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Abstract 
SystemC™ [1] is an industry-standard language for electronic system-level (ESL) design and modeling, 
enabling the creation of abstract architectural descriptions of digital hardware/software (HW/SW) 
systems, also known as virtual prototypes. The introduction of the SystemC Analog/Mixed-Signal 
(AMS) Extensions [2] now facilitates modeling of heterogeneous embedded systems, which include 
abstract AMS behavior. This paper presents the continuing advancements of the SystemC AMS 
extensions to further expand the capabilities of SystemC AMS for the creation of these mixed-signal 
virtual prototypes.  

To comply with demanding requirements and use cases (e.g., in automotive applications), new 
execution semantics and language constructs are being defined to facilitate a more reactive and 
dynamic behavior of the Timed Data Flow (TDF) model of computation as defined in the current 
SystemC AMS 1.0 standard. The proposed Dynamic TDF introduces fully complementary elements to 
enable a tighter time-accurate interaction between the AMS signal processing and control domain 
while keeping the modeling and communication abstract and efficient. The features of Dynamic TDF 
are presented in this paper by means of a typical example application from the automotive domain. 
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Figure 1: Architecture of SystemC, TLM, and AMS extensions for building a mixed-signal virtual prototype 

Introduction 
The SystemC AMS 1.0 language standard enables the description of analog/mixed-signal behavior as 
a natural extension to existing SystemC-based design methodologies (Figure 1). SystemC together 
with its AMS extensions allow the creation of an executable description of a mixed discrete- and 
continuous-time system. Digitally-oriented HW/SW architecture descriptions made in SystemC 
— often using transaction-level modeling [3] — can be augmented with abstract AMS behavior by 
using the SystemC AMS extensions. This approach supports use cases such as software development, 
architecture exploration, and system validation. 

There is a strong need to include the interaction between the digital HW/SW and AMS or radio 
frequency (RF) parts in the system, especially to validate the entire system architecture in terms of 
functional correctness, partitioning, and dimensioning. The functionality of all of these parts is 
nowadays tightly interwoven with calibration and control loops that cross the analog-digital domain 
boundary. Traditionally, the signal processing and control-oriented paths were analyzed and 
designed independently from each other. However, the need for optimal system performance across 
multiple domains requires a more integral design and verification approach, which supports (AMS) 
signal processing and control functionality in a single modeling platform. 
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The Timed Data Flow (TDF) model of computation defined in the SystemC AMS 1.0 standard has 
already shown its value for signal-processing-oriented applications, such as RF communication and 
digital signal processing (DSP) systems, where the complex envelope of the modulated RF signal can 
be described as an equivalent baseband signal and where baseband algorithms are described 
naturally using data flow semantics. Because TDF is derived from the well-known Synchronous Data 
Flow (SDF) model of computation, high simulation performance can be obtained due to the 
calculation of a static schedule prior to simulation.  

However, the use of the SystemC AMS extensions in other application domains has been limited due 
to the restrictions caused by the fixed time step mechanism in TDF. Modeling control systems (e.g., 
in automotive applications) becomes vastly inefficient by this limitation (Figure 2).  The fixed and 
constant time step in TDF does not allow end users to easily model systems in which activation 
periods or frequencies are changed dynamically. A dynamic change of frequencies is required to 
efficiently model voltage controlled oscillators (VCO), clock recovery circuits, and phenomena such as 
jitter. A dynamic assignment of activations is needed to model power down of hardware (e.g., in 
wireless sensor networks) or to model pulse width modulation (PWM) in a functional way. These 
types of applications underline the need to introduce Dynamic TDF capabilities, which are the subject 
of this paper. 
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Figure 2: Embedded mixed-signal system for automotive: Motor power steering control module 

