Clarifications in clauses 15 and 16, clocking blocks and programs

In 15.2, MODIFY the text as follows:

15.2 Clocking Block Declaration

The clocking_event designates a particular event to act as the clock for the clocking block. Typically, this expression
is either the posedge or negedge of a clocking signal. The timing of all the other signals specified in a given clocking
block is governed by the clocking event. All input or inout signals specified in the clocking block are sampled when
the corresponding clock event occurs. Likewise, all output or inout signals in the clocking block are driven when the
corresponding clock event occurs. See 15.12 and 15.14 for details on the precise timing semantics of sampling and
driving clocking signals. Bidirectional signals (inout) are sampled as well as driven. An output signal cannot be read,
and an input signal cannot be driven.

In 15.10, ADD the following blue text:

15.10 Cycle delay

What constitutes a cycle is determined by the default clocking in effect (see 15.11). If no default clocking has been
specified for the current module, interface, or program then the compiler shall issue an error.

Example:

5; // wait 5 cycles (clocking events) using the default clocking
(J + 1); // wait j+1 cycles (clocking events) using the default clocking

The cycle delay statement shall wait for the specified number of clocking events. If a ##1 statement is executed at a
simulation time that is not coincident with the associated clocking event, the calling process shall be delayed a
fraction of the associated clock cycle.

Assuming the following declaration: default clocking @(posedge clk);

These semantics guarantees
1) The following two statements are equivalent: ## N; << repeat N @(posedge clk);
2) Symmetry between ## statements, clocking-block drives and samples.

In 15.12, MODIFY the text as follows:

15.12 Input sampling

All clocking block inputs (input or inout) are sampled at the corresponding clocking event. If the input skew is not
an explicit #0, then the value sampled corresponds to the signal value at the Postponed region of the time step skew
time-units prior to the clocking event (see Figure 15-1 in 15.3). If the input skew is an explicit #0, then the value
sampled corresponds to the signal value in the Observed region. In this case, the newly sampled values shall be
available for reading at the end of the Observe region processing.

NOTE — When the clocking block event is triggered by the execution of a program, there is a potential race between the
update of a clocking-block input value and programs that read that value. This race does not exist when the clocking block
event is triggered from within a module.

Upon processing its specified clocking event, a clocking block shall update its sampled values before triggering the
event associated with the clocking block name. Thus, a process that waits for the clocking block itself is guaranteed
to read the updated sampled values, regardless of the scheduling region in which either the waiting or the triggering
processes execute. For example:

clocking cb @(negedge clk);
input v;
endclocking

always @(cb) $disdplay(cb.v);
always @(negedge clk); $disdplay(cb.v);

The first always block above is guaranteed to display the updated sampled value of signal v. In contrast, the second
always exhibits a potential race, and may display the old or the newly updated sampled value.

In 15.14, ADD the following blue text and DELETE the following red strikethrough text:

15.14 Synchronous drives

Clocking block outputs (output or inout) are used to drive values onto their corresponding signals, but at a
specified time. That is, the corresponding signal changes value at the indicated clocking event as modified by the
output skew.

For zero skew clocking block outputs with no cycle delay, synchronous drives shall schedule new values in the NBA
region of the current time unit slot. This has-the-effect-of causing-the-big causes the loop in Figure 9-1 to iterate from
the rReactive/rRe-inactive regions back #to the NBA region of the current time unitslot. For clocking block outputs
with non-zero skew or non-zero cycle delay, the corresponding signal shall be scheduled to change value in the NBA
region of a future time writ-slot.

The syntax to specify a synchronous drive is similar to an assignment:

Examples:
bus.data[3:0] <= 4°h5; // drive data in the NBA region of the current cycle
##1 bus.data <= 8’hz; // wait 1 (bus) cycle and then drive data
##2; bus.data <= 2; // wait 2 default clocking cycles, then drive data
bus.data <= ##2 r; // remember the value of r and then drive

// data 2 (bus) cycles later

Regardless of when the drive statement executes (due to event_count delays), the driven value is assigned to the
corresponding signal only at the time specified by the output skew.

It is possible for a drive statement to execute asynchronoushy at a time that does-net-correspond-to-is-asseciated is

not coincident with its clocking event. Such drive statements shall be processed as if they had executed at the time of
the next clocking event. Ary The values read on the right hand side of the drive statement are shall be read
immediately, but the processing of the statement value drive is delayed until the time of the next clocking event. This

has implications on synchronous drive resolution (See 15.14.2)-and-##-cycle-delay-scheduling.

Note — Unlike a regular procedural assignment, the synchronous drive syntax does not allow intra-assignment delays.

15.14.1 Drives and nonblocking assignments

Although synchronous drives use the same operator syntax as nonblocking variable assignments, they are not the
same. However, they do share certain characteristics. One similarity is that the update of variables and wires
connected to clocking block outputs (and inouts) are scheduled in the NBA region. Also, like nonblocking variable
assignments, a key feature of inout clocking variables and synchronous drives is that a drive does not change the
clocking block input. This is because reading the input always yields the last sampled value, and not the driven
value.

15.14.2 Drive value resolution

The driven value of nibble is 4”b0xx1, regardless of whether nibble isareg orawire.

