
What is Metamodeling and Code Generation
All About

Wolfgang Ecker & Michael Velten, Infineon

Automating Design and Verification of Embedded Systems Using
Metamodeling and Code Generation Techniques

Automating Design and Verification of
Embedded Systems Using Metamodeling
and Code Generation Techniques
Wolfgang Ecker, Michael Velten - Infineon Technologies AG
Rainer Findenig - Intel Corp.
Daniel Müller-Gritschneder - Technical University of Munich
Wolfgang Mueller – Heinz-Nixdorf Institut University of Paderborn

Tutorial

Outline and Schedule

What is Metamodeling and Code Generation All About
 Motivation, Technology and Terminology

Well known Metamodels in EDA and Design
 UML/SysML

 IP-XACT

Metamodeling in Action using Eclipse Modeling
Framework
 Generate a code generation framework for IP-XACT

 Specify an IP-XACT model and generate code out of it

Coffee Break

Page 32015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Motivation for Using Meta-Modeling and
Code Generation

Infineon Designers on Single Design Tasks
 Up to 95% reduction in SW header generation

 Savings of about 1PY / year through test file generation

 Savings of about 4-5PYs / year through efficient solutions
handling test programs

Infineon Designers on Full Chip Implementation
 60% effort reduction and 2 months project time savings from

specification to implementation

 80% code of digital design part generated

MetaCase
 Up-to 20x speed and productivity improvement in using MetaEdit

(A Metamodeling Framework) for SW Development

Page 42015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

A Well Known Scenario:
Scripts Supporting Design Productivity

Problems: Starts easy, gets more and more complex (and harder
to maintain) and ends up in spaghetti-code due to …

 increasing requirements,

 more output formats and alternatives, and

 more complicated import formats

The good aspect: Content is automatically copied, code is
generated, and nothing is retyped

Specification
Standard

Tables
…

Design and
Verification

Code

Page 52015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

1st Improvement:
Model-View Separation

Model-View Separation is a good, well-known and powerful SW
Concept (Pattern)

is separated in 3 pieces

 An API that controls access to structured data called Model

 A Reader that takes abstract data and fills the model

 A Writer that extracts data from and generates code

Specification
Standard

Tables
…

Design and
Verification

Code

Page 62015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

1st Improvement:
Model-View Separation

Benefit

 New and more complicated input and output formats can be
supported by local changes

 Existing parts can be used further on

WORD
Spec

EXCEL
Spec

SV
Design

SC
VP

Page 72015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Model-View Separation
Reader

Tasks of a reader:
 Parse a description that is more abstract than the target code

(e.g. specification items, domain specific languages)
Building blocks of a reader:
 Libraries as XML Readers, document readers as MS-Office or

OpenOffice readers, PDF-parser, …
 HDL Readers (Verific), compilers with open API (e.g. clang)
 Generated Parsers (e.g. via ANTLR) …

Specification
Standard

Tables
…

Design and
Verification

Code

Page 82015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Model-View Separation
Writer

Different approaches to implement writers:
 Sequence of prints, each taking values from the model

print(“entity %s is\n”, model.name);

 Systematic model traversal (mostly breath first or depth first)
and registration of prints as actions when entering/leaving a
node

 Template Engines, e.g.: FreeMarker (Java, EMF), Mako (Python,
used by IFX), xsd:template as part of XSLT

Specification
Standard

Tables
…

Design and
Verification

Code

Page 92015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Model-View Separation
Templates (Mako)

library IEEE;
use IEEE.std_logic_1164.all;

entity LU is
port(

A : in std_ulogic_vector (15 downto 0);
L : in std_ulogic_vector (1 downto 0);
Y : out std_ulogic_vector (15 downto 0));

end LU;

library IEEE;
use IEEE.std_logic_1164.all;

entity ${component.getName()} is
port(

% for port in component.getPorts()
${port.getName()} :…

% endfor
)
end ${component.getName()};

target code

substitution

render directive

Page 102015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Model-View Separation
Template Engines

A Template Engine translates visible or under the hood a template
to a writer and then controls execution of the writer

Specification
Standard

Tables
…

Design and
Verification

Code

template

Page 112015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

2nd Improvement:
Generation of Tool’s Code from Metamodel

Structure definition by Metamodel:
 Reader / Writer has to comply to Metamodel’s structure and types
 API can be generated
 API generator offers to be structured similarly:
 Reader, API (Model), Writer