Use cases and requirements for Dynamic Timed Data Flow  
The objective of Dynamic TDF is to offer mechanisms to dynamically change key TDF properties such 
as time step, rate, or delay. This efficiently overcomes the previously mentioned limitations of the 
TDF model of computation. These new features should also support the successive transition from 
abstract, functional-level modeling to refined mixed-signal architecture modeling with ideal and 
‘non-digital’ properties. In that respect, we consider the following relevant use cases:  

• Abstract modeling of sporadically changing signals that are constant over long time periods and 
that cannot be modeled by sampled, discrete-time signals in an efficient way. A particular 
application is power management that switches on/off subsystems. In order to model power 
down, it is required to be able to specify a condition that enables/disables the execution of the 
AMS computations.  
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• Abstract description of reactive behavior, for which computations are executed for events or 
transactions, such as an analog threshold crossing or for which an immediate request or response 
is required (e.g., as part of a TLM model). Typical applications are sensor systems, in which 
crossing a threshold will cause an action. An event-triggered modeling approach for these systems 
would be more natural and also more efficient. A reactive synchronization mechanism would be 
beneficial, especially in cases where these AMS systems are integrated together with TLM-based 
virtual prototypes. This avoids the penalty of introducing fine-grained computations by using small 
time steps to detect the actual event. 

• Capture behavior where frequencies (and time steps) change dynamically. This is the case for 
applications such as VCO, PLL, PWM, or clock recovery circuits, which are often controlled by 
analog or digital signals. Modeling oscillators with variable frequencies (e.g., clock recovery) or 
capturing jitter is not possible when using constant time steps. In order to allow modeling of such 
systems, it is required to be able to change the time step continuously during simulation.  

• Modeling systems with varying (data) rates, which are changed during operation and thus during 
simulation. This is the case, for example, when communication systems are described at high 
levels of abstraction. To perform cross-layer optimization and to evaluate the correctness of a 
particular signal-processing algorithm, both the physical layer (PHY) as well as media access 
control (MAC) as part of the data link layer (DLL) need to be modeled. An example of such systems 
are cognitive radios, in which parameters such as data rates and modulation schemes are adapted 
to estimated parameters of the channel. 

Table 1 gives the summary of the presented use cases, requirements, and application examples. 

Use cases Requirements Application examples

Abstraction of sporadically 
changing signals Switch on/off AMS computations Power management unit

Abstract description of reactive 
behavior

Detect analog zero- or threshold-
crossing

Sensor circuits;
alarm mode of systems

Request and response caused by 
digital event or transaction

AMS embedded in digital HW/SW 
virtual prototype

Capture behavior where 
frequencies (and time steps) 

change dynamically

Changeable time step 
of AMS computations

VCO, PLL, PWM, Clock recovery 
circuits

Modeling systems with varying 
(data) rates

Changeable time step 
and/or data rate

Communication systems, 
multi-standard radio interfaces 

(e.g., cognitive radios)

Table 1: Use cases, requirements, and applications for introducing Dynamic TDF capabilities 

Application example: Motor control system 
In order to illustrate the value of Dynamic TDF, we use a simple example from the automotive 
domain as shown in Figure 3, a DC motor control system with a proportional-integrator (PI) controller 
and a pulse width modulator (PWM). The formed control loop reduces the impact of aging, 
parameter deviations, and environmental conditions on the load, which is in this case a power driver 
and DC motor described with a single pole transfer equation. 

The PI controller computes the required pulse width based on the reference value (iref) and measured 
current (imeas) through the load. The PWM generates a pulse (vdrv) of variable width (resulting in a 
varying duty cycle) that increases the current through the load. 
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Figure 3: Functional model (in the Laplace domain) of a DC motor control system 

When using the conventional TDF model of computation defined in the SystemC AMS 1.0 standard, 
the AMS computations are executed at fixed discrete time steps while considering the input samples 
as continuous-time signals. Since the PWM block has an almost discrete-event behavior, the need to 
have very steep ramps for the signal transitions at its output imposes the use of very small time 
steps. A fine-grained time grid is essential for a correct overall response of the system, as it needs to 
meet the accuracy constraint (time constants) of the PI controller and the Driver + DC motor. 
However, a too-fine-grained time grid will reduce the simulation performance, as the number of time 
steps and thus AMS computations will increase. 