If a given clocking output is driven by more than one assignment in the same time unitslot, but the assignments are
scheduled to mature at different future times due to the use of cycle delay, then no drive value resolution shall be
performed, and tFhe drives shall be applied with-classic-\ erHog using NBA transport delay semantics.

Ha-given-clocking-output-is-driven-asynchroneuslhy When multiple drives are applied to a given clocking output at
different times units-within the same clock cycle (between clocking events) then drive value resolution is performed

as if all such assignments drives were made at the same time grit in which the next clocking event occurs.

When the same signal variable is an output from multiple clocking blocks, the last drive determines the value of the
variable signal. This allows a single module to model multi-rate devices, such as a DDR memory, using a different
clocking block to model each active edge. For example:

regj;

clocking pe @(posedge clk);
output j ;
endclocking

clocking ne @(negedge clk) ;
output j ;
endclocking

The variable-signal j is an output to-from two clocking blocks using different clocking events (posedge versus
negedge). When driven, the variable sigral j shall take on the value most recently assigned by either clocking block.
A clocking block output only assigns a value to its associated signal variable in clock cycles where a synchronous
drive occurs.

TFhe-Multiple clocking block outputs driving a net (i.e., through different ports) cause the net to be driven to its
resolved signal value. When a clocking block output corresponds to a wire, a driver for that wire is created that is
updated as if by a continuous assignment from a register-variable inside the clocking block that is updated as a
nonblocking assignment. This semantic model applies to each clocking block output that drives the net.

It is possible to use a procedural assignment to assign to a signal which is associated with a clocking block output.
When the associated signal is a variable, the procedural assignment simply assigns a new value to the variable, and
the variable shall hold that value until another assignment occurs (either from a clocking block output or another
procedural assignment). It shall be illegal to drive a signal variable with an explicit continuous assignment or a
primitive when that signal is associated with a clocking block output.

The use of the term “variable” above is appropriate. The declaration “register j” is definitely a variable.
Since the text is referring explicitly to variables, using “signal” seems to confuse the issue.

In 16.2, MODIFY the text as follows:

16.2 The program construct

Type and data declarations within the program are local to the program scope and have static lifetime.
Variables declared within the scope of a program are called program variables. Program variables, including
variables declared as ports, shall only be assigned using blocking assignments, continuous assignments, or as
output arguments of tasks or functions. Non-program variables can only be assigned using non-blocking
assignments. Using non-blocking assignments with program variables or blocking assignments with design
(non-program) variables shall be an error. References to program variables from outside any program block
shall be an error.

16.2.1 Operation of program port connections in the absence of clocking blocks

The interaction of clocking blocks with program ports is described in Clause 15. Clocking blocks are an
important component in establishing race-free behavior between designs and testbenches. However, it is
possible to construct a program that contains no clocking blocks. Such programs are more prone to races
when interacting with design code. This subclause defines the interaction of program ports with design code
in the absence of clocking blocks.

Program ports are program-scope objects. As such, program variable ports are subject to the blocking
assignment restrictions described in 16.2. Another property of program ports is that they are always
connected to design objects (wires and variables), since programs can only be instantiated in design scopes.

In the absence of clocking blocks, the concept of NBA-like drives across the program/design boundary no
longer applies (except in the case of an NBA assignment via hierarchical reference). Rather, variables on the
other side of a port connection may be updated right away, in the current scheduling region. The same
applies to the driving and resolution of wires on the other side of a port connection.

Constructs that are sensitive to such cross-region updates and drives, however, shall be scheduled in the
scheduling region that corresponds to their declarative scope. Thus if a program input variable port is
updated in the aActive region, any continuous assignment that uses that input variable on its right hand side
shall be scheduled for evaluation in the rReactive region. Similarly, if program code drives an inout wire
port with a new value, the change on that port is immediately driven into the connected design scope. The
wire is fully resolved and propagated in the rReactive region. However, any design constructs that are
sensitive to changes on the wire shall be scheduled for evaluation in the aActive region. Any program
constructs that are sensitive to changes on the wire shall be scheduled in the current rReactive or fRe-
inactive regions.

Consider the following example design, which contains both design constructs and program constructs:

modulle m;

reg r;

wire dwl, dw2;

initial begin
r = 0;
#10 r = 1;

end

assign dwl = r;
p p_i(dw2, dwl);

always @(dw2)
$Sdisplay('dw2 is %b™, dw2);
endmodule

program p(output pw2, input pwl);
assign pw2 = pwl;
endprogram

In this design, the flow of data originates in reg r and terminates in the execution of the always construct.
Due to the presence of program p, it is necessary for simulators to perform multiple iterations ef-the-big-
scheduling over the entire loop in Figure 9-1. This is because the assign statement in program p shall not
be executed until the rReactive region. And, then when it executes and triggers activity on the always
construct in module m, that always construct is not alewed-te executed until the aActive region in the next
iteration of the big-relaxation loop.

Allowing blocking continuous assignments between a program and the design does create the potential
for races in programs that read the design values directly. While there’s no problem with the above
proposal, perhaps we should consider the addition of the nonblocking continuous assignment. The only
difference between the continuous and the nonblocking assignment is that the update of the LHS would
be scheduled in the NBA region. Then the program example above could be written as:

