Group power states
— can refer to power states of any object

at or below the same scope

 Module power states
— can refer to power states of any object

at or below the module scope

 Instance power states
— inherit (upwards) power states of the

instantiated module
— can override legality of a power state

for a given instance (make a legal state
illegal)

Instance

Module

Group

Composite Domain

Power Domain

Supply Set

SS function

Instance

* not showing supply refs to ports/nets or control conditions

Implementation
oriented

(useful for power intent)

Architecture
oriented

(useful for SLP)

20

21

Power State Composition
 Fundamental power states of a given object are mutually exclusive
 Power states of two different objects are by default independent

— All combinations of the legal states of each are legal

 An object that consists of other objects can
— Define named combinations of the states of its component objects

– Some of these are fundamental power states and therefore must be mutex
— Mark a named combination of component objects states as illegal
— Mark the set of named combinations as complete - which makes all others illegal
— In particular:

– supply set states define named combinations of supply set function (supply) states
– domain states define named combinations of the domain’s supply set states
– composite domain states define named combinations of the subdomain states

 An object that contains other objects can do the same (UPF 3.0)
— In particular:

– group power states name combinations of states of objects at/below the group scope
– module power states name combinations of states of objects in/below the module scope

– module states become instance states when the module is instantiated

 A legal module state can be marked illegal for a given instance

22

Example

o1 o2 …
S0 … … …
S1 … … …
S2 … … *

M1 oN
…
*
*

o1 o2 …
S0 … … …
S1 … … …
S2 … … *

M2 oN
…
*
*

o1 o2 …
S0 … … …
S1 … … …
S2 … … *

M3 oN
…
*
*

o1 o2 …
S0 … … …
S1 … … …
S2 … … *

I1 oN
…
*
*

o1 o2 …
S0 … … …
S1 … … …
S2 … … *

I2 oN
…
*
*

o1 o2 …
S0 … … …
S1 … … …
S2 … … *

I3 oN
…
*
*

PD0 CD1 CD2 G2
S0 S0 S0 S0 S0
S1 S0 S0 S1 S1
S2 S0 S0 S2 S2

M0 I3
S0
S0
S0

CD1 PD3
S0 S0 DN
S1 S1 UP
S2 S0 RET

CD2

PD1 PD2
S0 DN DN
S1 UP UP
S2 UP DN

CD1

PD3 G1
DN S0
UP S1
UP S1

S0
S1
S2

G2 CD1
S0
S0
S1

I1 I2
S0 S1 S0
S1 S1 S1
S2 S2 S1

G1

pri ret iso
DN OFF OFF OFF
UP ON * *
RET OFF ON ON

PD3pri ret iso
DN OFF OFF OFF
UP ON * *
RET OFF ON ON

PD2pri ret iso
DN OFF OFF OFF
UP ON * *
RET OFF ON ON

PD1pri iso
DN OFF OFF
UP ON *
RET BIAS ON

PD0

Module M0

Instances

Modules

Groups

Composite
Domains

Power
Domains

legal state
illegal state

23

Agenda

Successive Refinement
- Elaborating the UPF 2.0 Concept

Power State Definition and Refinement
- Power State Definition with add_power_state
- Power State Composition

Component Level Power Modeling
- Power States and Power Consumption Functions

24

Energy Consumption Varies w/ Usage

Java Application

Android Java
Power Manager

Lights
On/Off/Dim

GPS
Control

Sensors
Control

Radio(s)
Control

Audio/Video
Accel. ControlSuspend

Control

Mode Control
Suspend &
Resume

Idle/Run

Application Processor

User Activity
(Keys, Touchscreen)

Sensors
(CCD, Accelerometer)

Radios
(GPS, WiFi, GSM)

Energy
Consumption

E=?

Usage Scenarios
Idle
Walking
Driving
Navigating
Talking
Browsing
VideoPlay
AudioPlay

Combined Scenarios:
Navigating/Talking
Browsing/3G
VideoPlay/3G

Highly dynamic operation of multiple interacting
hardware and software components

http://www.quatech.com/catalog/images_big/wifi_antenna_DP003.jpg
http://www.quatech.com/catalog/images_big/wifi_antenna_DP003.jpg
http://de.academic.ru/pictures/dewiki/67/Ccd-sensor.jpg
http://de.academic.ru/pictures/dewiki/67/Ccd-sensor.jpg

25

Need to Model Energy Usage

Dynamic energy

Total energy

26

Each State Has Different Power Reqs.

