
The following summarizes the proposals that have been made related to events. There are
two parts that haven’ t always been separated well in the various proposals. I will attempt
to capture the intent of the proposal as well. The purpose of this is not to provide the full
details of each proposal, but to provide sufficient information for making a vote on what
syntax and semantics should be integrated into the SV 3.1 standard.

Summary:
1 Event enhancement

1.1 Add persistent event type, enhance wait
1.1.1 event bit
1.1.2 wait() enhanced to take old event

1.2 Add persistent event type, enhance event control
1.2.1 event bit
1.2.2 Event control, ‘@’ , enhanced to use new “event bit”

1.3 Enhance trigger only: ->>
1.4 Enhance synchronization only: .active

1.4.1 Add .active method to event type (all types?)
1.4.2 Enhance synchronization

2 Synchronization enhancement
2.1 Examples

2.1.1 all (for section 12.7.1)
2.1.2 any (for section 12.7.2)
2.1.3 order (for section 12.7.3)

2.2 Syntax
2.2.1 $wait_xxx
2.2.2 wait_xxx
2.2.3 @(event1 *magic_operator* event2)

1 Event enhancement
This first group of proposals is focused on how to enhance the event type to solve
zero delay races between event control and event triggers. The first two are nearly
identical: they both add a new persistent event type but enhance a different part of
the language to allow synchronization. The third leaves the type and synchronization
method alone, and enhances the trigger. The fourth leaves the type and the trigger
alone, and enhances the synchronization.

1.1 Add persistent event type, enhance wait

1.1.1 event bit
This proposal adds a new type of event, declared as event bit. The use of bit in the
declaration implies that the new event has a semi-persistent state: its triggered status.
The only way to change the state is by using the event trigger, ->. The event trigger
will cause the value to go to the triggered state. At the end of that time-step, the
value is automatically reset.

1.1.2 wait() enhanced to take old event
The state of event bit is determined by level sensitive control (the wait statement).
This is the same way a bit would be tested by a wait statement, except event bit
can’ t be used in an expression.

Level sensitive control is enhanced to allow the use of the old event type (previously
as syntax error) and the new persistent event. Although the old event type has no
value, the wait will block until it is triggered. This is the same as @(old_style_event)
for non-persistent events. Since the new “event bit” has a value, the wait will
unblock when either: the persistent event is triggered, or the persistent event is in
triggered state. In other words, the wait statement is only enhanced to handle the old
non-persistent events, not the new persistent events.

The event control requires only one enhancement. When a persistent event is added
to event control, only entering the triggered state will cause the event control to
unblock. A transition from the triggered to the reset state for an event bit will not
unblock the event control. In this respect it is more like an event than the other
variable types that have multiple states.

1.2 Add persistent event type, enhance event control

1.2.1 event bit
This proposal adds a new type of event, declared as event bit. The value of this new
event type is not accessible, but it does require a tool to keep the state of the trigger.
It uses the same event trigger operator as non-persistent events. When the persistent
event is triggered, the event will hold the triggered state until the end of the time-
step. At the end of that time-step, the state is automatically reset.

1.2.2 Event control, ‘@’ , enhanced to use new “ event bit”
Event control, @, is enhanced to allow the new persistent event in addition to the
non-persistent event. The event control checks the state of a persistent event and if it
is already in the triggered state, the event control will unblock. If the persistent event
has not been triggered before activation of the event control, the behavior will be the
same as with a non-persistent event. Conceptually, this gives non-zero duration
(within the bounds of the time-step) to the event trigger.

Level sensitive control, the wait statement, would not require enhancement. It would
continue to be an error to use a synchronization object event or event bit in level
sensitive control.

1.3 Enhance tr igger only: ->>
This proposal doesn’ t change the declaration of events or the synchronization
statements. Event control, the @ operator, is still used to detect events and it is still
an error to use an event (persistent or non-persistent) in level sensitive control. This
proposal adds a new trigger operator that removes races for events in the same
fashion as nonblocking assignments remove races from zero-delay RTL. The
nonblocking trigger works the same as the existing trigger, except that the triggering
of the event is postponed until the nonblocking event queue. It may be possible to

define this as an even later queue once the semantics committee has settled on what
those queues are called.

