
Contents
•	Time	domain,	small-signal	frequency-domain,	and	
	 small-signal	frequency-domain	noise	analysis
•	TDF	modules	for	user-defined	primitives
•	Predefined	LSF	modules	for	signal	flow	primitives
•	Predefined	ELN	modules	for	electrical	primitives
•	Ports/signals	for	intermodule	communication

More	and	more	voices	in	the	Semiconductor	industry	
are	calling	for	a	renewed	methodology	for	analog/

mixed-signal	(AMS)	design,	addressing	the	importance	of	having	
a	solid	system-level	design	approach	that	allows	making	early	
trade-offs	between	analog	and	digital	functionality	in	hardware	and	
software.

In	December	2008,	the	Open	SystemC	Initiative	(OSCI)	revealed	
their	first	draft	standard	of	the	SystemC	AMS	extensions.	The	
standardization	of	the	AMS	language	extensions	for	SystemC	is	a	
first	step	towards	bringing	AMS	into	the	digitally-oriented	ESL	world.	

Who is driving this AMS initiative?
The	OSCI	AMS	working	group	was	formed	in	2006	with	the	aim	
of	standardizing	AMS	extensions	for	SystemC.	The	formation	was	
strongly	driven	by	the	European	Semiconductor	industry	including	
STMicroelectronics,	NXP	Semiconductors	and	Infineon.	Full	support	
has	been	given	by	research	institutes	and	universities	such	as	
Fraunhofer	Institute	for	Integrated	Circuits	(IIS),	Ecole	Polytechnique	
Fédérale	de	Lausanne	(EPFL)	and	Vienna	University	of	Technology.	

Before	the	formation	of	the	AMS	working	group,	these	research	
institutes	and	universities	were	already	active	in	a	
study	group	defining	the	first	concepts	for	extending	
SystemC	with	AMS	features,	as	well	as	working	on	a	
prototype	implementation	known	in	the	industry	as	
“SystemC-AMS.”	The	standardization	of	the	SystemC	
AMS	extensions	is	based	on	the	knowledge	gained	
from	this	work	and	has	been	enhanced	to	support	
an	AMS	design	refinement	methodology	and	to	fulfill	
the	latest	requirements	from	the	industry.

Yet another AMS standard?
The	AMS	draft	1	standard	focuses	on	the	system-
level	and	architecture	modeling	aspects	of	designing	
and	verifying	complex	AMS	systems.	By	having	
AMS	extensions	for	SystemC,	users	can	build	an	
executable	description	of	the	AMS	system	in	a	C++	
based	manner,	enabling	seamless	integration	with	
HW/SW	architectures	in	SystemC	and	functional	
models	or	software	developed	in	C	and	C++.	As	
such,	the	AMS	extensions	should	not	be	considered	
as	a	replacement	of	existing	hardware	description	
languages,	but	should	be	seen	as	a	valuable	addition	
to	ESL	design	methodologies.	

Design refinement methodology
The	proposed	AMS	draft	1	standard	facilitates	a	design	refinement	
methodology	for	analog/mixed-signal	systems	supporting	
functional	modeling	for	creating	an	executable	specification,	virtual	
prototyping,	architecture	exploration,	integration	validation,	and	
other	use	cases.	Similar	to	digitally-oriented	ESL	methodologies,	

different	levels	of	design	abstraction	are	defined,	each	with	its	own	
modeling	formalism	and	associated	AMS	modeling	behavior	and	
accuracy.	A	unified	modeling	style	allows	easy	“mix-and-match”	
of	these	different	levels	of	abstraction,	introducing	an	open	and	
transparent	modeling	approach	using	the	SystemC	AMS	extensions.	
This	is	essential	to	support	a	top-down	design	flow	for	analog/
mixed-signal	systems,	where	the	design	abstraction	of	the	model	is	
well	defined	and	the	interaction	between	models	–	even	at	different	
levels	of	abstraction	–	is	well	supported	using	the	same	simulation	
framework.

