
1

Insert as Section 8.10.1

8.10.1 Sequence events

A sequence instance can be used in event expressions to control the execution of procedural statements based
on the successful completion of the sequence. This allows the endpoint of a named sequence to trigger multi-
ple actions in other processes. Syntax 17-2 describes the syntax for declaring sequence instances and sequence
expressions. A sequence instance can be used directly in an event expression, as shown below.

event_control ::= // from Annex A.6.5
 @ event_identifier
| @ (event_expression)
| @*
| @ (*)
| @ sequence_instance

event_expression ::=
 [edge_identifier] expression [iff expression]
| sequence_instance [iff expression]
| event_expression or event_expression
| event_expression , event_expression

Syntax 8-9—Event control and Event expression (excerpt from Annex A).

When a sequence instance is specified in an event expression, the process executing the event control shall
block until the given sequence reaches its end-point, that is, the sequence succeeds non-vacuously. A sequence
reaches its end point whenever there is a match for the entire sequence expression. When the process unblocks
it shall continue to execute in the Reactive region following the end point.

An example of using a sequence as an event control is shown below.

sequence abc;
@(posedge clk) a ##1 b ##1 c;

endsequence

program test;
initial begin

@ abc $display(“Saw a–b-c”);
L1 : ...

end
endprogram

In the example above, when the named sequence abc reaches its end point, the initial block in the program
block test is unblocked, which then displays the string “Saw a-b-c” and continues execution with the statement
labeled L1. In this case, the end of the sequence acts as the trigger to unblock the event.

A sequence used in an event control is instantiated (as if by an assert property statement); the event control is
used to synchronize to the end of the sequence, regardless of its start-time. Sequence arguments shall be static;
automatic variables used as sequence arguments shall result in an error.

Insert as new Section 8.11 (after Event control)

8.11 Level-sensitive sequence controls

2

The execution of procedural code can be delayed until a sequence termination status is true. This is accom-
plished using the level-sensitive wait statement in conjunction with the built-in method that returns the current
end status of a named sequence: triggered.

The triggered sequence method evaluates to true if the given sequence has reached its end point at that par-
ticular point in time (in the current time-step), and false otherwise. The triggered status of a sequence is set
during the Observe region and persists throughout the time-step (i.e., until simulation time advances).

For example:

sequence abc;
@(posedge clk) a ##1 b ##1 c;

endsequence

sequence de;
@(negedge clk) d ##[2:5] e;

endsequence

program check;
initial begin

wait(abc.triggered || de.triggered);
if(abc.triggered)

$display(“abc succeeded”);
if(de.triggered)

$display(“de succeeded”);
L2 : ...

end
endprogram

In the above example, the initial block in program check waits for the end point (success) of either sequence
abc or sequence de. When either condition evaluates to true the wait statement unblocks the process, which
displays the sequences that caused the process to unblock and then continues to execute the statement labeled
L2.

Insert as Section 17.15

17.15 The expect statement

The expect statement is a procedural blocking statement that allows a property to be declared and also to wait
for the first successful match of the property. The syntax of the expect statement is given below.

statement_item ::= // from Annex A.6.4
 …
| {attribute_instance} expect (property_spec) [action_block]

Syntax 17-18: Expect statement (excerpt from Annex A)

The expect statement accepts the same syntax used to declare a property. An expect statement causes the exe-
cuting process to block until the given property succeeds (i.e., the sequence reaches its end point) or fails. The
expect statement unblocks at the earliest match of the property (i.e., first_match). The statement following the
expect shall execute in the Reactive region following the success of the property, or the first failed attempt. In
either case, the specified property terminates its evaluation when the process unblocks.

When executed, the expect statement automatically starts evaluating the given property on the subsequent
clocking event, that is, the first attempt shall take place on the next clocking event. When the process unblocks
(due to the property succeeding or failing), the property stops being evaluated. If the property fails at its

3

clocking event, the optional else clause of the action block is executed. If the property succeeds the optional
pass statement of the action block is executed.

The semantics of the expect statement are to block until first match (or failure) of the given property and
whose starting time is greater than the time at which the expect statement executes.

program tst;
initial begin

200ms;
expect(@(posedge clk) a ##1 b ##1 c) else $error(“expect failed”);
ABC: ...

end
endprogram

In the above example, the expect statement blocks the first statement in the initial block of program tst until
the sequence a -> b -> c is recognized starting with the following clocking event (posedge clk) after 200ms. If
the sequence is matched at the corresponding time, the process is unblocked and continues to execute on the
statement labeled ABC. If the sequence fails then the else clause is executed, which in this case generates a
run-time error. For the expect above to succeed, the sequence a–>b–>c must occur on the clocking event
(posedge clk) immediately after time 200ms. If a is false on the first clocking event after 200ms, the expect
fails. If a is true on the first clocking event after 200ms and b is false one clocking event later, the expect will
also fail.

The expect statement can be incorporated in any procedural code, including tasks or class methods. Because it
is a blocking statement, the property expression may safely refer to automatic variables as well as static vari-
ables. For example, the task below waits between 1 and 10 cycles for the variable data to have a particular
value, which is an automatic argument. The second argument is used to return the result of the expect, 1 for
success and 0 for failure.

integer data;
...
task automatic wait_for(integer value, output bit success);

expect(@(posedge clk) ##[1:10] data == value) success = 1; else
success = 0;

endtask

initial begin
bit ok;
wait_for(23, ok); // wait for the value 23
...

end