Alternatively, the PWM could be modeled as a pure SystemC discrete-event model. But this makes 
the simulation less efficient due to the use of the dynamic scheduling of SystemC (evaluate/update 
cycle) instead of the more efficient TDF static scheduling. Furthermore, it will introduce unnecessary 
synchronization between TDF and the SystemC discrete-event model of computation. 

By introducing Dynamic TDF for this application, the computation of the motor control loop is only 
triggered four times per pulse period by changing the TDF time step (Figure 4): first at the start of the 
rising edge, second at the end of the rising edge, third at the end of the voltage pulse plateau, and 
fourth at the end of the falling edge. Each time, the PWM adjusts the scheduling of the next 
activation based on the duty cycle sampled at its input during the rising edge. With the pulse output 
active, energy is supplied to the power driver of the DC motor resulting in an increase of the current. 
This process repeats itself while the system reaches its steady state. Note that the PWM output 
signal (vdrv) represents a continuous-time waveform and thus has finite-slope edges. 
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Figure 4: Step response of the motor control loop using Dynamic TDF with four activations per period 
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To efficiently model the PWM pulse with a varying pulse width, the time step attribute will be 
changed such that the PWM pulse's rising edge and falling edge are included resulting in only four 
activations of the PWM TDF module per period, as shown in Figure 4. 

Execution semantics and language constructs of Dynamic Timed Data Flow 
The Dynamic TDF modeling paradigm aims at efficient modeling of functions requiring dynamic 
activation, such as PWM, while maintaining the principles of TDF modeling as introduced in the 
SystemC AMS extensions. To this end, new expressive ways are added to the TDF model of 
computation to dynamically change key TDF attributes such as time step, rate, or delay. Recall that 
TDF modules interconnected by TDF signals via TDF ports constitute so-called TDF clusters and that 
the order in which the modules in clusters have to be activated is statically computed before 
simulation starts. The new capabilities of dynamically changing the mentioned TDF attributes may 
then require new schedules to be dynamically recomputed. 

Before illustrating these new capabilities, let us start first with a conventional TDF model for the 
PWM block (Listing 1). The set_attributes() callback is used to define the fixed time step of the 
module activation by means of a module parameter. The callback could also define the values of 
rates or delays. The initialize() callback (not needed in this case and therefore not shown) may 
be used to define initial conditions such as delay values or filter coefficients. The processing() 
callback defines the module’s PWM behavior. 

// pwm.h 
 
#include <cmath> 
#include <systemc-ams> 
 
SCA_TDF_MODULE(pwm) 
{ 
  sca_tdf::sca_in<double> in; 
  sca_tdf::sca_out<double> out; 
 
  pwm( sc_core::sc_module_name nm, double v0_ = 0.0, double v1_ = 1.0, 
       const sca_core::sca_time& t_period_ = sca_core::sca_time(5.0, sc_core::SC_MS), 
       const sca_core::sca_time& t_ramp_ = sca_core::sca_time(0.05, sc_core::SC_MS), 
       const sca_core::sca_time& t_step_ = sca_core::sca_time(0.01, sc_core::SC_MS) ) 
  : in("in"), out("out"), v0(v0_), v1(v1_),  t_period( t_period_.to_seconds() ),  
    t_ramp( t_ramp_.to_seconds() ),  t_duty_max( t_period - 2.0 * t_ramp ),  
    t_duty( t_duty_max ), t_step( t_step_ ) {} 
 
  void set_attributes() 
  { 
    set_timestep( t_step ); // fixed time step for module activation 
  } 
  
  void processing() 
  { 
    double t = get_time().to_seconds(); // current time 
    double t_pos = std::fmod( t, t_period ); // time position inside pulse period 
 
