
Separate Compilation Discussion
The objectives of supporting separate compilation are:

• Support compilation of collections of SystemVerilog files. This is known as a unit
of compilation.

• Support restricted global reference between units of compilation of
SystemVerilog code.

• Support definition of items that can be shared within a unit of compilation.
• Support collecting declarative items that into a restricted namespace that can be

referenced globally and imported. This is the purpose of the package definition.

In order to support separate compilation and to simplify the current semantics of $root
within SystemVerilog the following changes are proposed:

• Change the definition of $root within Section 18 (18.1, 18.2, 18.3, 18.6, 18.9) to
limit the items that can be placed in $root to:

o any item that can be defined in a package
o an import of one or more items from a package
o modules, macromodules, primitives, programs, interfaces, and packages
o directives: bind

• This implies the removal of instances (module, interface, program) (Section 18),
statements, genvar, and assert and cover statements (Section 17.12) from $root.

• Rework relation between $root and library statements (Section 21.3).
• Include packages and programs within libraries within Section 21.2.
• Include timeunit, timeprecision, property, and sequence declarations within the

package (Section 18.4)
• Addition of two new sections on packages and separate compilation.

Within Section 17.12 change (as shown in red):
A concurrent assertion statement can be specified in:

— an always block or initial block as a statement, wherever these blocks can appear\

— a module as a module_or_generate_item

— an interface as an interface_or_generate_item

— a program as a non_port_program_item

— $root

Within Section 18.1 change (as shown in red):
— A global declaration space, visible to all modules, interfaces, and programs at all levels of

hierarchy within the unit of compilation (see Section 18.3)

—
—

Separate compilation support
A concept of packages to simplify sharing of data, types, classes, tasks and functions

Within Section 18.2 change as shown in red.
18.2 The $root top level

In SystemVerilog there is a top level called $root, which is the whole source text within a
compilation unit. This allows declarations outside any named modules or interfaces, unlike
Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before
elaboration.

The order of elaboration shall be: First, look for explicit instantiations in $root. If none, then look
for implicit instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations
depth-first, in source order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules, programs, packages, and
interfaces. Modules can include the declaration and use of other modules and interfaces. Interfaces
can include the declaration and use of other interfaces. A module or interface need not be declared
before it is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become
implicitly instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:

—

—

—

—

—

—

has a single occurrence per compilation unit

can be distributed across any number of files

can contain any item that can be defined within a package and the definitions are in a
namespace local to the compilation unit and can be accessed through the hierarchy within the
unit of compilation

can contain declarations of modules, macromodules, primitives, programs, interfaces, and
packages which are in a global namespace

can contain one timeunit and timeprecision directive within the unit of compilation

variable and net definitions are in a local global name space and can be accessed throughout
the hierarchy within the unit of compilation

— task and function definitions are in a local global name space and can be accessed throughout

the hierarchy within the unit of compilation

— shall not contain initial or always procedures

— can contain procedural statements, which shall be executed one time, as if in an initial
procedure

— can contain assertion declarations, assertion statements and bind directives

—

—

—

—

—

—

—

—

shall not contain instances, procedural statements, genvar declaration, or assert or cover
statements

Modules:

can have any number of module definitions

can have any number of module instances, which create new levels of hierarchy

can be distributed across any number of files, and can be defined in any order

variable and net definitions are in the module instance name space and are local to that scope

task and function definitions are in the module instance name space and are local to that scope

can contain any number of initial and always procedures

shall not contain procedural statements that are not within an initial procedure, always
procedure, task, or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search
rules, and then searches in the $root global name space. An identifier in the $root global name
space can be explicitly selected by pre-pending “$root.” to the identifier name. For example, a
$root global variable named system_reset can be explicitly referenced from any level of
hierarchy using $root.system_reset.

