
SystemVerilog 3.1
Random Constraints - Proposal
Version 1.0
November 18, 2002

Random Constraints SystemVerilog 3.1

Proposal - November 18, 2002 i

Index

1 Introduction... 1
2 Overview... 1
3 Random Variables... 4

3.1 rand Modifier .. 5
3.2 randc Modifier .. 5

4 Constraint Blocks.. 6
5 External Constraint Blocks ... 7
6 Inheritance... 7
7 Set Membership .. 7
8 Distribution ... 8
9 Implication .. 10
10 if-else Constraints ... 10
11 Global Constraints .. 11
12 Variable Ordering ... 12
13 Randomization Methods ... 13

13.1 randomize() ... 13
13.2 pre_randomize() and post_randomize() .. 14

14 Inline Constraints - randomize() with ... 15
15 Disabling Random Variables .. 16

15.1 $rand_mode() .. 16
16 Disabling Constraints.. 18

16.1 $constraint_mode() ... 18
17 Static Constraint Blocks.. 19
18 Dynamic Constraint Modification .. 19
19 Random Number System Functions ... 19

19.1 $urandom .. 19
19.2 $urandom_range()... 20
19.3 $srandom() .. 20

20 Random Stability .. 21
20.1 Random Stability Properties ... 21
20.2 Thread Stability... 22
20.3 Object Stability ... 22

21 Manually Seeding Randomize .. 23
Appendix A Operator Precedence and Associativity.. 25
Appendix B Keywords.. 25

Random Constraints SystemVerilog 3.1

November 18, 2002 1

SystemVerilog 3.1
Random Constraints

1 Introduction
Constraint-driven test generation allows users to automatically generate tests for functional
verification. Random testing can be more effective than a traditional, directed testing approach.
By specifying constraints, one can easily create tests that can find hard-to-reach corner cases.
This proposal allows users to specify constraints in a compact, declarative way. The constraints
are then processed by a solver that generates random values that meet the constraints.

The random constraints are built on top of an object oriented framework that models the data to
be randomized as objects that contain random variables and user-defined constraints. The
constraints determine the legal values that can be assigned to the random variables. Objects are
ideal for representing complex aggregate data types and protocols such as Ethernet packets.

The next section provides an overview of object-based randomization and constraint
programming. The rest of this document provides detailed information on random variables,
constraint blocks, and the mechanisms used to manipulate them.

2 Overview
This section introduces the basic concepts and uses for generating random stimulus within
objects. The proposed language uses an object-oriented method for assigning random values to
the member variables of an object subject to user-defined constraints. For example:

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint word_align {addr[1:0] == ‘2b0;}
endclass

The Bus class models a simplified bus with two random variables: addr and data, representing
the address and data values on a bus. The word_align constraint declares that the random values
for addr must be such that addr is word-aligned (the low-order 2 bits are 0).

The randomize() method is called to generate new random values for a bus object:

Bus bus = new;

repeat (50) begin
if(bus.randomize() == 1)

$display ("addr = %16h data = %h\n", bus.addr, bus.data);
else

$display ("Randomization failed.\n");
end

Random Constraints SystemVerilog 3.1

November 18, 2002 2

Calling randomize() causes new values to be selected for all of the random variables in an object
such that all of the constraints are true (“satisfied”). In the program test above, a “bus” object is
created and then randomized 50 times. The result of each randomization is checked for success.
If the randomization succeeds, the new random values for addr and data are printed; if the
randomization fails, an error message is printed. In this example, only the addr value is
constrained, while the data value is unconstrained. Unconstrained variables are assigned any
value in their declared range.

