
Action Item 46
 Change to use static by default, reference class members, provide example of
automatic usage.

Section 10.4
Change as shown in red:

In Verilog-2001, the default lifetime for tasks and functions is static. Automatic tasks and
functions must be explicitly declared, using the automatic keyword.

SystemVerilog adds an optional qualifier to specify the default lifetime of all tasks and functions
declared within a module, interface, or program (see Section 15). The lifetime qualifier is
automatic or static. The default lifetime is static for modules, and automatic for the
program block (see section 15).

program automatic test ;

 task foo(int a); ... endtask // arguments and variables in foo are
automatic

endmodule

Class methods are by default automatic, regardless of the lifetime attribute of the scope in which
they are declared. Classes are discussed in section 11.

Annex A

Editors

module_declaration ::=
{ attribute_instance } module_keyword [lifetime] module_identifier [

parameter_port_list]
 list_of_ports ; [timeunits_declaration] { module_item }
endmodule
| { attribute_instance } module_keyword [lifetime] module_identifier [

parameter_port_list]
 [list_of_port_declarations] ; [timeunits_declaration] {
non_port_module_item }
endmodule

lifetime ::= static | automatic // This production already exists

Note: This qualifier alters the BNF rules as follows:

Action Item 47
 Add const (plus example), include comment on simulation semantic for var
updates, add restriction on wire usage.

Section 10.5.2
Change as shown in red:

When the argument is passed by reference, both the caller and the subroutine share the same
representation of the argument, so any changes made to the argument either within the caller or the
subroutine will be visible to each other. The semantics of assignments to variables passed by
reference are the same as for static objects; that is, changes are seen outside the subroutine
immediately (before the subroutine returns). Only variables, not wires, can be passed by reference.

Add the following paragraph at the end of the section.

To protect arguments passed by reference from being modified by a subroutine, the const qualifier
can be used together with ref to indicate that the argument, although passed by reference, is a read-
only variable.

task const ref char [] data); show(
for(int j = 0; j < data.size ; j++)
 $display(data[j]); // data can be read but not written

endtask

When the formal argument is declared as a const ref, the subroutine cannot alter the variable, and an
attempt to do so will generate compiler error.

Action Item 48
Add clarification about mixed named and default argument usage.

Section 10.5.4
Add paragraph at end of section as shown in red:

If the arguments have default values, they are treated like parameters to module instances. If the
arguments do not have a default, then they must be given or the compiler shall issue an error.

If both positional and named arguments are specified in a single subroutine call then all the positional
arguments must come before the named arguments. Then, using the same example as above:

fun(.s("yes"), 2); // illegal
fun(2, .s("yes")); // OK

Action Item 70
Clarify order that semaphores and mailboxes do something

Section 12.2.3
Change as shown in red:

The semaphore waiting queue is First-In First-Out (FIFO). This does not guarantee the order in
which processes will arrive at the queue, only that their arrival order will be preserved by the
semaphore.

Section 12.4.5
Change as shown in red:

The mailbox waiting queue is FIFO. This does not guarantee the order in which processes will
arrive at the queue, only that their arrival order will be preserved by the mailbox.

	Action Item 46
	Section 10.4
	Annex A

	Action Item 47
	Section 10.5.2

	Action Item 48
	Section 10.5.4

	Action Item 70
	Section 12.2.3
	Section 12.4.5