The $root space can be used to model abstract functionality without modules. The following
example illustrates using the $root space with just declarations, statements and functions.

typedef int myint;

function void main ();

myint i,j,k;
$display ("entering main...");
left (k);
right (i,j,k);
$display ("ending... i=%0d, j=%0d, k=%0d", i, j, k);

endfunction

function void left (output myint k);

k = 34;
$display ("entering left");

endfunction

function void right (output myint i, j, input myint k);

$display ("entering right");
i = k/2;
j = k+i;

endfunction

main();

ADD new sections 18.3 and 18.4 after Section 18.2
(renumber succeeding sections and syntax boxes):

18.3 Separate Compilation Support

SystemVerilog supports separate compilation through the idea of a separately compiled unit. The
unit of compilation is defined as a collection of one or more files. This collection of files share a
local root and $root refers to the definitions within the unit of compilation. The exact mechanism
for defining which files go into each individual compilation units is tool specific. The requirement
is that a tool provides a mechanism to define the list of files which make up a compilation unit.
Two extreme cases are:

1. all files make a single compilation unit (in which case the items in $root are accessible
anywhere within the design)

2. each file is a separate compilation unit (in which case the items in $root are accessible
only to the items defined within the file)

The items that can be shared between units of compilation are modules, macromodules, primitives,
programs, interfaces, and packages. All other items which are defined within the local root cannot
be accessed by name outside the unit of compilation. Access to the items in $root that are not
shared can be accessed using the PLI which must provide an iterator to iterate through all of the
units of compilation. Collision of items which are shared obey the standard rules as if the items
where loaded together as a single text stream.

References within a unit of compilation can access objects within the $root space either by the
object's name (<object_name>) or by $root.<object_name>. In resolving a reference,
SystemVerilog follows the standard name search rules within the current separate compilation unit,
and then searches the $root for the current separate compilation unit, and then searches the scope
containing modules, macromodules, primitives, programs, interfaces.

Verilog supports the idea that compiler directives once seen by a tool will apply to all forthcoming
modules or files in the design. This behavior shall be supported within a separately compiled unit;
however, compiler directives from one separately compiled unit shall not impact the behavior of
another separately compiled unit.

18.4 Packages

SystemVerilog packages provide an additional mechanism for sharing parameters, data, type, task,
function, sequence, and property declarations amongst multiple SystemVerilog modules,
interfaces and programs. Packages are explicitly named scopes appearing at the outer level of the
source text (at the same level as modules, primitives, interfaces, etc.). Types, variables, tasks,
functions, sequences, and properties may be declared within a package. Such declarations may be
referenced within modules, macromodules, interfaces, programs, and other packages by either
import or hierarchical name.

package_declaration ::= // A.1.3
{ attribute_instance } package package_identifier
[timeunits_declaration] { { attribute_instance } package_item }
endpackage [: package_identifier]

package_item ::= // New A.1.9

 package_or_generate_item_declaration
| specparam_declaration
| concurrent_assertion_item_declaration
| anonymous_program

package_or_generate_item_declaration ::=
 net_declaration
 | data_declaration
 | task_declaration
 | function_declaration
 | dpi_import_export
 | extern_constraint_declaration
 | extern_method_declaration
 | class_declaration
 | parameter_declaration ;
 | local_parameter_declaration

anonymous_program ::= program ; { anonymous_program_item } endprogram

anonymous_program_item ::=

 task_declaration
| function_declaration
| class_declaration
Syntax 18-1--Package syntax (excerpt from Annex A)

The package declaration creates a top-level region to contain declarations intended to be shared
among one or more modules, macromodules, interfaces, or programs. Items within packages are
generally type definitions, tasks, and functions. Items within packages cannot have hierarchical
references. It is also possible to populate packages with parameters, variables and nets. This may
occasionally be useful for globals that aren't conveniently passed down through the hierarchy. Any
variables that have initial values defined for them will be initialized in the same way the
initialization occurs for variables declared in $root.

The following is an example of a package:

package ComplexPkg;
typede uct { f str

float i, r;
} Complex;

function Complex add(input Complex a, b)

add.r = a.r + b.r;
add.i

endfunction
= a.i + b.i;

function Complex mul(input Complex a, b)

mul.r = (a.r * b.r) + (a.i * b.i);

mul.i = (a.r * b.i) + (a.i * b.r);

dpackage : ComplexPkg

18.4.1 Referencing data in packages

 to allow the types they define to be
recognized by the modules that import from them.

 declarations made in a packages is to reference them using the
namespace operator "::".