Off
uW/State

Standby
uW/State

Transmit
uW/State

Receive
uW/State

mW/State

Power State Machine

Power Analysis

27

Power Model Components

Power state enumeration
 Steady states
 Transient states (transitions)
 Power dissipation function per state
o With relevant parameters
o voltage, frequency, event rates, …

o Returns Static + Dynamic power
 PVT independent

Power consumption data
 PVT specific parameters
 Characterized or estimated

Power state activation
 Scenario-based or functional simulation based
 Resolution limits overall accuracy of power model

Addressed in
UPF 3.0

28

Modeling Power Consumption in UPF
add_power_state -model CPU -update
-state {UP -power_expr {fU …} } \
-state {UP.ACTIVE -power_expr {fA …} } \
-state {UP.ACTIVE.P0 -power_expr {f0 …} } \
-state {UP.ACTIVE.P1 -power_expr {f1 …} } \
-state {UP.ACTIVE.P2 -power_expr {f2 …} } \
-state {UP.IDLE -power_expr {fI …} } \
-state {UP.CLKGATED -power_expr {fC …} } \
-state {DOWN -power_expr {fD …} } \
-state {DOWN.RET -power_expr {fR …} }

Power expression of the “current” power state
would be the natural one to use for power
computations

More refined power states would have
more detailed power functions

CPU

UNDEFINED

ERROR

UP DOWN

ACTIVE IDLE CLKGATED RET

P1 P2P0

U

CIA R

D

0 1 2

29

For More Information On …
 Successive Refinement of UPF Power Intent

- See paper/presentation/poster
- Successive Refinement: A Methodology for

Incremental Specification of Power Intent
- by A. Khan, E. Quiggley, J. Biggs (ARM); E. Marschner (Mentor Graphics)

- Session 8: Low Power Verification (Weds 10:00-11:30am; Oak)

 Power State Definition and Refinement
- See paper/presentation

- Unleashing the Full Power of UPF Power States
- by E. Marschner (Mentor Graphics), J. Biggs (ARM)

- Session 3: Design (Tues 9:00-10:30am; Monterey/Carmel)

 Component Power Modeling
- Join the P1801 Working Group and the System Level Power (SLP) subgroup

- Visit the web page at http://standards.ieee.org/develop/project/1801.html
- Or send a request for information to admin@p1801.org

http://standards.ieee.org/develop/project/1801.html
mailto:steeering@p1801.org

Thank you!

	1_requirements_driven
	Slide Number 1
	Agenda
	An Overview of Verification Approaches
	Why Requirements Driven Verification?
	Sequential Development Flow
	Shift-Left “Sequential” Development Flow
	Safety Standards
	Introduction to Safety
	Key Elements
	Key Deliverables
	Requirements Engineering Definitions
	Requirements Engineering
	Variants, Reuse & Communication
	Issues
	Data Integrity
	Slide Number 16
	Functional Hazard
	Hazard Level Analysis
	Safety Requirements
	Requirement Quality Gateway
	Considerations
	Requirements Driven Verification And Test
	Variant Management
	Supporting Advanced Verification
	Supporting Advanced Verification
	Tracking
	Track Progress on Requirements Signoff
	Supporting Hierarchical Verification
	Tool Support Requirements
	asureSIGN Dataflow
	asureSIGNTM Solution Built on UCIS
	�Thank you!

	2_using_ucis
	Slide Number 1
	Motivation for UCIS
	Motivation for UCIS
	Unified Cases and Data Flow
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Advantages of Requirements Driven Verif
	Conclusions #1
	Conclusions #2
	�Thank you!

	3_uvm_reg
	Slide Number 1
	Agenda
	UVM_REG Components
	Automated UVM REG Generation
	UVM REG Support Tasks
	What are Phantom Coverage Registers (PCRs)?
	What are Phantom Coverage Registers (PCRs)? (Cont.)
	PCR Testbench Architecture
	Benefits of PCR Methodology
	Band Gap Testbench Example
	Stimulus and Coverage Test Cases Example
	Band Gap Under Test
	Band Gap Under Test with PCR
	Simulation Results Log File
	Dynamic Stimulus Generation
	Coverage Collection
	PCR Cross Coverage Results
	Conclusion
	Contributors
	Slide Number 20

	4_new_upf3
	Slide Number 1
	P1801: IEEE-SA Entity Based Work Group
	IEEE 1801 (UPF) timeline
	Agenda
	UPF 1.0 Design Flow
	UPF 1.0 Flow Issues
	UPF 1.0 Power Intent Specification
	Solution: Partition UPF into Layers
	Successive Refinement of Power Intent
	UPF Command Layers
	Incremental Verification
	Agenda
	What is a “Power State” ?
	Power States as Sets
	Power State Definition Rules
	Applying These Concepts
	Defining Hierarchical Power States
	Agenda
	Power State Dependencies
	Power State References
	Power State Composition
	Example
	Agenda
	Energy Consumption Varies w/ Usage
	Need to Model Energy Usage
	Each State Has Different Power Reqs.
	Power Model Components
	Modeling Power Consumption in UPF
	For More Information On …
	Slide Number 30