    if (t_pos < t_ramp) {                    // calculate and clamp duty time 
      t_duty = in.read() * t_duty_max; 
      if ( t_duty < 0.0 ) t_duty = 0.0; 
      if ( t_duty > t_duty_max ) t_duty = t_duty_max; 
    } 
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    double val = v0; // initial value 
    if ( t_pos < t_ramp )                  // rising edge 
      val = ( (v1 - v0) / t_ramp ) * t_pos + v0; 
    else if ( t_pos < t_ramp + t_duty )    // plateau 
      val = v1; 
    else if ( t_pos < t_ramp + t_duty + t_ramp )   // falling edge 
      val = ( (v0 - v1) / t_ramp ) * ( t_pos - t_ramp - t_duty ) + v1; 
    // else return to initial value 
     
    out.write(val); 
  } 
 
 private: 
  double v0, v1;             // initial and plateau values 
  double t_period, t_ramp;   // pulse period and ramp time 
  double t_duty_max;         // maximum duty time 
  double t_duty;             // current duty time 
  sca_core::sca_time t_step; // module time step 
}; 

 It is executed once when the simulation starts.  

The following new callback and member functions are introduced as part of the TDF model of 
computation to support Dynamic TDF: 

• The change_attributes() callback provides a context in which the time step, rate, or delay 
attributes of a TDF cluster may be changed. The callback is called as part of the recurring 
execution of the TDF schedule. 

• The new request_next_activation() member function, as well as existing TDF member 
functions that set attributes (e.g., set_timestep(), set_rate(), set_delay(), etc.), can be 
called within the change_attributes() callback to redefine TDF properties. The 
request_next_activation() member function will request a next cluster activation at a given 
time step, event, or event list, which is specified as argument. Note, however, that if multiple 
TDF modules belonging to the same cluster redefine the next cluster activation by using 
request_next_activation(), the earliest point in time will be used and the other requests will 
be ignored. 

• The allow_dynamic_tdf() and disallow_dynamic_tdf() member functions are used in the 
set_attributes() callback to check whether the functional behavior captured in the TDF 
module can cope or not with dynamic time steps. All TDF modules belonging to the same TDF 
cluster must explicitly state that they allow Dynamic TDF by using the allow_dynamic_tdf() 
member function. Otherwise, the conventional (static) TDF is considered for the cluster. The use 
of disallow_dynamic_tdf() is especially useful when TDF modules are used to model DSP 
functionality, in which variable time steps are not allowed. If neither of these two functions is 
called, the module is considered to not support Dynamic TDF. 

• The set_max_timestep() member function is introduced to define a maximum time step of a 
TDF module to enforce a module activation if this time period is reached. Bounding the time step 
is essential to guarantee sufficient time points for the calculation of a continuous-time response, 
especially when embedding continuous-time descriptions (e.g., by using Laplace transfer 
functions). 

With the help of these new capabilities, the Dynamic TDF module for the PWM block is given in 
Listing 2. In this example, the module is registered as supporting Dynamic TDF. The time step is then 
redefined by calling the request_next_activation() member function in the 
change_attributes() callback. 

Listing 1: Conventional TDF module of the PWM function (no Dynamic TDF) 
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Note that the behavior of the PWM module has not been changed; only the module activation is 
affected. Therefore, we can use the same implementation in the processing() callback as shown in 
Listing 1. 