Specification
Standard

Tables
…

Design and
Verification

Code

Meta
Model

generatecomplies to

Page 122015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Model-View Separation
A Core Model of a Metamodel
What is a simple Metamodel composed of
 Composite Data
 Typed or Un-Typed Attributes
 Typed or Un-Typed Children
 Typed or Un-Typed Links

 Optional multiplicity or other constraints

There are several techniques out that support Metamodeling and
Code Generation. Examples are:
 XML with XSD (XML Schema)
 UML based on (E)MOF
 EMF based on (E)CORE
 METAGEN based on MMANALYZE (IFX-proprietary)

The elements of a Metamodel are defined in a so called
Meta-Metamodel (we will see its usefulness later)

Page 132015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Metamodeling Technology: Modeling Is
About Structuring and Formalizing Things

Type : BMW
Name: i6

car

Version: 1.2.3
Voltage: 24

electronics

Capacity: 200
Voltage: 24

battery

Position: Right
Type; 190

wheel

Provider: IFX

pressure sensor

Name: SP37

chip

Page 142015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Metamodeling Technology: Metamodeling
Is About Structuring and Formalizing Models

Type : BMW
Name: i6

car

Version: 1.2.3
Voltage: 24

electronics

Capacity: 200
Voltage: 24

battery

Position: Right
Type: 190

wheel

Provider: IFX

pressure sensor

Name: SP37

chip

Type : string[1]
Name: string [1]

car

Position: positionEnum[1]
Type: int[1]

wheel

Provider: string [1]

pressure sensor

1..*

1

Page 152015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Type : string[1]
Name: string [1]

car

Position: positionEnum[1]
Type: int[1]

wheel

Provider: string [1]

pressure sensor

1..*

1

Metamodeling Technology: Metamodeling
Is About Structuring and Formalizing Models

Elements of a Metamodel
 Compositions
 Typed Attributes
 Typed Children
 Multiplicity constraints
 Other constraints (not

shown)

Page 162015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Some Known Metamodels
UML and IP-XACT

(
 Graphical formalism (primarily) to describe/model SW Systems
 Formalisms describe structure, behavior and interaction
 Examples are class diagrams, object diagrams, state diagrams,

activity diagrams
 UML is based on a superstructure (MOF, EMOF) that defines the

formalism
 OCL (object constraint language) is used to defined further

constraints
 Stereotypes as and support embedded

systems

 Defines data that support automation in IP-integration. Includes
 Busses, components with their registers, connectivity

 Does not model IP-Internals

Details in 2nd part
of the tutorial

Page 172015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Metamodeling Technique
Additional Features of a Core Model

Wide range of products (IFX Examples Shown) require flexibility in
Metamodeling

 Extendibility
 Constraints
 Interaction
 Composition

MEMS/Sensors CMOS
RF/BipolarPower/Analog

incl. Green Robust

Page 182015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Metamodeling Technique
Extendibility and Constraints

Examples

 Analog types and their properties
 Register protection mechanisms
 Clocked State Diagrams

Constructs for extendibility in different notations

 Supported e.g. by inheritance in core
model

 UML uses profiles or OCL
 XML provides restrictions and complex

datatypes

Page 192015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Metamodeling Technique
Interaction and Composition

Examples
 Registers or State diagrams manipulate ports

Constructs for extendibility
 Link mechanism e.g. XML XPATH
 Model-to-Model translation

Meta
Model

generate generate

Meta
Model

Page 202015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Metamodeling Technology
Layers in Structuring Data

Defines Structure of MetamodelMeta-Meta
Model

Defines
Structure

(meta-meta
model)

Metamodel
Defines Structure of Model

Model
Defines content of view language
independently

View Implementation of content
number

0

200

400

600

800

1000

1200

Test Chip Card Wireless

number

Defines
Structure

Defines
Content

Generate Metamodel Infrastructure
and Metamodels

Generate Model Infrastructure Models

Generate View(s)

Page 212015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Meta-Metamodel: Is About Structuring
Metamodels, i.e. Metamodel of Metamodel

IP-XACT
XML

Design and
Verification

Code

Meta
Model

generate

Meta
Meta
Model

IP-
XACT
XSD

g
en

erate

generate

generate

Page 222015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Meta-Metamodel: Is About Structuring
Metamodels, i.e. Metamodel of Metamodel

Shown in 3rd part of the tutorial building an IP-XACT to
target code translation

Page 232015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

It’s All About Structuring
Summary and Retrospect

All is not new! Metamodeling has a >25-year history
 Formally called Express Information Model
 Further developed in Jessi Common Framework Initiative (CFI)
 Formal foundation for EDIF

