Chapter 11, SV 3.1 draft2 notes

Section 11

a) (Brad)
This section might read better if it were rewitten without use of the
pronoun 'one'.

This nmust be covered in each individual section of chapter 11
Suggestion is to include the sentences/paragraphs in text and
provi de alternative sentences for each sections.

Section 11.1

a) (Neil)
Delete the first two sentences of this chapter, starting with
"System Verilog 3.0..."

noted in CH-104

Section 11.3

a) (Brad)
"Aclass is a collection" ???
Isn'"t it nore a category/type of object?

noted in CH-104

b) "Aclass's data is referred to as properties" ???
A cl ass defines the common properties of a category of object.

The original text is much cleaner

Section 11.4

a) (Chris Spear)

What happens if a user tries to access an object's nenbers but the
handle is null? Should the sinmulator crash like a C programw th a bad
poi nter? Should a read of a variable using a null handle return a
default value? What if a nmethod is called using a null pointer?
Anyt hi ng other than a segfault is going to cost performance. But the
user needs a way to debug this very conmon probl em

noted in CH-104

Two issues: Language definition and Debuggi ng capability.
The first is covered by CH-104 and the latter is not part of the

| anguage
b) (Brad)
"The | ast section"” --> "The previous section”

| Change as indicated

Section 11.7
a) (Chris Spear)

Page 1 of 12

The example at the bottomof 75 has a variable called tine which is a
keywor d.

noted in CH-104

Section 11.8

a) (Chris Spear)
Does a class have to be instantiated before its static properties can

be accessed? The exanple seens to show this. In general, wll
SystenVerilog provide a way to access static properties outside of
objects, like C++? Are we going to support Class::nyStaticvar ?

Two items di scussed above:
1) Accessing static properties
2) Support for C++-like nane scope operator to access nmenbers.

1) The donation has no syntax to access nenbers in any way other
than via an object. Thus, the only way to access nenbers
(static or otherwise) is via an object. Note that a nul
obj ect can be used to access static nenbers.

2) The donation does not provide support for the nane scope
operator. It is used only to declare out of body methods.

NOTE: Enhancing cl asses to support the ‘::’ operator in this

manner does not represent any technical problens and would be a

fine addition that would allow for access to static nenbers and

enabl e declaration of static nmethods that could be called in this
sanme fashion (like C++).

Al -56 relates to this as well: wite a proposal to include
in SV.

b) (Neil)

The exanpl es and the text appear to be inconsistent in their usage of
vari abl e names. There is a nmixture of the use of "fileld" and "sem d".
| assune that all 3 should be fileld.

noted in CH-104

Section 11.9

a) (Neil)
In the exanple: endfunction and endcl ass should both be in bold.

noted in CH-104

Section 11.10

a) (Neil)
Page 77, 3rd paragraph that begins with "This statenent has new
executing twice, thus creating two objects". The exanple being

referred to is
p2 = new pl,

This doesn't sound right. Doesn't this just create the p2 handl e, which
is then initialized to a shall ow copy of what the pl handle refers to?

noted in CH-104

Page 2 of 12

The text is correct. Calling new a second tine creates a new
object that is initialized with a ‘shallow copy’ of pl's
contents. In C++ parl ance:
The syntax ‘obj = new,’ is the constructor.
The syntax “obj = new obj;’ is the copy constructor
b) (Francoi se)
- inconsistency or error in the use of new.
p2 = new pl
why not
p2 = new(pl);
The notation above will match the dynamic allocation of dynam c
arrays: arr = new(src_array);
"new' is a function and should always require the ().

The constructor new can take optional argunents, and those are
specified in parenthesis (). The copy constructor accepts no
argunents, only an object of the sanme type as the |eft-hand side,
and it is different fromthe dynam c array optional argunent.

The syntax is different for all three. See comments above.

c) (Brad)
"re-namng" --> "renam ng"

| noted in CH-104

d) (Brad)

There seens to be a contradiction between the coments in the exanple
task declaration of "test" and the claimthat "This statement has new
executing twice, thus creating two objects, pl and p2."

| noted in CH-104

Section 11.12

a) (Brad)

I would omit the final sentence. Mst C++ programrers avoid nultiple
i nheritance, except maybe of abstract base classes (in the style of
Java interfaces).