ComplexPkg::Complex cout = ComplexPkg::mul(a, b);

An alternate method for utilizing declarations is the import statement.

endfunction
en

Packages must be defined before they are referenced

One of the ways to utilize

data_dec // A.2.3
claration

on

package_import_declaration

package
import package_import_item { , package_import_item } ;

package
tifier

laration ::=
 [lifetime] variable_de
| constant_declarati
| type_declaration
|

_import_declaration ::=

_import_item ::=
 package_identifier :: iden
| package_identifier :: *
Syntax 18-2--Import syntax (excerpt from Annex A)

The import statement provides direct visibility of symbols within Packages. It allows those
ple

import ComplexPkg::Complex;

Explicit imports are treated similarly to a declaration. An explicit import shall be illegal if another

e

Wildcard import allows symbols defined within a package to be imported provided the symbol is

import ComplexPkg::*;

All the symbols within a package implied by a wildcard import are candidates for import. They, in

symbols declared within Packages to be visible within the current scope by their declared sim
name. Package hierarchical names to the imported symbols can be created as if the symbol were
defined in the importing scope. Two forms of the import statement are provided: explicit import,
and wildcard import. Explicit import allows control over precisely which symbols are imported:

import ComplexPkg::add;

symbol by the same name has already been declared or imported into the same scope unless the
symbol is from the same package. Similarly, after importing a symbol by a given name, it shall b
illegal to then declare a symbol by that same name within the same scope.

not otherwise defined in the importing scope:

fact, become imported only if there are no other symbols by the same name declared or imported
in the same scope. Similarly, their visibility may be limited by a subsequent declaration of the

same name in the same scope. If the same symbol is defined in two wildcard imports in the same
scope, the symbol shall be undefined within that scope.

18.4.2 Search order Rules

Table 8.x describes the search order rules for the declarations imported from a package. To
understand the table, consider the following package declarations:

package p;

typedef enum { FALSE, TRUE } BOOL;
const c = FALSE;

endpackage;

package q;

const c = 0;
endpackage;

Syntax Description

Scope
containing a

local
declaration of

c

Scope not
containing a

local
declaration of c

Scope contains
a declaration of

c imported
using import

q::c

Scope contains
a declaration of
c imported as

import q::*

p::c;
p::TRUE;

e.g.:
u = p::c;
y = p::TRUE;

A qualified
package identifier
is visible in any
scope (without
the need for an
import clause).

OK.

Direct reference
to c refers to the
locally declared
c.

p::c refers to the c
in package p.

OK

Direct reference to
c is illegal since it
is undefined.

p::c refers to the c
in package p.

OK.

Direct reference to
c refers to the c
imported from q.

p::c refers to the c
in package p.

OK.

Direct reference to
c refers to the c
imported from q.

p::c refers to the c
in package p.

import p::*;

. . .

y = FALSE;

All declarations
inside package p
become
potentially
directly visible in
the importing
scope:

• c
• BOOL
• FALSE
• TRUE

OK.

Direct reference
to c refers to the
locally declared
c.

Direct reference
to other
identifiers (e.g.,
FALSE) refer to
those implicitly
imported from
package p.

OK.

Direct reference to
c refers to the c
imported from
package p.

OK.

Direct reference to
c refers to the c
imported from
package q.

OK / ERROR

c is undefined in
the importing
scope. Thus, a
direct reference to
c is illegal and
results in an error.

The import clause
is otherwise
allowed.

import p::c;

The imported
identifiers
become directly
visible in the

ERROR.

It shall be illegal
to import an

OK.

Direct reference to
c refers to the c

ERROR.

It shall be illegal to
import an identifier

OK / ERROR

It shall be illegal to
reference c before

. . .

if(!
c) ...

importing scope:

• c

identifier defined
in the importing
scope.

imported from
package p.

defined in the
importing scope.

the import of p::c.