(Electronic Design Interchange
Format)

 Meta-Modeling: Performance
and Information Modeling
Current Issues in Electronic
Modeling (6), Springer,
ISBN 9780792396871

 Meta-Modeling: Current Issues
in Electronic Modeling (6),
ISBN 9780792396871

Page 242015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

It’s All About Structuring
Summary and Outline

Metamodeling and Code generation is
 an industry proven technology to efficiently build

domain/problem specific tools following a specific structure

Modeling in the context of Metamodeling is about
 structuring things in a design context

Metamodeling is about
 Structuring Models

Page 252015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Thank you!

Well known Metamodels in EDA and Design:
UML/SysML

Wolfgang Ecker, Infineon; Rainer Findenig, Intel

Automating Design and Verification of Embedded Systems Using
Metamodeling and Code Generation Techniques

Unified Modeling Language

The Unified Modeling Language (UML) is a general-
purpose modeling language in the field of software
engineering, which is designed to provide a standard
way to visualize the design of a system.

en.wikipedia.org

Page 22015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Unified Modeling Language

The Unified Modeling Language (UML) is a general-
purpose modeling language in the field of software
engineering, which is designed to provide a standard
way to visualize the design of a system.

en.wikipedia.org

Page 32015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Unified Modeling Language

The Unified Modeling Language (UML) is a general-
purpose modeling language in the field of software
engineering, which is designed to provide a standard
way to visualize the design of a system.

en.wikipedia.org

Page 42015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Unified Modeling Language

The Unified Modeling Language (UML) is a general-
purpose modeling language in the field of software
engineering, which is designed to provide a standard
way to visualize the design of a system.

en.wikipedia.org

Page 52015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Unified Modeling Language

 Structural modeling:

 Class diagram
 Component diagram
 Deployment diagram
 …

Page 62015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Unified Modeling Language

 Behavioral modeling:

 Activity diagram
 Sequence diagram
 State diagram
 …

Page 72015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

An Example: UML State Diagrams

Page 82015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

UML?

 Graphical Language

 Easy to read
 Easy to write?

 Semantics

 Not formally defined; software oriented
 Given to your model as part of the code generation
― Tool support is critical!

Model Code

Page 92015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

UML: The Spirit of Metamodeling

• UML InfrastructureM3
(meta- meta

model)

M2 • UML Superstructure

M1 • User Diagrams

M0
number

0

200

400

600

800

1000

1200

Test Chip Card Wireless

number

Page 102015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Extending UML: Profiles

 Extension mechanism for customizing UML

 Light-weight, easy

 Strictly additive, no fundamental changes

Page 112015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Extending UML: MOF – Meta-Object Facility

 UML itself is defined in the MOF

 Allows defining completely new Metamodels

Page 122015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

SysML

 Extended subset of UML

 Defined using profiles

Page 132015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

SysML: Block Definition Diagram

Page 142015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

SysML: Internal Block Diagram

Page 152015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

UML State Diagrams for Different
Abstraction Levels

 UML Profile

 Event-driven transitions:
― Derived from time, transactions, or other internal/external events

 Clock-driven transitions:
― Derived from an internal clock
― Can use guards for specifying timeouts

Page 162015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

UML State Diagrams for Different
Abstraction Levels

 UML Profile

 Initial states to conform with hardware reset semantics

 Global and local variables

Page 172015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

UML State Diagrams for Different
Abstraction Levels

 UML Profile

 Link to external interface definition
― Including selection of desired abstraction level

 Refinement between states and transitions

Page 182015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Example: SIF

Page 192015-03-02 Copyright © Infineon Technologies AG 2015. All rights reserved.

Thank you!

Well known Metamodels in EDA and Design: IP-XACT

Wolfgang Mueller, Heinz Nixdorf Institute; Daniel
Müller-Gritschneder, Technical University of Munich

Automating Design and Verification of Embedded Systems Using
Metamodeling and Code Generation Techniques

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Overview
IP-XACT IEEE 1685
Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows

 design-language neutral design exchange format
 Electronic System Level IP components (ESL netlists + Code Generation)

• IP component attributes: interfaces, signals, parameters, memory maps, registers, ...

