Mantis 2506 - Non-trivial coverage space shapes and joint conditions are difficult to specify with covergroups

Motivation

Coverage spaces often have non-trivial shapes that may be succinctly expressed by expressions or characteristic functions. Cross products often have non-trivial joint conditions on their components that again may be succinctly expressed by expressions or characteristic functions.

Expressing coverage spaces with such shapes and joint conditions is laborious with the existing covergroup features.

In Section 19.5, syntax 19-2

REPLACE

cover_point ::=
 [cover_point_identifier :] coverpoint expression [iff (expression)] bins_or_empty
bins_or_empty ::=
 { {attribute_instance} { bins_or_options ; } }
 | ;
bins_or_options ::=
 coverage_option
 | [wildcard] bins_keyword bin_identifier [[[expression]]] = { open_range_list } [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[]] = trans_list [iff (expression)]
 | bins_keyword bin_identifier [[[expression]]] = default [iff (expression)]
 | bins_keyword bin_identifier = default sequence [iff (expression)]
bins_keyword::= bins | illegal_bins | ignore_bins
open_range_list ::= open_value_range { , open_value_range }
open_value_range ::= value_range

WITH
Note to the editor: some of the BNF changes below are additions to the BNF, even though they are not in blue (new items that should be colored red in the BNF are colored red not blue). This is true for all BNF changes in this proposal.

cover_point ::=
 data_type_or_implicit [cover_point_identifier :] coverpoint expression [iff (expression)] bins_or_empty
bins_or_empty ::=
 { {attribute_instance} { bins_or_options ; } }
 | ;
bins_or_options ::=
 coverage_option
 | [wildcard] bins_keyword bin_identifier [[[covergroup_constant_expression]]] = { covergroupopen_range_list } [with (with_expression)] [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[[covergroup_constant_expression]]] = cover_point_identifier with (with_expression) [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[[covergroup_constant_expression]]] = set_expression [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[]] = trans_list [iff (expression)]
 | bins_keyword bin_identifier [[[covergroup_constant_expression]]] = default [iff (expression)]
 | bins_keyword bin_identifier = default sequence [iff (expression)]
bins_keyword::= bins | illegal_bins | ignore_bins
covergroupopen_range_list ::= covergroupopen_value_range { , covergroupopen_value_range }
open_value_range ::= value_range
covergroup_value_range ::=
	 covergroup_constant_expression
	| [covergroup_constant_expression : covergroup_constant_expression]
with_expression ::= covergroup_constant_expression
set_expression ::= covergroup_constant_expression
covergroup_constant_expression ::= expression

In Section 19.5

REPLACE:

A coverpoint coverage point creates a hierarchical scope and can be optionally labeled. If the label is specified, then it designates the name of the coverage point. This name can be used to add this coverage point to a cross coverage specification or to access the methods of the coverage point. If the label is omitted and the coverage point is associated with a single variable, then the variable name becomes the name of the coverage point. Otherwise, an implementation can generate a name for the coverage point only for the purposes of coverage reporting, that is, generated names cannot be used within the language.

A coverpoint name has limited visibility. An identifier can only refer to a coverpoint in the following contexts:
— 	In the coverpoint list of a cross declaration (see 19.6),
— 	In a hierarchical name where the prefix specifies the name of a covergroup variable. For example, cov1.cp.option.weight where cov1 is the name of a covergroup variable and cp is the name of a coverpoint declared within the covergroup.
— 	Following ::, where the left operand of the scope resolution operator refers to a covergroup. For example, covtype :: cp :: type_option.weight.