C++ programers may or mmy not use nultiple inheritance, which is
irrelevant to this LRM

b) (Kevin)
Still see no need for the final sentence.
| change last sentence in 11.12 From: |
To get the overridden nethod, the parent nethod needs to be
decl ared virtual (see section 11.18).

| To: |
To call the overridden nethod via a parent class object (p in the

exanpl e), the method needs to be declared virtual (see section
11.18).

Section 11.13
a) (Neil)

Page 3 of 12

The first paragraph of this section reads:

[This is also related to Al-58, see change in red bel ow.]

"The super keyword is used fromwi thin a derived class to refer to
properties of the parent class. It is necessary to use super when the
property of the derived class has been overridden and cannot be
accessed directly."

Is the property of the parent class that is now hidden. The foll ow ng
re-wite of the second sentence is suggested instead:

"It is necessary to use super to access the parent class properties
when the property of the derived class has been overridden.”

Al-58: Change the second sentence of first paragraph to:

It is necessary to use super to access properties of a parent
cl ass when those properties are overridden by the derived cl ass.

b) (Brad)
"super.super.count is not allowed" ??? Wy not?

It is not all owed because an object should not rely on the

i mpl enentation or existence of any object other than its

i medi ate parent class. This avoids problens associated with
changes to the parent inplenentation in which super.super my nho
| onger exist. Menbers of a grandparent class can al ways be
accessed using a cast to the correspondi ng super-cl ass.

c) (Kevin)

The "note:" about "super.new' points out a flaw in the syntax. C++
syntax puts parent constructor calls in the constructor declaration:
#i ncl ude <stdio. h>

class foo { public: int a; foo() {a = 2;}};
class bar : public foo { public: bar() : foo () { a *= a;}};
mai n() {bar b; printf("%l\n",b.a);} // prints 4
I woul d suggest using the C++ syntax instead - which nmakes "super"”
unnecessary as a keyword (if you use '"::' as well).
There is no flaw in the syntax. [It’s just that the two | anguages

use different nmechanisns. Note that SystenVerilog has the sane
restriction with regards to data declarations and statenents: al
decl arations nmust precede the statenents. A restriction not
shared by C++

Section 11.14

a) (Neil)
First sentence of first paragraph. Add the word "a" as shown bel ow

noted in CH-104

b) (Neil)
The word "scalar" is used in several places. Based on the discussions
for section 3.14 these should all be changed to the word "singular".

noted in CH-104

Page 4 of 12

c) (Neil)

There are task and function forms of this subroutine. The |ast two
par agr aphs on page 79 refer to both of themas functions. The text of
bot h paragraphs needs to be cleaned up to not inply that there are two
forns of the sanme function.

Yes. Change accordingly.

This section should refer to the dynam c casting section (3.14),
limt itself to the description that is particular to classes: It
allows casting froma super-class to a derived class, or check if
the cast is |egal.

d) (Neil)
Second to | ast paragraph on page 79, states that a fatal error wll
occur. See the new text from EC-CH28 that should go here.

noted in CH-104

e) (Neil)
First paragraph, page 80, |ast sentence says, "Otherwise, it sets the
destination handle to null and returns 0.". The text from EC- CH29 goes

here instead.

noted in CH-104

f) (Brad)
"assign subclass" --> "assign a subcl ass"
In "handle to null", "null' should be bold.

noted in CH-104

g) (Kevin)
$cast - What's this for? Isn't static checking sufficient, and it
doesn't | ook user-replaceable to ne.

This is equivalent to dynam c_cast in C++. One big difference is

that in C++ an illegal cast always results in an exception being
rai sed, whereas the $cast function formallows checking if the
cast will succeed. Below is a copy of an ol der nessage that

expl ains the need for dynam c casting.

A derived-class can be assigned directly to any of its super-classes. However, a super-
class can only be assigned to a derived class if and only if the sub-class is actually of that
type. In general, this can only be resolved at run-time, thus the need for a dynamic cast.