• IP component processing information: generators and file sets
for assembly, simulation, synthesis, test insertion,

Related Spirit/Accellera standard:
SystemRDL (Register Description Language) for HW/SW interface components, 2009

2003

SPIRIT Consortium

IP-XACT V1.0

2009

Accelllera

IP-XACT V1.4

2009

IEEE 1685-2009

2014

IEEE 1685-2014

2

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Overview
IP-XACT IEEE 1685
Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows

 design-language neutral design exchange format
 Electronic System Level IP components (ESL netlists + Code Generation)

• IP component attributes: interfaces, signals, parameters, memory maps, registers, ...

• IP component processing information: generators and file sets
for assembly, simulation, synthesis, test insertion,

Related Spirit/Accelera standard:
SystemRDL (Register Description Language) for HW/SW interface components, 2009

2003

SPIRIT Consortium

IP-XACT V1.0

2009

Accelllera

IP-XACT V1.4

2009

IEEE 1685-2009

2014

IEEE 1685-2014

3

IP-XACT complient data are structured by an
XML file format

IP-XACT IEEE 1685-2014 defines the
XML file structure by an

XML schema

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

What is XML?
S
ou

rc
e:

 e
n.

w
ik

ip
ed

ia
.o

rg

XML (eXtensible Markup Language)
<?xml version="1.0" encoding="UTF-8"?>
<program>

<language> C </language>
<file> myFirst.c </file>
<source>

int main() { cout << “Hi there“;}
</source>

</program>

XML tags & structure defined by either

 Data Type Definition (DTD)

 XML Schema Definition (XSD)

plain text file
(sequence of characters)

data

tags (start ... end)

xml declaration
XML

4

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

What is XSD?
XML Schema Definition (XSD)
• defines structure for xml file
• developed by World Wide Web Consort.
• file extension: .xsd
• compares to UML Class Diagrams
• note: xsd is defined in xml format!

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name=“program">
<xs:complexType>

<xs:sequence>
<xs:element name=“language" type="xs:string"/>
<xs:element name=“file" type="xs:string"/>
<xs:element name=“source" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>
<program>

<language> C </language>
<file> MyFirst.c </file>
<source> int main() { cout << “Hi there“;} </source>

</program>

XML

XSD

5

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

Recall: Metamodel Defines IP-XACT Structure

IP-XACT
XML

Design and
Verification

Code

IP-XACT
XSD

IEEE 1685

API
Generator

IP-XACT
Design Environment

(DE)
Generator

Chain

6

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
XML

Design and
Verification

Code

IP-XACT
XSD

IEEE 1685

API
Generator

IP-XACT
Design Environment

(DE)
Generator

Chain

Simple XML Editors:
• XMLSpy,
• XML notepad,
• Easy XML Editor,
• ...

7

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
XML

Design and
Verification

Code

IP-XACT
XSD

IEEE 1685

API
Generator

IP-XACT
Design Environment

(DE)
Generator

Chain

More advanced IDE: Eclipse,

... later in the tutorial

8

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT IEEE 1685-2014
Contents
1. Overview
2. Normative references
3. Definitions, acronyms, abbreviations
4. Interoperability use model
5. Interface definition descriptions
6. Component descriptions
7. Design descriptions
8. Abstractor descriptions
9. Generator chain descriptions
10. Design configuration descriptions
11. Catalog descriptions
12. Addressing
13. Data visibility
Annex A – Annex I:

Bibliography, Semantic consistency rules,
Common elements and concepts,Types,
SystemVerilog expressions, Tight generator
interface, External bus with an
internal/digital interface, Bridges &
channels, Examples

9

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT IEEE 1685-2014
Contents
1. Overview
2. Normative references
3. Definitions, acronyms, abbreviations
4. Interoperability use model
5. Interface definition descriptions
6. Component descriptions
7. Design descriptions
8. Abstractor descriptions
9. Generator chain descriptions
10. Design configuration descriptions
11. Catalog descriptions
12. Addressing
13. Data visibility
Annex A – Annex I:

Bibliography, Semantic consistency rules,
Common elements and concepts,Types,
SystemVerilog expressions, Tight generator
interface, External bus with an
internal/digital interface, Bridges &
channels, Examples

10

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Example: componentInstance
IEEE 1685 XSD

The componentInstance element
documents the existence of a
component in a design. This element
contains the following subelements:
a) instanceName (mandatory; type:

Name) assigns a unique name for
this instance of the component in
this design. The value of this
element shall be unique inside a
design element.

...

f) vendorExtensions (optional) adds
any extra vendor-specific data
related to the design.
See C.24.