1.4 Enhance synchronization only: .active

1.4.1 Add .active method to event type (all types?)
This proposal doesn’ t change the way events are declared or triggered. Instead it
adds a new method that can be used on the event data type (it also suggested that it
could be used on any data type).

1.4.2 Enhance synchronization

1.4.2.1 Enhance event control, @
The method would require the tool to keep a history of changes on the event so event
control would know if the event had already occurred. Once event control was
activated, it would check to see if a change had already occurred on the event (or any
type?) earlier in the time-step. There would be no observable value from the active
method and it would be a syntax error to use it in any context other than event
control (same as an event).

1.4.2.2 Use level sensitive control, wait()
The method would return a value indicating a change on the event. This would be
zero if the event had not already triggered and one if it had. The value could be used
in expressions and, in particular, the wait statement. The event can’ t be used in the
wait statement by itself – that would still be a syntax error.

2 Synchronization enhancement
The second group of proposals focuses on enhancements that provide shorthand for
waiting for events.

2.1 Examples
The following examples should be considered for inclusion in 12.7 to clarify the
intent of the added syntax.

2.1.1 all (for section 12.7.1)
The following example shows the equivalent Verilog code required to wait for three
events (persistent or non-persistent) to be triggered.

Version required if 1.1 accepted:

fork

 wait(ev1);

 wait(ev2);

 wait(ev3);

join

Version required if 1.2, 1.3, or 1.4 accepted:

fork

 @(ev1);

 @(ev2);

 @(ev3);

join

2.1.2 any (for section 12.7.2)
The following example shows the equivalent Verilog code required to wait for any
of three events (persistent or non-persistent) to be triggered.

Version required if 1.1 accepted:

fork

 wait(ev1);

 wait(ev2);

 wait(ev3);

join_any

Version required if 1.2, 1.3 or 1.4 is accepted –existing syntax supports this with
event control and the or operator

@(ev1 or ev2 or ev3);

2.1.3 order (for section 12.7.3)
The following example shows the equivalent Verilog code required to wait for three
events (persistent or non-persistent) to be triggered in order. Note that the $error may
not be exactly equivalent a runtime error. Also, if any other child processes have
been started outside this code fragment, they could be killed by the “disable fork.”

Version required if 1.1 accepted:

begin

 wait(ev1);

 fork

 wait(ev2);

 wait(ev1) $error();

 join_any

 disable fork;

 fork

 wait(ev3);

 wait(ev1) $error();

 wait(ev2) $error();

 join_any

 disable fork;

end

Version required if 1.2, 1.3, or 1.4 accepted:

begin

 @(ev1);

 fork

 @(ev2);

 @(ev1) $error();

 join_any

 disable fork;

 fork

 @(ev3);

 @(ev1) $error();

 @(ev2) $error();

 join_any

 disable fork;

end

2.2 Syntax

2.2.1 $wait_xxx
This provides an extension to the wait statement that parallels the proposal at 1.1
above. It enhances the wait statement by adding built-in system tasks. It implies that
these extensions are level sensitive in nature, but with the extension of allowing non-
persistent events. There are three versions: $wait_all (see example 2.1.1), $wait_any
(see example 2.1.2), and $wait_order (see example 2.1.3).

2.2.2 wait_xxx
This is the same proposal as 2.2.1, except that keywords are used instead of built-in
system tasks. The keywords would be wait_all (see example 2.1.1), wait_any (see
example 2.1.2), and wait_order (see example 2.1.3).

2.2.3 @(event1 *magic_operator* event2)
This provides an extension of the event control that is more suited to proposals 1.2,
1.3, and 1.4, since they do not enhance the wait statement to take events. The and
operator would yield the same behavior as example 2.1.1. The or operator provides
the ability to wait for any event so there is no need for new syntax. To support

waiting for ordered events, a new operator would be required. Regardless of the
operator, the semantics would be equivalent to the example 2.1.3.

2.2.3.1 *magic_operator* for ordered events
Potential operators:

->

-->

=>

=>>

;

before

Operator selection only relevant if proposal 2.2.3 is selected.