For example:

class Animal { ... }

cl ass Mammal extends Aninmal { ... }

class Dog extends Mammal { ... }

class Cat extends Mammal { ... }

Mammal m = new;

Animal a = m /1 correct, mammal is an animal
Dog d =m /| error: mis not a dog

Cat ¢ = d; /'l error: dis a dog not a cat

Page 5 of 12

$cast(d, m); /I allowed: triggers a run-time error
if(! $cast (d, m)) [/ usercan check at runtime
d = new,

Section 11.15

a) (Kevin)
See ny conment in 11.13.

Sanme answer as above.

Section 11.16

a) (Neil)
The summary at the end of this section should be conpletely renoved.
This type of stuff belongs in a tutorial

noted in CH-104

b) (Brad)

"However, for nobst data (and subroutines) one wants to hide them from
the outside world."

This sentence is oddly phrased.

noted in CH-104

c) (Brad)
"other.i" (twice) and "this.i" should be in typewiter font

The text is correct: this is a keyword, other is not.

d) (Brad)

Why are the defaults of the | anguage the converse of the advice in the
summary? Wiy isn't 'local' or 'protected the default?

Why don't we need a special |abel to nmake properties and net hods
public?

The default is public. No change is needed.

e) (Francoi se)
local is the keyword used to mean private data. Wiy not stay with C++
and use private?

This is a possibility. It should be put to a vote.

f) (Kevin)
The statement that |ocal variables don't get inherited appears
incorrect if you can access them through supercl ass mnet hods.

The text is correct: local variables are not inherited. They are
local (i.e., private) to the parent class, hence, they can be
accessed by nethods of the parent class

Section 11.17
a) (Chris Spear)

Page 6 of 12

This needs to be a little nmore clear. Specify that only one assi gnnent
can be done at run time. The current wording would seemto forbid:
const int size;
function new();
if (flag) size = 1; // First assignnent
el se si ze 2; |/ second assi gnhnment
endfuncti on

The text is correct. Only one assignnent in the constructor is

al | owed.

The exampl e above is correct SystemVerilog code since only one
assignment will take place. This can be detected with sinple
data flow or with a runtinme check, the |anguage doesn’t specify
whi ch.

Note that the exanple could be easily re-witten as
size = flag ? 1 : 2;
and, that makes it clear that one assignnment takes place.

b) (Kevin)

It's unnecessarily difficult to check the "only witten once"” rule for
i nstance constants, it should be relaxed to "can only be witten to in
the constructor(s)".

See above description. |If the rule is relaxed as suggested then
the menber is not really a constant for a particular object. The
objective is not to make it easier for the conpiler witers, but
to make it easier and safer for the users

Section 11.18

a) (Brad)
"it can be declared to be abstract by declaring the class to be
virtual" ??7? Why not declare it 'abstract' then?

That requires another keyword, instead we reuse ‘virtual’

b) (Brad)

Can an abstract class have nonvirtual nmethods? |f not, why do we need
to declare the nethods to be virtual? |f so, what does it nean for an
abstract class to have a real nethod?

An abstract class can have non-virtual nethods.

Add the following text at the start of the last paragraph:

An abstract class may contain nethods for which there is only a
prototype and no inplenentation (i.e., an inconplete class). An
abstract class cannot be instantiated, it can only be derived.

c) (Brad)

"Met hods of normal classes can al so be declared virtual ."

Yet there's nothing 'virtual' about them

Unlike the virtual nethods in abstract classes, they are not just
pr ot ot ypes.

Page 7 of 12

A normal (non-abstract) class can also contain virtual nethods,
but it nust provide an inplenentation for those nmethods. Note
that an abstract class can be derived by another abstract class.

d) (Chris Spear)

Page 82, the third paragraph, second sentence should be changed as
follows. The new wording is in quotes: In general, if an abstract class
has "any" virtual nethods, all of the nethods nust be overridden for
the subclass to be instantiated. If all of the "virtual" methods are
not overridden, the subclass needs to be abstract.

noted in CH-104

e) (Neil)

First paragraph, page 82, second sentence reads: "Since the base class
doesn't need to instantiate the base class, it can be declared to be
abstract...".