Model abstractions
The	model	abstractions	supported	by	the	AMS	extensions	are	based	
on	well-known	methods	for	abstracting	analog	and	mixed-signal	
behavior.	The	abstraction	levels	distinguish	discrete-time	from	
continuous-time	behavior	and	non-conservative	from	conservative	

Viewpoint: Analog/Mixed-Signal
(AMS) Extensions for SystemC
Martin Barnasconi, AMS Working Group Chairman, Open SystemC Initiative (OSCI)

Use Cases, Model Abstractions and Modeling Formalism

Use Cases

Model Abstractions

Executable
specification

Virtual
prototyping

Architecture
exploration

Discrete-time
 static non-linear

Integration
validation

Modeling Formalism

Timed Data Flow (TDF)
Electrical Linear
Networks (ELN)

Linear Signal Flow (LSF)

Continuous-time
dynamic linear

Non-conservative behavior Conservative behavior

SystemC AMS Extensions
Analog/mixed-signal system-level modeling
and design refinement methodology

www.SystemC.org

descriptions.	Discrete-time	modeling	is	particularly	suited	for	signal-
processing-dominated	applications	for	which	signals	are	naturally	
(over)	sampled.	If	signals	cannot	be	sampled,	the	analog	behavior	
should	be	described	as	a	continuous-time	function,	such	as	by	
describing	the	system	as	a	set	of	differential	and	algebraic	equations	
(DAEs).

Non-conservative	system	descriptions	abstract	physical	quantities	
(e.g.,	voltages	and	currents)	as	independent	real-valued	signals.	For	
a	conservative	description,	the	relation	between	these	voltages	and	
currents	at	the	nodes	is	preserved	and	should	satisfy	Kirchhoff’s	
laws.	

Another	method	is	to	abstract	dynamic	non-linear	behavior	by	static	
non-linear	or	dynamic	linear	behavior.	For	discrete-time	models,	the	
static	non-linear	behavior	can	be	defined	as	an	algorithm	(e.g.,	using	
a	polynomial	function).	For	continuous-time	models,	the	equations	
are	computed	using	a	linear	DAE	solver	to	keep	the	equations	
simple,	resulting	in	efficient	calculations.

By	introducing	these	modeling	methods,	the	AMS	extensions	will	
enrich	SystemC	to	enable	the	creation	of	AMS	behavioral	models	at	
different	levels	of	abstraction.

Modeling formalisms
The	SystemC	AMS	extensions	define	the	essential	modeling	
formalisms	required	to	support	AMS	behavioral	modeling	at	
different	levels	of	abstraction,	consistent	with	the	design	refinement	
methodology.	Established	modeling	formalisms	are	being	
standardized,	introducing	Timed	Data	Flow	(TDF),	Linear	Signal	Flow	
(LSF)	and	Electrical	Linear	Networks	(ELN)	modeling	styles,	which	
can	be	used	in	combination	with	SystemC	descriptions.

Execution	semantics	based	on	TDF	introduce	discrete-time	
simulation	without	the	overhead	of	the	dynamic	scheduling	
imposed	by	the	discrete-event	kernel	of	SystemC.	Simulation	is	
accelerated	by	defining	a	static	schedule	that	is	computed	before	
simulation	starts.	To	model	continuous-time	behavior,	LSF	or	
ELN	descriptions	can	be	used,	for	which	simulations	only	require	
a	simple	linear	DAE	solver.	Interactions	with	discrete-time	TDF	
models	then	consider	discrete-time	data	samples	as	continuous	in	
time	through	interpolation	techniques.	With	these	methods,	the	
continuous-time	and	discrete-event	computations	become	“loosely	
coupled,”	reducing	the	simulation	overhead.	