Constraint programming is a powerful method that lets users build generic, reusable objects that
can later be extended or constrained to perform specific functions. The approach differs from
both traditional procedural and object-oriented programming, as illustrated in this example that
extends the Bus class:

typedef enum {low, mid, high} AddrType;

class MyBus extends Bus;
rand AddrType type;
constraint addr_range
{

(type == low) => addr inside { [0 : 15] };
(type == mid) => addr inside { [16 : 127]};
(type == high) => addr inside {[128 : 255]};

}
endclass

The MyBus class inherits all of the random variables and constraints of the Bus class, and adds a
random variable called type that is used to control the address range using another constraint.
The addr_range constraint uses implication to select one of three range constraints depending on
the random value of type. When a MyBus object is randomized, values for addr, data, and type
are computed such that all of the constraints are satisfied. Using inheritance to build layered
constraint systems allows uses to develop general-purpose models that can be constrained to
perform application-specific functions.

Objects can be further constrained using the randomize() with construct, which declares
additional constraints inline with the call to randomize():

task exercise_bus (MyBus bus);
int res;

// EXAMPLE 1: restrict to small addresses
res = bus.randomize() with {type == small;};

// EXAMPLE 2: restrict to address between 10 and 20
res = bus.randomize() with {10 <= addr && addr <= 20;};

// EXAMPLE 3: restrict data values to powers-of-two
res = bus.randomize() with {data & (data - 1) == 0;};

endtask

Random Constraints SystemVerilog 3.1

November 18, 2002 3

This example illustrates several important properties of constraints:

� Constraints can be any SystemVerilog expression with variables and constants of integral
type (bit, reg, logic, integer, enum, packed struct, etc…).

� Constraint expressions follow SystemVerilog syntax and semantics, including precedence,
associativity, sign extension, truncation, and wrap-around.

� The constraint solver must be able to handle a wide spectrum of equations, such as algebraic
factoring, complex Boolean expressions, and mixed integer and bit expressions. In the
example above, the power-of-two constraint was expressed arithmetically. It could have also
been defined with expressions using a shift operator. For example, 1 << n, where n is a 5-bit
random variable.

� If a solution exists, the constraint solver must find it. The solver may fail only when the
problem is over-constrained and there is no combination of random values that satisfy the
constraints.

� Constraints interact bi-directionally. In this example, the value chosen for addr depends on
type and how it is constrained, and the value chosen for type depends on addr and how it is
constrained. All expression operators are treated bi-directionally, including the implication
operator (=>).

Sometimes it is desirable to disable constraints on random variables. For example, consider the
case where we want to deliberately generate an illegal address (non-word aligned):

task exercise_illegal(MyBus bus, int cycles);
int res;

// Disable word alignment constraint.
$constraint_mode(OFF, bus.word_align);

repeat (cycles) begin

// CASE 1: restrict to small addresses.
res = bus.randomize() with {addr[0] || addr[1];};
...

end

// Re-enable word alignment constraint.
$constraint_mode(ON, bus.word_align);

endtask

The $constraint_mode() system task can be used to enable or disable any named constraint
block in an object. In this example, the word-alignment constraint is disabled, and the object is
then randomized with additional constraints forcing the low-order address bits to be non-zero
(and thus unaligned).

The ability to enable or disable constraints allows users to design a constraint hierarchies. In
these hierarchies, the lowest level constraints can represent physical limits grouped by common
properties into named constraint blocks, which can be independently enabled or disabled.

Random Constraints SystemVerilog 3.1

November 18, 2002 4

Similarly, the $rand_mode() method can be used to enable or disable any random variable.
When a random variable is disabled, it behaves in exactly the same way as other non-random
variables.

Occasionally, it is desirable to perform operations immediately before or after randomization.
That is accomplished via two built-in methods, pre_randomize() and post_randomize(), which
are automatically called before and after randomization. These methods can be overloaded with
the desired functionality:

class XYPair;
rand integer x, y;

endclass

class MyYXPair extends XYPair
function void pre_randomize();

super.pre_randomize();
printf("Before randomize x=%0d, y=%0d\n", x, y);

endtask

function void post_randomize();
super.post_randomize();
printf("After randomize x=%0d, y=%0d\n", x, y);

endtask
endclass

By default, pre_randomize() and post_randomize() call their overloaded parent class methods.
When pre_randomize() or post_randomize() are overloaded, care must be taken to invoke the
parent class’ methods, unless the class is a base class (has no parent class).