Otherwise, direct
reference to c
refers to the c
imported from
package p.

Table 8.x Scoping Rules for Package Importation

When using the import p::c form of importation, the use of a variable forces the import of that
variable into the local scope, thus creating an error if another package with the same variable name
is imported later. This is shown in the following example:

module foo;
import q::*;
wire a=c; // This statement forces the import of
q::c;
import p::c; // The conflict with q::c and p::c
creates an error.

endmodule;

Within Section 18.3 (current numbering) change (as
shown in red):

18.3 Module declarations

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the
$root toplevel space, outside of other modules.

module m1(...); ... endmodule

module m2(...); ... endmodule

module m3(...);

m1 i1(...); // instantiates the local m1 declared below
m2 i4(...); // instantiates m2 - no local declaration
module m1(...); ... endmodule // nested module declaration,

 // m1 module name is in m3’s
name space

endmodule

m1 i2(...); // module instance in the $root space,

// instantiates the module m1 that is not nested in
another module

Within Section 18.6 (current numbering) change (as
shown in red):

There shall be at most one time unit and one time precision for any module, program, package or
interface definition, or in $root. This shall define a time scope. If specified, the timeunit and
timeprecision declarations shall precede any other items in the current time scope. The

timeunit and timeprecision declarations can be repeated as later items, but must match the
previous declaration within the current time scope.

If a timeunit is not specified in the module, program, package or interface definition, then the
time unit is shall be determined using the following rules of precedence:

1) If the module or interface definition is nested, then the time unit is shall be inherited from the

enclosing module or interface (program and packages cannot be nested).

2) Else, if a ‘timescale directive has been previously specified, then the time unit is shall be

set to the units of the last ‘timescale directive.

3) Else, if the $root top level has a time unit, then the time unit is shall be set to the time units

of the unit of compilation root module.

4) Else, the default time unit is shall be used.

The time unit of $root shall only be determined by a timeunit declaration, not a ‘timescale
directive.

If a timeprecision is not specified in the current time scope, then the time precision is shall be
determined following the same precedence as with time units.

Within Section 18.9 (current numbering) change (as
shown in red):

18.9 Name spaces

SystemVerilog has eight five name spaces for identifiers, two are global (definitions name space
and package name space), two are global to the unit of compilation (local root name space and
text macro name space) and four are local. Verilog’s global definitions name space collapses onto
the module name space and exists as the top-level scope, $root. Module, primitive, package,
program, and interface identifiers are local to the module name space where there are defined. The
eight five name spaces are described as follows:

1) The definitions name space unifies all the module, macromodule, primitive, program, and

interface identifiers defined within $root among all compilation units. Once a name is used to
define a module, macromodule, primitive, program, or interface within $root within one
compilation unit the name shall not be used again to declare another module, macromodule,
primitive, program, or interface within $root in any compilation unit

2) The package name space unifies all the package identifiers defined within $root among all

compilation units. Once a name is used to define a package within $root within one
compilation unit the name shall not be used again to declare another package within $root in
any compilation unit.

3) The local root name space exists outside the module, macromodule, interface, package,

program, and primitive constructs. It unifies the definitions of the functions, tasks,
parameters, named events, net declarations, variable declarations and user defined types
within the unit of compilation.

4) The text macro name space is global within the unit of compilation. Since text macro names

are introduced and used with a leading ‘ character, they remain unambiguous with any other
name space. The text macro names are defined in the linear order of appearance in the set of

input files that make up the description of the design unit. Subsequent definitions of the same
name override the previous definitions for the balance of the input files.

5) The module name space is introduced by the module, macromodule, interface, package,

program, and primitive constructs. It unifies the definition of module, macromodule,
interface, program, functions, tasks, named blocks, instance names, parameters, named events,
net type of declarations, variable type of declarations, and user defined types within the
enclosing construct.