The	integration	of	this	dataflow	procedural	processing	and	a	linear	
DAE	solver,	combined	with	the	existing	event-based	engine	in	
SystemC,	makes	this	approach	a	very	flexible	and	efficient	simulation	
solution	that	covers	both	mixed-signal	and	mixed-level	aspects,	
facilitating	analog/digital	co-design	for	architecture	studies	and	
software	development	for	embedded	AMS	systems.

Which applications can benefit from using the
SystemC AMS extensions?
Not	only	has	the	trend	towards	having	a	System-on-a-Chip	resulted	
in	sophisticated	digital	computational	engines	on	these	chips,	but	
the	need	to	communicate	and	interface	to	the	outside	(analog)	
world	has	led	to	more	and	more	mixed-signal	content	on	these	
chips.

These	embedded	analog/mixed-signal	systems	are	characterized	
by	1)	having	digital	HW/SW	interwoven	with	AMS	functionality	due	
to	the	need	for	calibration	and	control	algorithms,	and	2)	mixed-
signal	processing	including	a	dynamic	model	of	the	physical	layer	

(PHY)	in	the	modeling	of	the	complete	
communication	protocol	(software)	stack.

Examples	of	such	embedded	analog/
mixed-signal	applications	include	
telecommunication	systems	for	wireless	
connectivity	(e.g.,	WLAN,	WiMAX)	and	
cellular	infrastructure	(e.g.,	W-CDMA,	
HSDPA).	Also,	wired	interconnect	
(e.g.,	HDMI,	LVDS	drivers)	and	wired	
telecommunication	systems	(e.g.,	ADSL,	
VDSL)	have	analog	functionalities	deeply	
intertwined	with	digital	functions.	In	
the	automotive	domain,	examples	
include	in-vehicle	networking	(e.g.,	
CAN,	FlexRay),	wireless	sensor	networks	
(e.g.,	to	monitor	tire	pressure)	and	
true	heterogeneous	systems	(e.g.,	to	
model	electronics	as	part	of	a	gearbox	
or	kludge).	An	additional	application	
domain	consists	of	imaging	sensors	to	model	charge-coupled	
devices	(CCD).

As	the	AMS	extensions	are	developed	as	an	additional	layer	on	
top	of	SystemC,	the	calibration	and	control	algorithms,	software	
protocol	and	analog	parts	of	the	physical	layer	can	be	ultimately	
modeled	together.

Collaboration and standardization
The	need	for	an	AMS	design	refinement	methodology	starting	at	
the	system	level	has	propelled	the	semiconductor	industry,	research	
institutes,	universities	and	EDA/ESL	vendors	to	collaborate	in	order	
to	define	a	uniform	and	standardized	modeling	language	based	on	
SystemC.	

Within	the	OSCI	AMS	working	group,	a	consolidated	view	on	
the	requirements	for	such	a	standard	has	been	defined	and	the	
team	successfully	released	the	first	draft	standard	of	the	SystemC	
AMS	extensions	at	the	end	of	2008.	The	AMS	working	group	will	
continue	to	advance	and	enhance	the	AMS	standard	based	on	
input	it	receives	during	the	public	review	period.	The	SystemC	
AMS	extensions	are	a	topic	of	discussion	in	upcoming	user	group	
meetings,	tutorials	and	workshops	at	EDA	conferences	and	events.

The	SystemC	community	is	encouraged	to	review	the	AMS	draft	1	
standard	and	provide	feedback	by	joining	the	AMS	discussion	forum	
on	www.systemc.org.	In	addition,	members	of	OSCI	can	participate	
in	the	AMS	working	group,	which	will	continue	to	steer	the	direction	
of	the	AMS	standard.

Join	now!	Sign	up	at	www.systemc.org.

Martin Barnasconi,
AMS Working Group
Chairman, OSCI, and
Product Manager AMS/RF
System Design Methods,
NXP Semiconductors, The
Netherlands

Open	 SystemC	 In i t iat ive
Defining	and	Advancing	SystemC	Standards

February	2009