For example:

covergroup cg (ref int x , ref int y, input int c);

	coverpoint x; 	// creates coverpoint "x" covering the formal "x"
	x: coverpoint x; 	// INVALID: coverpoint label "x" already exists
	b: coverpoint y; 	// creates coverpoint "b" covering the formal "y"

	c: coverpoint x; 	// creates coverpoint "c" covering the formal "x"

	option.weight = c;	// set weight of "cg" to value of formal "c"

	d: coverpoint x {
		option.weight = 2;	// set the weight of coverpoint "d"
	}
	d.option.weight = 2;	// INVALID use of "d", also syntax error

	cross x, y { 	// Creates implicit coverpoint "y" covering
		// the formal "y". Then creates a cross of
		// coverpoints "x", "y"
		option.weight = c;	// set weight of cross to value of formal "c"
	}
	b: cross y, x; 	// INVALID: coverpoint label "b" already exists

endgroup

WITH:

A coverpoint coverage point creates a hierarchical scope and can be optionally labeled. If the label is specified, then it designates the name of the coverage point. This name can be used to add this coverage point to a cross coverage specification or to access the methods of the coverage point. If the label is omitted and the coverage point is associated with a single variable, then the variable name becomes the name of the coverage point. Otherwise, an implementation can generate a name for the coverage point only for the purposes of coverage reporting, that is, generated names cannot be used within the language.

A data type for the coverpoint may be specified explicitly or implicitly in data_type_or_implicit. In either case, it shall be understood that a data type is specified for the coverpoint. The data type shall be an integral type.

If a data type is specified, then the coverpoint expression shall be assignment compatible with the data type. Values for the coverpoint shall be of the specified data type and shall be determined as though the coverpoint expression were assigned to a variable of the specified data type.

If no data type is specified, then the inferred data type for the coverpoint shall be the self-determined type of the coverpoint expression.

A coverpoint name has limited visibility. An identifier can only refer to a coverpoint in the following contexts:
— 	In the coverpoint list of a cross declaration (see 19.6),
— 	In a hierarchical name where the prefix specifies the name of a covergroup variable. For example, cov1.cp.option.weight where cov1 is the name of a covergroup variable and cp is the name of a coverpoint declared within the covergroup.
— 	Following ::, where the left operand of the scope resolution operator refers to a covergroup. For example, covtype :: cp :: type_option.weight.

Only constant expressions (see 11.2.1), instance constants (for an embedded covergroup), or non-ref arguments to the covergroup are allowed to be used in the following coverpoint constructs:
· with_expression
· select_expression
· open_range_list, or
· an expression specifying a fixed number of bins

Instance constants referenced from a covergroup shall be members of the enclosing class. The initializers for such instance constants shall appear before the referring covergroup constructor call in the class constructor. These initializers shall not appear with the covergroup constructor call in the body of any looping statement (see 12.7) or fork-join_none, either before or after.

Function calls may participate in expressions within the coverpoint, but the following semantic restrictions are imposed:
· Functions shall not contain output or non-const ref arguments (const ref is allowed).
· Functions shall be automatic, preserve no state information, and have no side effects.
· Functions shall not reference non-constant variables outside the local scope of the function.
· User-defined system task or function calls are restricted to constant system function calls (see 11.2.1)

For example:

covergroup cg (ref int x , ref int y, input int c);

	coverpoint x; 	// creates coverpoint "x" covering the formal "x"
	x: coverpoint xz; 	// INVALID: coverpoint label "x" already exists
	b: coverpoint y; 	// creates coverpoint "b" covering the formal "y"

	c: coverpoint x; 	// creates coverpoint "c" covering the formal "x"

	option.weight = c;	// set weight of "cg" to value of formal "c"

	bit [7:0] coverpoint y[31:24]; // creates coverpoint “y” covering the high
 // order 8 bits of the formal “y”

	d: coverpoint x {
		option.weight = 2;	// set the weight of coverpoint "d"
	}
	d.option.weight = 2;	// INVALID use of "d", also syntax error

	cross x, y { 	// Creates implicit coverpoint "y" covering
		// the formal "y". Then creates a cross of
		// coverpoints "x", "y"
		option.weight = c;	// set weight of cross to value of formal "c"
	}
	b: cross y, x; 	// INVALID: coverpoint label "b" already exists

endgroup

In Section 19.5

ADD and RENUMBER 19.5.1 to 19.5.2, 19.5.2 to 19.5.3, etc.