6) The block name space is introduced by named or unnamed blocks, the specify, function,

and task constructs. It unifies the definitions of the named blocks, functions, tasks,
parameters, named events, variable type of declaration and user defined types within the
enclosing construct.

7) The port name space is introduced by the module, macromodule, interface, primitive,

and program, function, and task constructs. It provides a means of structurally defining
connections between two objects that are in two different name spaces. The connection can be
unidirectional (either input or output) or bidirectional (inout). The port name space
overlaps the module and the block name spaces. Essentially, the port name space specifies the
type of connection between names in different name spaces. The port type of declarations
includes input, output, and inout. A port name introduced in the port name space can be
reintroduced in the module name space by declaring a variable or a net with the same name as
the port name.

8) The attribute name space attribute name space is enclosed by the (* and *) constructs

attached to a language element (see Section 2.8). An attribute name can be defined and used
only in the attribute name space. Any other type of name cannot be defined in this name space.

Within Section 21.2 change (as shown in red):
A library is a named collection of cells. A cell is a module, macromodule, primitive, interface,
program, package, or configuration. A configuration is a specification of which source files bind
to each instance in the design.

Within Section 21.3 change (as shown in red):
21.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are
normally in a mapping file that is read first by a simulator or other software tool. SystemVerilog
does not require a special library map file. Instead, the mapping information can be specified in
the $root top level.

Within Section A.1.3 change (as shown in red):
source_text ::= [timeunits_declaration] { description }

description ::=

 module_declaration
| udp_declaration
| module_root_item
| statement_or_null
| interface_declaration
| program_declaration
| package_declaration

| { attribute_instance } package_item
| { attribute_instance } bind_directive
| { attribute_instance } ;

….

class_declaration ::=
{ attribute_instance } [virtual] class [lifetime] class_identifier [parameter_port_list]

[extends class_identifier] ; [timeunits_declaration] { class_item }
endclass [: class_identifier]

package_declaration ::=

{ attribute_instance } package package_identifier
[timeunits_declaration] { { attribute_instance } package_item }
endpackage [: package_identifier]

Within Section A.1.5 change (as shown in red):
module_common_item ::=

 module_or_generate_item_declaration
| interface_instantiation
| program_instantiation
| concurrent_assertion_item
| bind_directive
| continuous_assign
| net_alias
| initial_construct
| final_construct
| always_construct
| combinational_construct
| latch_construct
| ff_construct
| ;

module_item ::=

 non_generic_port_declaration ;
| non_port_module_item

module_or_generate_item ::=

 { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_construct
| { attribute_instance } latch_construct
| { attribute_instance } ff_construct
| { attribute_instance } net_alias
| { attribute_instance } final_construct
| { attribute_instance } module_common_item
| { attribute_instance } ;

module_root_item ::=

 attribute_instance } module_instantiation

| { attribute_instance } local_parameter_declaration
| interface_declaration
| program_declaration
| class_declaration
| module_common_item

module_or_generate_item_declaration ::=

 package_or_generate_item_declaration net_declaration
| data_declaration
| genvar_declaration
| task_declaration
| function_declaration
| dpi_import_export
| extern_constraint_declaration
| extern_method_declaration
| clocking_decl
| default clocking clocking_identifier ;

non_port_module_item ::=

 { attribute_instance } generated_module_instantiation
| { attribute_instance } local_parameter_declaration
| module_or_generate_item
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
| program_declaration
| class_declaration
| module_declaration

Within Section A.1.6 change (as shown in red):
interface_or_generate_item ::=

 { attribute_instance } continuous_assign
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_construct
| { attribute_instance } latch_construct
| { attribute_instance } ff_construct
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance } module_common_item
| { attribute_instance } modport_declaration
| { attribute_instance } extern_tf_declaration
| { attribute_instance } final_construct
| { attribute_instance } ;

non_port_interface_item ::=

 { attribute_instance } generated_interface_instantiation
| { attribute_instance } specparam_declaration
| interface_or_generate_item
| program_declaration
| class_declaration
| interface_declaration