// pwm_dynamic.h 
 
#include <cmath> 
#include <systemc-ams> 
 
SCA_TDF_MODULE(pwm)  // for dynamic TDF, we can use the same helper macro to define the module class 
{ 
  sca_tdf::sca_in<double> in; 
  sca_tdf::sca_out<double> out; 
 
  pwm( sc_core::sc_module_name nm, ... ) // same module arguments as in Listing 1 
  : in("in"), out("out"), ...            // same constructor initialization as in Listing 1 
  {} 
 
  void set_attributes() 
  { 
    allow_dynamic_tdf();                 // module supports dynamic TDF 
  } 
  
  void change_attributes()  
  { 
    double t = get_time().to_seconds();      // current time 
    double t_pos = std::fmod( t, t_period ); // time position inside pulse period 
 
    // Calculate time step till next activation 
    double dt = 0.0; 
    if ( t_pos < t_ramp )                        // rising edge  
      dt = t_ramp - t_pos; 
    else if ( t_pos < t_ramp + t_duty )          // plateau 
      dt = ( t_ramp + t_duty ) - t_pos; 
    else if ( t_pos < t_ramp + t_duty + t_ramp ) // falling edge 
      dt = ( t_ramp + t_duty + t_ramp ) - t_pos; 
    else                                         // return to initial value 
      dt = t_period - t_pos; 
 
    t_step = sca_core::sca_time( dt, sc_core::SC_SEC ); 
    if ( t_step == sc_core::SC_ZERO_TIME )        // time step should advance 
      t_step = sc_core::sc_get_time_resolution(); 
    request_next_activation( t_step );            // request the next activation 
  } 
 
  void processing() 
  { 
     ... // same PWM behavior as in Listing 1 
  } 
 
 private: 
  ... // same member variables as in Listing 1 
}; 

•  It is executed once when the simulation starts.  
  

Listing 2: Dynamic TDF module of the PWM function 
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Table 2 below shows an example with PWM parameters to compare the two variants of the 
TDF model of computation. The simulation of the conventional PWM TDF model uses a fixed time 
step that triggers too many unnecessary computations. When using Dynamic TDF, the PWM model is 
only activated if necessary. 

TDF model of 
computation variant 

t_step 
(ms) 

t_ramp 
(ms) 

t_period 
(ms) 

Time accuracy 
(ms) 

#activations 
per period 

Conventional TDF 0.01 
(fixed) 0.05 5.0 0.01 ( = t_step) 500 

Dynamic TDF variable 0.05 5.0 defined by 
sc_set_time_resolution() 4 

Table 2: Comparison between the conventional and Dynamic TDF model of the PWM 

When introducing Dynamic TDF modules, where module activations may occur at user-defined time 
points or are driven by events, some care should be taken how to combine these new models with 
existing TDF descriptions, which rely on the fixed discrete-time activations. The SystemC AMS 1.0 
standard defines dedicated converter ports or converter modules acting as interfaces between 
different models of computation. In a similar way, the interface between the conventional (static) 
TDF computations and Dynamic TDF will be realized by dedicated converter ports to decouple static 
TDF clusters from dynamically changing clusters. All of these features and their associated language 
constructs and execution semantics are currently being defined as part of a future update of the 
Language Reference Manual of the SystemC AMS standard. 

Summary and outlook 
This paper proposes new features for the SystemC AMS extensions to facilitate a more reactive and 
dynamic behavior of the Timed Data Flow modeling approach as defined in the SystemC AMS 
standard. The Dynamic Timed Data Flow capabilities have been demonstrated, which offer unique 
and fully complementary language constructs and execution semantics enriching the existing TDF 
model of computation. This means that the proven model abstraction strategy using data flow 
semantics is maintained, while user-defined TDF module activations are introduced to enable a 
tighter, yet efficient and time-accurate, synchronization for AMS signal processing and control 
systems. These Dynamic TDF features further expand the capabilities of SystemC AMS to support 
more demanding ESL design methodologies and modeling requirements for heterogeneous systems 
such as in automotive applications. 

The Open SystemC Initiative AMS Working Group will continue detailing the use cases and 
requirements and will standardize the language constructs of Dynamic TDF as part of a planned 
update of the Language Reference Manual of the SystemC AMS standard. Interested in knowing 
more or getting involved in this standardization effort? Please sign up on the AMS discussion 
forum [4] or visit www.systemc.org for more details! 
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