This needs to be re-worded. Something like the followi ng is suggested:

"Since the base class is not intended to be instantiated, it can
be made abstract by specifying the class to be virtual."

| noted in CH-104

f) (Brad)
"super-class" (twi ce) --> "superclass”

Don’t change: superclass is not a word.

The final sentence could be omtted.

noted in CH-104

g) (Kevin)

It's not clear to me what you gain by having a "virtual class", C++

| ets you define virtual nmethods as being null for either a superclass
or a subclass, it's only an error if you try to use such a nethod, that
al ows subcl asses to inplement subsets of functionality w thout having
to create a bunch of dumry nethods (maybe with assertions in them. 1'd
suggest not using "virtual class" and allowing '= null' as an
alternative to the nethod body.

That statenment is only partially correct. C++ does allow nethods
to be defined as null, but the statenent about it only being “an
error if you try to use such a nethod” is incorrect. |In C++ it
is an error to attenpt to create an object of an abstract class
(same as for SystemVerilog). The C++ syntax that specifies each
abstract nmethod using “= 0" is neither informative nor

convenient. Being able to specify the class as abstract is

si npl er and cl earer.

A historical note: Stroustrup’s original intent was to add the

“abstract class .. syntax to C++ . But, since he couldn’t get the
addi tional “abstract” keyword through the ANSI/I SO conm ttee, he
settled for the inferior work-around of adding an “= 0” to each

Page 8 of 12

unspeci fied method. Let’s not meke the sane m stake as that
committee, especially since we are not addi ng new keywor ds

Section 11.19

a) (Kevin)
This appears to be only informative - is it necessary?
Yes, it’s informative. But, it is inportant to readers that have

not been exposed to other object-oriented |anguages.

Section 11.20

a) (Chris Spear)

The last line should be changed to the | ess anbi guous: "The out of
bl ock method decl aration nmust match the actual method's declaration
statenent . "

noted in CH-104

b) (Chris Spear)
Even this is not perfect. Can we state this in terns of BNF ?

No. BNF i s not adequate for conparing syntax.
This will have to be a semantic check

c) (Chris Spear)
Second, do the argunment nanes have to match? |s the follow ng |egal?
cl ass Packet;

int a;

extern function new(int b);
endcl ass
function Packet::new(int c);

a = c;

endf uncti on

That is illegal. The argunents must nmatch exactly.

| noted in CH-104 : now included verbiage which states so explicitly.

d) (Neil)
Del ete the first paragraph.

noted in CH-104

f) (Neil)

First sentence of second paragraph reads: "To make this practical, it
is best to nove long nethod definitions.."” The follow ng is suggested
in place of this: "It is convenient to be able to nove net hod

definitions..."

noted in CH-104

g) (Neil)

The keyword public is shown. Do we really need this keyword? | suggest
that we get rid of the keyword public. None of the exanples in the
docunent use it. The default is for class properties to be "public" do

Page 9 of 12

we really need to reserve this keyword so that we can explicitly state
that we really want sonmething to be public?

It’s a good point. We can put this to a vote.

h) (Francoi se)

The syntax class_nane:: function_nane to describe a function outside of
its class is not very verilog-like. Wiy not keeping the out of npdule
syntax with the . like it is currently used in Verilog to refer to an
out of scope reference. class_nane.function_name. The function nane
bei ng defined as an extern in the class definition

This is done to explicitly disanmbi guate class scopes from

hi erarchi cal (nodule) scopes, and differentiate between an XMR
(or OQUMR) fromthe out-of-body class declaration, provide

consi stency with C++, and to disall ow out-of-nodule function

declarations. |If the class scope operator “::” is added to allow
accessing static nmenmbers and calling static nmethods then it will
be very useful to not overload the ‘.’ for yet another purpose.

i) (Kevin)

Fi rst paragraph seens inappropriate for an LRM It also introduces the
"::' operator - which | find preferable to "super".

| noted in CH-104

Section 11.21

a) (Brad)
"called a specialization (or variant)" --> "called a specialization"

The text is correct.

b) (Kevin)
Can you use nane binding for class tenplate paraneters?