The random stimulus generation capabilities and the object-oriented constraint-based verification
methodology enable users to quickly develop tests that cover complex functionality and better
assure design correctness.

3 Random Variables
Class variables can be declared random using the rand and randc type-modifier keywords.

The syntax to declare a random variable in a class is:

rand variable;
or

randc variable;

� The solver can randomize scalar variables of any integral type such as integer, enumerated
types, and packed array variables of any size.

� Arrays can be declared rand or randc, in which case all of their member elements are treated
as rand or randc.

Random Constraints SystemVerilog 3.1

November 18, 2002 5

� Dynamic and associative arrays can be declared rand or randc. All of the elements in the
array are randomized. If the array elements are of type object, all of the array elements must
be non-null. Individual array elements may be constrained, in which case the index
expression must be a literal constant.

� The size of a dynamic array declared as rand or randc may also be constrained. In that case,
the array will be resized according to the size constraint, and then all the array elements will
be randomized. The array size constraint is declared using the size method. For example,

rand bit[7:0] len;
rand integer data[*];
constraint db { data.size == len);

The variable len is declared to be 8 bits wide. The randomizer computes a random value for
the len variable in the 8-bit range of 0 to 255, and then randomizes the first len elements of
the data array.

If a dynamic array’s size is not constrained then randomize() randomizes all the elements in
the array.

� An object variable can be declared rand in which case all of that object’s variables and
constraints are solved concurrently with the other class variables and constraints. Objects
cannot be declared randc.

3.1 rand Modifier
Variables declared with the rand keyword are standard random variables. Their values are
uniformly distributed over their range. For example:

rand bit[7:0] y;

This is an 8-bit unsigned integer with a range of 0 to 255. If unconstrained, this variable will be
assigned any value in the range 0 to 255 with equal probability. In this example, the probability
of the same value repeating on successive calls to randomize is 1/256.

3.2 randc Modifier
Variables declared with the randc keyword are random-cyclic variables that cycle through all
the values in a random permutation of their declared range. Random-cyclic variables can only be
of type bit, char, or enumerated types, and may be limited to a maximum size.

To understand randc, consider a 2-bit random variable y:

randc bit[1:0] y;

The variable y can take on the values 0, 1, 2, and 3 (range 0 to 3). Randomize computes an initial
random permutation of the range values of y, and then returns those values in order on
successive calls. After it returns the last element of a permutation, it repeats the process by
computing a new random permutation.

Random Constraints SystemVerilog 3.1

November 18, 2002 6

The basic idea is that randc randomly iterates over all the values in the range and that no value is
repeated within an iteration. When the iteration finishes, a new iteration automatically starts.

The permutation sequence for any given randc variable is recomputed whenever the constraints
change on that variable, or when none of the remaining values in the permutation can satisfy the
constraints.

To reduce memory requirements, implementations may impose a limit on the maximum size of a
randc variable, but it should be no less than 8 bits.

The semantics of cyclical variables requires that they be solved before other random variables. A
set of constraints that includes both rand and randc variables will be solved such that the randc
variables are solved first, and this may sometimes cause randomize() to fail.

4 Constraint Blocks
The values of random variables are determined using constraint expressions that are declared
using constraint blocks. Constraint blocks are class members, like tasks, functions, and variables.
They must be defined after the variable declarations in the class, and before the task and function
declarations in the class. Constraint block names must be unique within a class.

The syntax to declare a constraint block is:

constraint constraint_name { contraint_expressions }

constraint_name is the name of the constraint block. This name can be used to enable or disable
a constraint using the system task $constraint_mode().

constraint_expressions is a list of expression statements that restrict the range of a variable or
define relations between variables. A constraint expression is any SystemVerilog expression, or
one of the constraint-specific operators: =>, inside and dist.