A coverage point bin associates a name and a count with a set of values or a sequence of value transitions. If the bin designates a set of values, the count is incremented every time the coverage point matches one of the values in the set. If the bin designates a sequence of value transitions, the count is incremented every time the coverage point matches the entire sequence of value transitions.

19.5.1 Specifying bins for values

In Section 19.5

REPLACE:

The bins construct allows creating a separate bin for each value in the given range list or a single bin for the entire range of values. To create a separate bin for each value (an array of bins), the square brackets, [], shall follow the bin name. To create a fixed number of bins for a set of values, a number can be specified inside the square brackets. The open_range_list used to specify the set of values associated with a bin shall be constant expressions (see 11.2.1), instance constants (for classes only), or non-ref arguments to the coverage group. It shall be legal to use the $ primary in an open_value_range of the form [expression : $] or [$: expression].

WITH:

The bins construct allows creating a separate bin for each value in the given range list or a single bin for the entire range of values. To create a separate bin for each value (an array of bins), the square brackets, [], shall follow the bin name. To create a fixed number of bins for a set of values, a single positive integral expression number can be specified inside the square brackets. The open_range_list used to specify the set of values associated with a bin shall be constant expressions (see 11.2.1), instance constants (for classes only), or non-ref arguments to the coverage group. It shall be legal to use the $ primary in an open_value_range of the form [expression : $] or [$: expression].

In Section 19.5

ADD

The example above defines a coverage group, cg, in which the signal to be sampled and the extent of the coverage bins are specified as arguments. Later, two instances of the coverage group are created; each instance samples a different signal and covers a different range of values.

19.5.1.1 Coverpoint bin with clause

The with clause specifies that only those values in the open_range_list that satisfy the given expression (i.e., for which the expression evaluates to true) are included in the bin. The truth value of the with clause expression is interpreted in the same way an expression is interpreted in the condition of a procedural if statement (see 12.4). In the expression, the name item shall be used to represent the candidate value. The candidate value is of the same type as the coverpoint.

The name of the coverpoint itself may be used in place of the open_range_list to denote all values of the coverpoint. Only the name of the coverpoint containing the bin being defined shall be allowed; no other coverpoint names shall be permitted.

Consider the following example:

 a: coverpoint x
 {
 bins mod3[] = {[0:255]} with (item % 3 == 0);
 }

This bin definition selects all values from 0 to 255 that are evenly divisible by 3.

 coverpoint b
 {
 bins func[] = b with (myfunc(item));
 }

Note the use of the coverpoint name b to denote that the with_expression will be applied to all values of the coverpoint.

As with array manipulation methods involving with (see 7.12), if the expression has side effects, the results are unpredictable.

The with clause behaves as if the expression were evaluated for every value in the open_range_list at the time the covergroup instance is constructed. By default the with_expression is applied to the set of values in the open_range_list prior to distribution of values to the bins. If the distribution of values is desired before with_expression application the distribute_first covergroup option (see 19.7.1) can be used to achieve this ordering. The result of applying a with_expression shall preserve multiplicity of bin items as well as bin order. The intent of these rules is to allow for the use of non-simulation analysis techniques to calculate the bin (for example, formal symbolic analysis), or for caching of previously calculated results.

19.5.1.2 Coverpoint bin set expression

The set_expression syntax allows specifying an expression yielding an array of values that define the bin. Any array whose element type is assignment compatible with the coverpoint type is permitted, with the exception that associative arrays are not permitted.

Identifiers declared within the covergroup (such as coverpoint identifiers and bin identifiers) are not visible. The expression is evaluated when the covergroup instance is constructed.