IEEE 1685 Description

11

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design Environment

(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator Chain XML

GeneratorGeneratorGeneratorGenerator
TGI

Design and
Verification Code

12

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design Environment

(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator Chain XML

GeneratorGeneratorGeneratorGenerator
TGI

Design and
Verification Code

Some IP-XACT Objects
Design Configures component instances &

interconnections (Netlist)
Component Describes IP‘s interfaces: Ports,

bus interfaces with bus and abstraction type,
address spaces, memory maps, registers,
parameters, views, file sets, ...
IP stored in physical file as Verilog, VHDL, ...

Bus Definition describes bus protocol
AbstractionDefinition describes bus on one

abstraction layer e.g. RTL, TLM

References done by unique IP-XACT VLNV identification
(Vendor Library Name Version)

13

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design Environment

(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator Chain XML

GeneratorGeneratorGeneratorGenerator
TGI

Design and
Verification Code

Design Object

s

C

Design A

C1 Instance C

Hiercharchical Component (View)

C

Design B

C2

Inst.

C3

Inst.

C4
Inst.

C1
Inst.

C2
Inst.

Physical Files

XML

14

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Example

15

 Design with four components: CPU, Serial Interface (SIF), two buses (system, reset)

 Sceenshot taken from Kactus2 tool (open source IP-XACT editor and code generator)

<spirit:componentInstance>
<spirit:instanceName>SIF_0</spirit:instanceName>
<spirit:displayName></spirit:displayName>
<spirit:description></spirit:description>
<spirit:componentRef spirit:vendor="TUM" spirit:library="components"
spirit:name="SIF" spirit:version="1.0"/>
…

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Component Example: SIF

16

<?xml version="1.0" encoding="UTF-8"?>
<spirit:component xmlns:kactus2="http://funbase.cs.tut.fi/"
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd">
<spirit:vendor>TUM</spirit:vendor>
<spirit:library>components</spirit:library>
<spirit:name>SIF</spirit:name>
<spirit:version>1.0</spirit:version>
<spirit:busInterfaces>
…
</spirit:busInterfaces>
<spirit:model>

<spirit:views>
…
</spirit:views>
<ports>
…
</ports>

</spirit:model>
</spirit:component>

Version & text encoding

Component tag w/
schema information

Unique VLNV
Identification

Bus Interfaces

Extra Ports

Views, e.g, flat,
hierarchical

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Component Example: SIF - Bus Interfaces

17

…
<spirit:busInterfaces>
<spirit:busInterface>

<spirit:name>sBI</spirit:name>
<spirit:busType spirit:vendor="TUM" spirit:library="bus" spirit:name="busif"
spirit:version="1.0"/>
<spirit:abstractionType spirit:vendor="TUM" spirit:library="bus"
spirit:name="busif.absDef" spirit:version="1.0"/>
<spirit:slave/>
<spirit:connectionRequired>false</spirit:connectionRequired>
…
<spirit:endianness>little</spirit:endianness>

</spirit:busInterface>
<spirit:busInterface>

<spirit:name>sRI</spirit:name>
<spirit:busType spirit:vendor="TUM" spirit:library="bus" spirit:name="resif"
spirit:version="1.0"/>
<spirit:abstractionType spirit:vendor="TUM" spirit:library="bus"
spirit:name="resif.absDef" spirit:version="1.0"/>
<spirit:slave/>
<spirit:connectionRequired>false</spirit:connectionRequired>
…
<spirit:endianness>little</spirit:endianness>

</spirit:busInterface>
</spirit:busInterfaces>
…

Bus type with reference
to VLNV of bus definition

Configuration,
Slave/master,
endianness

Abstraction type
with reference

to VLNV of bus definition

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA18

…
<spirit:ports>
<spirit:port>

<spirit:name>clk</spirit:name>
<spirit:wire spirit:allLogicalDirectionsAllowed="false">

<spirit:direction>in</spirit:direction>
<spirit:vector>
<spirit:left>0</spirit:left>
<spirit:right>0</spirit:right>
</spirit:vector>
<spirit:wireTypeDefs>
<spirit:wireTypeDef>
<spirit:typeName
spirit:constrained="false">std_logic</spirit:typeName>
<spirit:typeDefinition>IEEE.std_logic_1164.all</spirit:typeDefinition>
…
</spirit:wireTypeDef>
</spirit:wireTypeDefs>

</spirit:wire>
…

</spirit:port>
</spirit:ports>
…

IP-XACT Component Example: SIF - Ports

Port name

Port is a wire
with direction “in“

Definition of wire

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design Environment

(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator Chain XML

GeneratorGeneratorGeneratorGenerator
TGI

Design and
Verification Code

Additional

Abstractor

Catalog mapping of XP-XACT VLNV
(Vendor Library Name Version)
to physical file defining the object