Within Section A.1.7 change (as shown in red):
non_port_program_item ::=

 { attribute_instance } continuous_assign
| { attribute_instance } module_or_generate_item_declaration
| { attribute_instance } specparam_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance } initial_construct
| { attribute_instance } concurrent_assertion_item
| { attribute_instance } final_construct
| class_declaration

Add Section A.1.9 (as shown in red):
A.1.9 Package items
 package_item ::=

 package_or_generate_item_declaration
| specparam_declaration
| concurrent_assertion_item_declaration
| anonymous_program

package_or_generate_item_declaration ::=
 net_declaration
 | data_declaration
 | task_declaration
 | function_declaration
 | dpi_import_export
 | extern_constraint_declaration
 | extern_method_declaration
 | class_declaration
 | parameter_declaration ;
 | local_parameter_declaration

anonymous_program ::= program ; { anonymous_program_item } endprogram

anonymous_program_item ::=

 task_declaration
| function_declaration
| class_declaration

Add Section A.2.3 (as shown in red):
data_declaration ::=

 [lifetime] variable_declaration
| constant_declaration
| type_declaration
| package_import_declaration

package_import_declaration ::=
import package_import_item { , package_import_item } ;

package_import_item ::=

 package_identifier :: identifier
| package_identifier :: *

Within Section A.2.6 change (as shown in red):
function_body_declaration ::=

 [signing] [range_or_type]
[interface_identifier .] function_identifier ;

 { function_item_declaration }
 { function_statement_or_null }
 endfunction [: function_identifier]
| [signing] [range_or_type]
 [interface_identifier .] function_identifier (tf_port_list) ;
 { data_declaration block_item_declaration }
 { function_statement_or_null }
endfunction [: function_identifier]

function_item_declaration ::=

 data_declaration block_item_declaration
| { attribute_instance } tf_input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;
| { attribute_instance } tf_ref_declaration ;

Within Section A.2.7 change (as shown in red):
task_body_declaration ::=

 [interface_identifier .] task_identifier ;
 { task_item_declaration }
 { statement_or_null }
 endtask [: task_identifier]
| [interface_identifier .] task_identifier (task_port_list) ;
 { data_declaration block_item_declaration }
 { statement_or_null }
endtask [: task_identifier]

task_declaration ::= task [lifetime] task_body_declaration

task_item_declaration ::=

 data_declaration block_item_declaration
| { attribute_instance } tf_input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;
| { attribute_instance } tf_ref_declaration ;

Within Section A.2.8 change (as shown in red):
block_item_declaration ::=

 { attribute_instance } block_data_declaration data declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;

Within Section A.6.3 change (as shown in red):
function_seq_block ::=

begin [: block_identifier { data_declaration block_item_declaration }]
{ function_statement_or_null }
end [: block_identifier]

seq_block ::=

begin [: block_identifier] { data_declaration block_item_declaration }
{ statement_or_null }
end [: block_identifier]

par_block ::=

fork [: block_identifier] { data_declaration block_item_declaration }
{ statement_or_null }

	Separate Compilation Discussion
	Within Section 17.12 change (as shown in red):
	Within Section 18.1 change (as shown in red):
	Within Section 18.2 change as shown in red.
	ADD new sections 18.3 and 18.4 after Section 18.2 (renumber succeeding sections and syntax boxes):

	Within Section 18.3 (current numbering) change (as shown in red):
	Within Section 18.6 (current numbering) change (as shown in red):
	Within Section 18.9 (current numbering) change (as shown in red):
	Within Section 21.2 change (as shown in red):
	Within Section 21.3 change (as shown in red):
	Within Section A.1.3 change (as shown in red):
	Within Section A.1.5 change (as shown in red):
	Within Section A.1.6 change (as shown in red):
	Within Section A.1.7 change (as shown in red):
	Add Section A.1.9 (as shown in red):
	Add Section A.2.3 (as shown in red):
	Within Section A.2.6 change (as shown in red):
	Within Section A.2.7 change (as shown in red):
	Within Section A.2.8 change (as shown in red):
	Within Section A.6.3 change (as shown in red):