In Section 19.5.6

REPLACE

A coverpoint expression and the expressions in a bins construct are involved in comparison operations in order to determine into which bins a particular value falls. Let e be the coverpoint expression and b be an expression in a bins open_range_list. The following rules shall apply when evaluating e and b: For wildcard bins, x and z values in b shall be treated as all possible 0 and 1 values prior to applying these rules.
a) e shall be self-determined
b) b shall be evaluated as though it were the right-hand side of an assignment to a variable whose type is type(e). Enumeration values in expressions b and e shall first be treated as being in an expression context. This implies that the type of an enumeration value is the base type of the enumeration and not the enumeration type itself. An implementation shall issue a warning under the following conditions:
1) If e is unsigned and b is signed with a negative value.
2) If assigning b to a variable of type type(e) would yield a value that is not equal to b under normal comparison rules for ==.
3) If b yields a value with any x or z bits. This rule does not apply to wildcard bins because x and z shall be treated as 0 and 1 as described above.

WITH

A coverpoint expression, and the expressions in a bins construct, and the coverpoint type, if present, are involved in comparison operations in order to determine into which bins a particular value falls. Let e be the coverpoint expression and b be an expression in a bins open_range_list. The following rules shall apply when evaluating e and b: For wildcard bins, x and z values in b shall be treated as all possible 00 and 11 values prior to applying these rules.
a) e shall be self-determined
b) If there is no coverpoint type, then b shall be evaluated as though it were the right-hand side of an assignment to a variable whose type is type(e). In the presence of a coverpoint type, e and b shall be evaluated as though it were the right-hand side of an assignment to a variable whose type is the coverpoint type. Enumeration values in expressions b and e shall first be treated as being in an expression context. This implies that the type of an enumeration value is the base type of the enumeration and not the enumeration type itself. An implementation shall issue a warning under the following conditions if a coverpoint type is not present:
1) If e is unsigned and b is signed with a negative value.
2) If assigning b to a variable of type type(e) would yield a value that is not equal to b under normal comparison rules for ==.
3) If b yields a value with any xx or zz bits. This rule does not apply to wildcard bins because xx and zz shall be treated as 00 and 11 as described above.
An implementation shall issue a warning under the following conditions if a coverpoint type is present.
1) If the coverpoint type is unsigned and b is signed with a negative value.
2) If assigning b to a variable of coverpoint type would yield a value that is not equal to b under normal comparison rules for ==.
3) If b yields a value with any x or z bits. This rule does not apply to wildcard bins because x and z shall be treated as 0 and 1 as described above.

In Section 19.6, syntax 19-4
REPLACE

cover_cross ::=
 [cross_identifier :] cross list_of_coverpoints [iff (expression)] select_bins_or_empty
list_of_coverpoints ::= cross_item , cross_item { , cross_item }
cross_item ::=
 cover_point_identifier
 | variable_identifier
select_bins_or_empty ::=
 { { bins_selection_or_option ; } }
 | ;
bins_selection_or_option ::=
 { attribute_instance } coverage_option
 | { attribute_instance } bins_selection
bins_selection ::= bins_keyword bin_identifier = select_expression [iff (expression)]
select_expression ::=
 select_condition
 | ! select_condition
 | select_expression && select_expression
 | select_expression || select_expression
 | (select_expression)
select_condition ::= binsof (bins_expression) [intersect { open_range_list }]
bins_expression ::=
 variable_identifier
 | cover_point_identifier [. bin_identifier]
open_range_list ::= open_value_range { , open_value_range }
open_value_range ::= value_range

WITH

cover_cross ::=
 [cross_identifier :] cross list_of_coverpoints [iff (expression)] select_bins_or_emptycross_body
list_of_coverpoints ::= cross_item , cross_item { , cross_item }
cross_item ::=
 cover_point_identifier
 | variable_identifier
select_bins_or_emptycross_body ::=
 { { bins_selection_or_option ; } }
 | function_declaration
 | ;
bins_selection_or_option ::=
 { attribute_instance } coverage_option
 | { attribute_instance } bins_selection
bins_selection ::= bins_keyword bin_identifier = select_expression [iff (expression)]
select_expression ::=
 select_condition
 | ! select_condition
 | select_expression && select_expression
 | select_expression || select_expression
 | (select_expression)
 | select_expression with (with_expression) [matches integer_expression]
 | cross_identifier
 | cross_set_expression [matches integer _expression]
select_condition ::= binsof (bins_expression) [intersect { covergroupopen_range_list }]
bins_expression ::=
 variable_identifier
 | cover_point_identifier [. bin_identifier]
covergroup_open_range_list ::= covergroupopen_value_range { , covergroupopen_value_range }
open_value_range ::= value_range
covergroup_value_range ::=
	 covergroup_constant_expression
	| [covergroup_constant_expression : covergroup_constant_expression]
with_expression ::= covergroup_constant_expression
integer_expression ::=
 covergroup_constant_expression
 | $
cross_set_expression ::= covergroup_constant_expression

In Section 19.6

REPLACE

The label for a cross declaration provides an optional name. The label also creates a hierarchical scope for the bins defined within the cross.

A cross name has limited visibility. An identifier can only refer to a cross in the following contexts:
— 	In a hierarchical name where the prefix specifies the name of a covergroup variable. For example, cov1.crs.option.weight where cov1 is the name of a covergroup variable and crs is the name of a cross declared within the covergroup.
— 	Following :: where the left operand of the scope resolution operator refers to a covergroup. For example, covtype :: crs :: type_option.weight.

WITH

The label for a cross declaration provides an optional name. The label also creates a hierarchical scope for the bins defined within the cross.

A cross name has limited visibility. An identifier can only refer to a cross in the following contexts:
— 	In a hierarchical name where the prefix specifies the name of a covergroup variable. For example, cov1.crs.option.weight where cov1 is the name of a covergroup variable and crs is the name of a cross declared within the covergroup.
— 	Following :: where the left operand of the scope resolution operator refers to a covergroup. For example, covtype :: crs :: type_option.weight.

Identifiers and function calls within the cross are restricted in the same way as identifiers and function calls within coverpoints (see 19.5). Functions declared within the cross shall not be visible outside of that scope.

In Section 19.6

ADD and RENUMBER 19.6.1 to 19.6.2, 19.6.2 to 19.6.3, etc.

19.6.1: Defining cross coverage bins

In addition to specifying the coverage points that are crossed, SystemVerilog includes a powerful set of operators that allow defining cross coverage bins. Cross coverage bins can be specified in order to group together a set of cross products. A cross coverage bin associates a name and a count with a set of cross products. The count of the bin is incremented every time any of the cross products match, i.e., every coverage point in the cross matches its corresponding bin in the cross product.

In Section 19.6

ADD

The bins selected can be combined with other selected bins using the logical operators && and || .

19.6.1.1 Cross bin with clause

The with clause in a select_expression specifies that only those bin tuples in the subordinate select_expression for which sufficiently many value tuples satisfy the given with_expression (i.e., for which the expression evaluates to true) are selected. The truth value of the with clause expression is interpreted in the same way an expression is interpreted in the condition of a procedural if statement (see 12.4).

In the expression, occurrences of cross_items (i.e., those coverpoint_identifiers or variable_identifiers occurring in the list_of_coverpoints for the cross) represent corresponding values in the value tuples of the candidate bin tuples.

When a cross_identifier is used as a select_expression, it selects all possible bin tuples. When used with a with clause, the cross bin can be completely described using a with_expression. Only the cross_identifier of the enclosing cross may be used; other cross_identifiers shall be disallowed.

The optional matches clause specifies the selection policy. The integer_expression shall evaluate to a positive integer or $, representing the minimum number of satisfying value tuples required to select the candidate bin tuple. The $ symbol specifies that all value tuples must satisfy the expression to select the candidate bin tuple. When the matches clause is omitted, the selection policy defaults to one.