Design Configuration additional information for
design / generator

19

converter between two bus
interfaces of two abstraction
types

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design Environment

(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator Chain XML

GeneratorGeneratorGeneratorGenerator
TGI

Design and
Verification Code

20

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design Environment

(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator Chain XML

GeneratorGeneratorGeneratorGenerator
TGI

Design and
Verification Code

Generator

• program module processes IP-XACT XML
and generates code

• Implementation can be in any language
• XSLT (eXt. Stylesheet Language Transform.)

language: XML other presentations
• scripting language like Tcl, Python
• programming language like Java, C++

• uses TGI (Tight Generation Interface)
to access IP-XACT models

21

© 2015, Wolfgang Müller, Daniel Müller-Gritschneder DVCon 2015, March 2-5 San Jose CA, USA

IP-XACT Design Environment

IP-XACT
Design

Environment
(DE)

Component XML

Component IP

Design XML

Abstractor XML

Abstractor IP

Design Config.XML

Catalog XML

Bus Definition XML

Abstraction
Definition XML

Generator

Design and
Verification Code

TGI (Tight Generation IF)

• DE independent and
generator-language
independent interface

• TGI-DE communication
by SOAP: HTTP-based
protocol to send/receive
XML messages

invoke

request

answer

request

..
.

TGI

22

Thank you!

	1_introduction
	Slide Number 1
	Automating Design and Verification of Embedded Systems Using Metamodeling and Code Generation Techniques
	Outline and Schedule
	Motivation for Using Meta-Modeling and Code Generation
	A Well Known Scenario:�Scripts Supporting Design Productivity
	1st Improvement:�Model-View Separation
	1st Improvement:�Model-View Separation
	Model-View Separation�Reader
	Model-View Separation�Writer
	Model-View Separation�Templates (Mako)
	Model-View Separation�Template Engines
	2nd Improvement:�Generation of Tool’s Code from Metamodel
	Model-View Separation�A Core Model of a Metamodel
	Metamodeling Technology: Modeling Is About Structuring and Formalizing Things
	Metamodeling Technology: Metamodeling Is About Structuring and Formalizing Models
	Metamodeling Technology: Metamodeling Is About Structuring and Formalizing Models
	Some Known Metamodels�UML and IP-XACT
	Metamodeling Technique�Additional Features of a Core Model
	Metamodeling Technique�Extendibility and Constraints
	Metamodeling Technique�Interaction and Composition
	Metamodeling Technology�Layers in Structuring Data
	Meta-Metamodel: Is About Structuring Metamodels, i.e. Metamodel of Metamodel
	Meta-Metamodel: Is About Structuring Metamodels, i.e. Metamodel of Metamodel
	It’s All About Structuring�Summary and Retrospect
	It’s All About Structuring�Summary and Outline
	Slide Number 26

	2_uml
	Slide Number 1
	Unified Modeling Language
	Unified Modeling Language
	Unified Modeling Language
	Unified Modeling Language
	Unified Modeling Language
	Unified Modeling Language
	An Example: UML State Diagrams
	UML?
	UML: The Spirit of Metamodeling
	Extending UML: Profiles
	Extending UML: MOF – Meta-Object Facility
	SysML
	SysML: Block Definition Diagram
	SysML: Internal Block Diagram
	UML State Diagrams for Different Abstraction Levels
	UML State Diagrams for Different Abstraction Levels
	UML State Diagrams for Different Abstraction Levels
	Example: SIF
	Slide Number 20

	3_ip-xact
	Slide Number 1
	IP-XACT Overview
	IP-XACT Overview
	What is XML?
	What is XSD? �
	Recall: Metamodel Defines IP-XACT Structure
	IP-XACT Design Environment
	IP-XACT Design Environment
	IP-XACT IEEE 1685-2014
	IP-XACT IEEE 1685-2014
	IP-XACT Example: componentInstance
	IP-XACT Design Environment
	IP-XACT Design Environment
	IP-XACT Design Environment
	IP-XACT Design Example
	IP-XACT Component Example: SIF
	IP-XACT Component Example: SIF - Bus Interfaces
	IP-XACT Component Example: SIF - Ports
	IP-XACT Design Environment
	IP-XACT Design Environment
	IP-XACT Design Environment
	IP-XACT Design Environment
	Slide Number 23

