
Version 2.1 Verilog-AMS Language Reference Manual 6-11

Events Analog behavior

6.7.3 Event triggered statements

The following two restrictions apply to statements which are evaluated as a result of an

event being triggered.

• The statement can not have expressions which use analog operators. This

statement can not maintain its internal state since it is only executed

intermittently when the corresponding event is triggered.

• The statement can not be a contribution statement because it can generate

discontinuity in analog signals.

6.7.4 Global events

Global events are generated by a simulator at various stages of simulation. The user

model can not generate these events. These events are detected by using the name of the

global event in an event expression with the @ operator.

Global events are pre-defined in Verilog-AMS HDL. These events can not be redefined

in a model.

The pre-defined global events are shown in Syntax 6-11.

Syntax 6-11—Global events

initial_step and final_step generate global events on the first and the last point in an analysis

respectively. They are useful when performing actions which should only occur at the

beginning or the end of an analysis. Both global events can take an optional argument,

consisting of an analysis list for the active global event.

Examples:

For example,

@(initial_step(“ac”, “dc”)) // active for dc and ac only
@(initial_step(“tran”)) // active for transient only

Table 6-1 describes the return value of initial_step and final_step for standard

analysis types. Each column shows the return-on-event status. One (1) represents Yes
and zero (0) represents No. A Verilog-AMS HDL simulator can use any or all of these

global_event ::=

initial_step [(analysis_list)]
| final_step [(analysis_list)]

analysis_list ::=

analysis_name { , analysis_name }

analysis_name ::=

" analysis_identifier "

6-12 Verilog-AMS Language Reference Manual Version 2.1

Analog behavior Events

typical analysis types. Additional analysis names can also be used as necessary for

specific implementations. (See Section 4.5.1 for further details.)

Examples:

The following example measures the bit-error rate of a signal and prints the result at the

end of the simulation.

module bitErrorRate (in, ref) ;
input in, ref ;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;
integer bits, errors ;

analog begin
@(initial_step) begin

bits = 0 ;
errors = 0 ;

end

Table 6-1—Return Values for initial_step and final_step

Analysisa

a. pX Table 6-1 designates frequency/time analysis point X, X = 1 to N;

OP designates the Operating Point.

DCOP
OP

TRAN
OP p1 pN

AC
OP p1 pN

NOISE
OP p1 pN

initial_step 1 1 0 0 1 0 0 1 0 0

initial_step("ac") 0 0 0 0 1 0 0 0 0 0

initial_step("noise") 0 0 0 0 0 0 0 1 0 0

initial_step("tran") 0 1 0 0 0 0 0 0 0 0

initial_step("dc") 1 0 0 0 0 0 0 0 0 0

initial_step(unknown) 0 0 0 0 0 0 0 0 0 0

final_step 1 0 0 1 0 0 1 0 0 1

final_step("ac") 0 0 0 0 0 0 1 0 0 0

final_step("noise") 0 0 0 0 0 0 0 0 0 1

final_step("tran") 0 0 0 1 0 0 0 0 0 0

final_step("dc") 1 0 0 0 0 0 0 0 0 0

final_step(unknown) 1 0 0 0 0 0 0 0 0 0

Version 2.1 Verilog-AMS Language Reference Manual 6-13

Events Analog behavior

@(timer(0, period)) begin
if ((V(in) > thresh) != (V(ref) > thresh))

errors = errors + 1 ;
bits = bits + 1 ;

end

@(final_step)
$strobe("bit error rate = %f%%", 100.0 * errors / bits) ;

end
endmodule

initial_step and final_step take a list of quoted strings as optional arguments. The strings

are compared to the name of the analysis being run. If any string matches the name of

the current analysis name, the simulator generates an event on the first point and the last

point of that particular analysis, respectively.

If no analysis list is specified, the initial_step global event is active during the solution of

the first point (or initial DC analysis) of every analysis. The final_step global event,

without an analysis list, is only active during the solution of the last point of every

analyses.

6.7.5 Monitored events

Monitored events are detected using event functions (see Syntax 6-12) with the @
operator. The triggering of a monitored event is implicit due to change in signals,

simulation time, or other runtime conditions.

Syntax 6-12—Monitored events

6.7.5.1 cross function

The cross() function is used for generating a monitored analog event to detect threshold

crossings in analog signals when the expression crosses zero (0) in the specified

direction. In addition, cross() controls the timestep to accurately resolve the crossing.

The general form is

cross (expr [, dir [, time_tol [, expr_tol]]]) ;

where expr is required, and dir, time_tol, and expr_tol are optional. All arguments are

real expressions, except dir (which is an integer expression). If the tolerances are not

defined, then the tool (e.g., the simulator) sets them. If either or both tolerances are

defined, then the direction shall also be defined.

The direction indicator can only evaluate to +1, -1 , or 0. If it is set to 0 or is not specified,

the event and timestep control occur on both positive and negative crossings of the

signal. If dir is +1 (or -1), the event and timestep control only occur on rising edge

event_function ::=

 cross_function

| timer_function