Consider the following example:

 logic [0:7] a, b;
 parameter [0:7] mask;
 ...
 covergroup cg;
 coverpoint a
 {
 bins low[] = {[0:127]};
 bins high = {[128:255]};
 }
 coverpoint b
 {
 bins two[] = b with (item % 2 == 0)
 bins three[] = b with (item % 3 == 0)
 }
 X: cross a,b
 {
 bins apple = X with (a+b < 257) matches 127;
 bins cherry = (binsof(b) intersect [0:50] && binsof(a.low) intersect [0:50]) with (a==b);
 bins plum = binsof(b.two) with (b > 12) || binsof(a.low) with (a & b & mask);
 }
 endgroup

The bin structure for coverpoint a is straightforward - bin array low contains 128 single-element bins for each value between 0 and 127, and bin high contains all values from 128 to 255. The bins of coverpoint b are specified using the with clause; bin array two contains a bin for each even value, and three contains a bin for each value divisible by 3.

The cross X crosses coverpoints a and b. Three cross bins are defined, apple, cherry, and plum. apple consists of all bin tuples for which a+b < 257 for at least 127 value tuples. In this example apple would consist of three coverpoint bin tuples: <high, two[0]>, <high, two[1]>, and <high, three[0]>.

The cross bin cherry demonstrates using the with clause on a complex select_expression. First, those bin tuples consisting of a bin from b containing a value between 0 and 50 are selected; then, the && operator selects from those bin tuples the bin tuples with a bin from a.low containing a value between 0 and 50. The with clause then selects from those only the bin tuples containing at least one value tuple where a==b.

The cross bin plum demonstrates a select_expression composed of with expressions. The first with expression selects those bin tuples containing bins in the b.two bin array whose values are greater than 12. The || operator then adds the bin tuples selected by the second with expression – namely those containing a bin from a.low and for which the bitwise-AND of the a-value, b-value and a mask is non-zero for some values a and b in the bins of the bin tuple.

As with array manipulation methods involving with (see 7.12), if the expression has side effects, the results are unpredictable.

The with clause behaves as if the expression were evaluated for every value tuple of every bin tuple selected by the subordinate select_expression at the time the covergroup instance is constructed. However, implementations are not required to schedule the evaluation events when calculating the bin tuples in the cross bin; all, some, or none of the events may be scheduled. This allows for the use of non-simulation analysis techniques to calculate the cross bin (for example, formal symbolic analysis), or for caching of previously calculated results.

19.6.1.2 Cross bin automatically-defined types

A cross defines a coverage space composed of tuples of values. To aid in describing the structure of that space, SystemVerilog provides automatically-defined types for these tuples and queues of tuples in each cross. The types are named CrossValType and CrossQueueType. The scope of the type names is the cross itself and the types are not accessible outside of this scope.

The definition of CrossValType is a SystemVerilog struct consisting of one member for each coverpoint in the cross. The name and type of each field are the name and type of the corresponding coverpoint. If range bounds for the coverpoint type are not evident (e.g., the coverpoint expression is a concatenation and no other type is specified), the bounds are assumed to be [$bits(coverpoint_expression)-1:0]. The definition of CrossQueueType is an unbounded queue of CrossValType elements.

The cross types shall be considered as implicit typedefs in the body of the cross, even though the syntax does not allow typedefs to appear there explicitly. Consider the following example:

 covergroup cg (ref logic [0:3] x, ref logic [0:7] y, ref logic [0:2] a);
 xy: coverpoint {x,y};
 coverpoint y;
 XYA: cross xy, a
 {
 // the cross types are as if defined here as follows:
 // typedef struct {logic [11:0] xy;logic [0:2] a;} CrossValType;
 // typedef CrossValType CrossQueueType[$];
 };
 endgroup

Section 19.6.1.3 shows how CrossValType and CrossQueueType can be used to compute explicit enumerations of cross bins.