Yes. The second exanple in page 83 shows this:
vector #(.size(2)) vtwo;

Section 11.22

a) (Neil)
The first line of the exanple at the bottom of page 84 has a font
pr obl em

| noted in CH-104

b) (Kevin)

Seens odd syntax - a by-product of using class...endclass rather than
class..{..} where you can just skip the {...} for the forward

decl aration. Too many touch-typers :-)

It is not related to using class..endclass instead of class .{.}.

It sinply extends the existing SystenVeril og nechanismto provide
a forward reference

Page 10 of 12

Section 11.23

a) (Neil)
Del ete the first sentence of the first paragraph

noted in CH-104

b) (Neil)
Throughout this section there are references to System Verilog 3.1,
can't we just say System Verilog and drop all the 3.1 references?

noted in CH-104

c) (Brad)
"When an object is not needed anynore" --> "Wen an object is no |onger
needed"

| noted in CH-104

d) (Brad)

"The automatic nmenory nanagenent system..
This and the rest of the section are advocacy and don't belong in an
LRM

Maybe it can be reworded, but, | disagree. It belongs in the LRM
since it 1S an integral part of the |anguage. This decision
facilitates sone things and precludes others (such as sharing

poi nters across C)

e) (Kevin)

Still think a class w thout nethods should be the same as a struct with
syntax and semantics to match, doing anything else will be expensive to
fix later (I await Jay's conmments). | will strongly disagree with

statement (4) until structs, classes, nmodules and interfaces are
capabl e of cross inheritance.

Thi s has been di scussed. A class is not a struct, nodule, or
interface. Currently, struct’s are part of the synthesizable
subset of the | anguage and designers like that feature. Classes
are not (and are not likely to be) synthesizable

Section 11.24
a) (Neil)
First exanple uses fork/join, the "join none" should be "join_none".

noted in CH-89

b) (Kevin)

"shoot thenselves in the foot" seems inappropriate (if accurate). The
section appears to be informative rather than sonmething required in the
LRM rmaybe a description of the inplenentation requirenments would be
better - when do objects get destroyed exactly? If | pass a reference
to an object inside another object does the system keep a copy of the
outer object or just the inner object until the reference di sappears?

The i nplenmentation specifics are not part of the LRM
Automati c nenory nmanagers are well covered in many texts

Page 11 of 12

The system keeps track of all live objects, that is all objects
that are accessi ble by user code. Wen objects are no | onger
accessi bl e they becone candi dates for reclaimng, which happens
at an unspecified i nplenentation-dependent timne.

As for the question, if the outer object is no | onger accessible
but the inner object is still accessible (via the reference
passed) then the outer object becones a candidate for

recl amati on.

Handles

a) (Neil)

There needs to be a nore thorough description of what a handle is.
Section 11.23 has the best description but it is inadequate for an LRM
I have written up such a description for an internal Sun document.

have included that wite-up here for your consideration. Feel free to
correct this wite-up if it is in error. This is the level of detai
that | believe should be provided.

System Veril og objects are referenced using a "handl e". There are sone
di fferences between a C pointer and a System Verilog handle. C pointers
give progranmers a |lot of latitude in how a pointer may be used. The
rul es governing the usage of System Veril og handl es are nmuch nore

restrictive. A C pointer may be increnmented for exanple, but a System
Veril og handl e may not.
C pointer || SV handl e Operation
Al | owed Not allowed | Arithnetic operations (such as increnenting)
Al | owed Not allowed | For arbitrary data types
Error Not al |l owed | Der ef erence when nul
Al | owed Limted Casting
Al | owed Not al |l owed | Assi gnnment to an address of a data type
No Yes Unr ef erenced obj ects are garbage coll ected
Undefined | nul | Def aul t val ue
(C+4) Al | owed For cl asses

| noted in CH-104

Page 12 of 12