19.6.1.3 Cross bin set expression

The cross_set_expression syntax allows specifying an expression yielding a queue of elements that define the cross bin, similarly to the set_expression for coverpoint bins. However, for cross bins the type of the queue shall be the cross's CrossQueueType, whose elements are of type CrossValType (see Sec 19.6.1.2).

The selection of bin tuples for the cross bin by the elements of the cross_set_expression is subject to the same policy specification as the cross bin with expression (see 19.6.1.1). The optional matches expression specifies the number of value tuples in a bin tuple that must be present in the cross_set_expression for that bin tuple to be selected. The default policy is one, denoting the policy where a single value tuple from a bin tuple must exist in the cross_set_expression to select the bin tuple.

For example,

 int a;
 logic [7:0] b;
 covergroup cg;
 coverpoint a { bins x[] = {[0:10]}; }
 coverpoint b { bins y[] = {[0:20]}; }
 aXb : cross a, b
 {
 bins one = '{ '{1,2}, '{3,4}, '{5,6} };
 }
 endgroup

The cross bin definition uses an array literal to define the bin tuples in cross bin one as <a.x[1], b.y[2]>, <a.x[3], b.y[4]>, and <a.x[5], b.y[6]>. Here, the cross bin provides the context required to determine the type of the literal (in this case, the cross's CrossQueueType). In general, literal arrays are not required; any expression may be used as long as it evaluates to the cross's CrossQueueType. A cast is required if the type is assignment-incompatible with the cross type.

Below is a more involved example:

 module mod_m;

 logic [31:0] a, b;

 covergroup cg(int cg_lim);
 coverpoint a;
 coverpoint b;
 aXb : cross a, b
 {
 function CrossQueueType myFunc1(int f_lim);
 for (int i = 0; i < f_lim; ++i)
 myFunc1.push_back(CrossValType'('{i,i}));
 endfunction

 bins one = myFunc1(cg_lim);
 bins two = myFunc2(cg_lim);

 function CrossQueueType myFunc2(logic [31:0] f_lim);
 for (logic [31:0] i = 0; i < f_lim; ++i)
 myFunc2.push_back('{2*i,2*i});
 endfunction
 }
 endgroup

 cg cg_inst = new(3);
 endmodule

Here we use functions to create the queues that define the cross bins. Note that the coverpoints a and b are 32 bits wide; iterating over all value tuples using a with expression would be computationally expensive. By using functions, the user is able to restrict the bin computation to a reasonable subset of value tuples; the entire cross space need not be considered.

The function myFunc1 requires a cast when calling push_back since the array item’s type is defined using a type which does not match the automatically-defined cross type, but is cast-compatible. Cross bin two, however, does not require a cast, since myFunc2 is defined using explicit references to the cross bin types. The call to myFunc2 takes advantage of SystemVerilog's rule allowing forward references to functions.

As shown, the bins for cg_inst are as follows:

 cg_inst.aXb.one = <0,0>, <1,1>, <2,2>
 cg_inst.aXb.two = <0,0>, <2,2>, <4,4>

In 19.7.1, table 19-3

ADD to the table

Option name: distribute_first=boolean
Default: 0
Description: When true, instructs the tool to perform value distribution to the bins prior to application of the with_expression.

In A.2.11

REPLACE

cover_point ::=
 [cover_point_identifier :] coverpoint expression [iff (expression)] bins_or_empty
bins_or_empty ::=
 { {attribute_instance} { bins_or_options ; } }
 | ;
bins_or_options ::=
 coverage_option
 | [wildcard] bins_keyword bin_identifier [[[expression]]] = { open_range_list } [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[]] = trans_list [iff (expression)]
 | bins_keyword bin_identifier [[[expression]]] = default [iff (expression)]
 | bins_keyword bin_identifier = default sequence [iff (expression)]
bins_keyword::= bins | illegal_bins | ignore_bins
range_list ::= value_range { , value_range }
trans_list ::= (trans_set) { , (trans_set) }
trans_set ::= trans_range_list { => trans_range_list }
trans_range_list ::=
trans_item
| trans_item [* repeat_range]
| trans_item [–> repeat_range]
| trans_item [= repeat_range]
trans_item ::= range_list
repeat_range ::=
expression
| expression : expression
cover_cross ::=
 [cross_identifier :] cross list_of_coverpoints [iff (expression)] select_bins_or_empty
list_of_coverpoints ::= cross_item , cross_item { , cross_item }
cross_item ::=
 cover_point_identifier
 | variable_identifier
select_bins_or_empty ::=
 { { bins_selection_or_option ; } }
 | ;
bins_selection_or_option ::=
 { attribute_instance } coverage_option
 | { attribute_instance } bins_selection
bins_selection ::= bins_keyword bin_identifier = select_expression [iff (expression)]
select_expression ::=
 select_condition
 | ! select_condition
 | select_expression && select_expression
 | select_expression || select_expression
 | (select_expression)
select_condition ::= binsof (bins_expression) [intersect { open_range_list }]
bins_expression ::=
 variable_identifier
 | cover_point_identifier [. bin_identifier]
open_range_list ::= open_value_range { , open_value_range }
open_value_range ::= value_range

WITH

cover_point ::=
 data_type_or_implicit [cover_point_identifier :] coverpoint expression [iff (expression)] bins_or_empty
bins_or_empty ::=
 { {attribute_instance} { bins_or_options ; } }
 | ;
bins_or_options ::=
 coverage_option
 | [wildcard] bins_keyword bin_identifier [[[covergroup_constant_expression]]] = { covergroupopen_range_list } [with (with_expression)] [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[[expression]]] = cover_point_identifier with (with_expression) [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[[expression]]] = set_expression [iff (expression)]
 | [wildcard] bins_keyword bin_identifier [[]] = trans_list [iff (expression)]
 | bins_keyword bin_identifier [[[covergroup_constant_expression]]] = default [iff (expression)]
 | bins_keyword bin_identifier = default sequence [iff (expression)]
bins_keyword::= bins | illegal_bins | ignore_bins
covergroup_range_list ::= covergroup_value_range { , covergroup_value_range }
trans_list ::= (trans_set) { , (trans_set) }
trans_set ::= trans_range_list { => trans_range_list }
trans_range_list ::=
trans_item
| trans_item [* repeat_range]
| trans_item [–> repeat_range]
| trans_item [= repeat_range]
trans_item ::= range_list
repeat_range ::=
expression
| expression : expression
cover_cross ::=
 [cross_identifier :] cross list_of_coverpoints [iff (expression)] select_bins_or_emptycross_body
list_of_coverpoints ::= cross_item , cross_item { , cross_item }
cross_item ::=
 cover_point_identifier
 | variable_identifier
select_bins_or_emptycross_body ::=
 { { bins_selection_or_option ; } }
 | function_declaration
 | ;
bins_selection_or_option ::=
 { attribute_instance } coverage_option
 | { attribute_instance } bins_selection
bins_selection ::= bins_keyword bin_identifier = select_expression [iff (expression)]
select_expression ::=
 select_condition
 | ! select_condition
 | select_expression && select_expression
 | select_expression || select_expression
 | (select_expression)
 | select_expression with (with_expression) [matches integer_expression]
 | cross_identifier
 | cross_set_expression [matches integer _expression]
select_condition ::= binsof (bins_expression) [intersect {covergroupopen_range_list }]
bins_expression ::=
 variable_identifier
 | cover_point_identifier [. bin_identifier]
open_range_list ::= open_value_range { , open_value_range }
open_value_range ::= value_range
covergroup_value_range ::=
 covergroup_constant_expression
 | [covergroup_constant_expression : covergroup_constant_expression]
with_expression ::= covergroup_constant_expression
set_expression ::= covergroup_constant_expression
integer_expression ::=
 covergroup_constant_expression
 | $
cross_set_expression ::= covergroup_constant_expression

	3
	