The declarative nature of constraints imposes the following restrictions on constraint
expressions:

� Calling tasks or functions is not allowed.
� Operators with side effects, such as ++ and -- are not allowed.
� randc variables cannot be specified in ordering constraints (see solve..before in Section 12).
� dist expressions cannot appear in other expressions (unlike inside); they can only be top-

level expressions.

initial permutation: 0 � 3 � 2 � 1

next permutation: � 2 � 1 � 3 � 0

next permutation: � 2 � 0 � 1 � 3 ...

Random Constraints SystemVerilog 3.1

November 18, 2002 7

5 External Constraint Blocks
Constraint block bodies can be declared outside a class declaration, just like external task and
function bodies:

// class declaration
class XYPair;

rand integer x, y;
constraint c;

endclass

// external constraint body declaration
constraint XYPair::c { x < y; }

6 Inheritance
Constraints follow the same general rules for inheritance as class variables, tasks, and functions:

� A constraint in a derived class that uses the same name as a constraint in its parent classes
effectively overrides the base class constraints. For example:

class A;
rand integer x;
constraint c { x < 0; }

endclass

class B extends A;
constraint c { x > 0; }

endclass

An instance of class A constrains x to be less than zero whereas an instance of class B
constrains x to be greater than zero. The extended class B overrides the definition of
constraint c. In this sense, constraints are treated the same as virtual functions, so casting an
instance of B to an A does not change the constraint set.

� The randomize() task is virtual, accordingly, it treats the class constraints in a virtual
manner. When a named constraint is overloaded, the previous definition is overriden.

� The built-in methods pre_randomize() and post_randomize() are functions and cannot
block.

7 Set Membership
Constraints support integer value sets and set membership operators.

The syntax to define a set expression is:

expression inside { value_range_list };
or

expression inside array; // fixed-size, dynamic, or associative array

Random Constraints SystemVerilog 3.1

November 18, 2002 8

expression is any integral SystemVerilog expression.

value_range_list is a comma-separated list of integral expressions and ranges. Ranges are
specified with a low and high bound, enclosed by square braces [], and separated by a colon:
[low_bound : high_bound]. Ranges include all of the integer elements between the bounds. The
bound to the left of the colon MUST be less than or equal to the bound to the right, otherwise the
range is empty and contains no values.

The inside operator evaluates to true if the expression is contained in the set; otherwise it
evaluates to false.

Absent any other constraints, all values (either single values or value ranges), have an equal
probability of being chosen by the inside operator.

The negated form denotes that expression lies outside the set: !(expression inside { set })

For example:

rand integer x, y, z;
constraint c1 {x inside {3, 5, [9:15], [24:32], [y:2*y], z};}

rand integer a, b, c;
constraint c2 {a inside {b, c};}

Set values and ranges can be any integral expression. Values can be repeated, so values and
value ranges can overlap. It is important to note that the inside operator is bidirectional, thus, the
second example is equivalent to a == b || a == c.

8 Distribution
In addition to set membership, constraints support sets of weighted values called distributions.
Distributions have two properties: they are a relational test for set membership, and they specify
a statistical distribution function for the results.

The syntax to define a distribution expression is:

expression dist { value_range_ratio_list };

expression can be any integral SystemVerilog expression.

The distribution operator dist evaluates to true if the expression is contained in the set; otherwise
it evaluates to false.

Absent any other constraints, the probability that the expression matches any value in the list is
proportional to its specified weight.

Random Constraints SystemVerilog 3.1

November 18, 2002 9

The value_range_ratio_list is a comma-separated list of integral expressions and ranges (the
same as the value_range_list for set membership). Optionally, each term in the list can have a
weight, which is specified using the := or :/ operators. If no weight is specified, the default
weight is 1. The weight may be any integral SystemVerilog expression.

The := operator assigns the specified weight to the item, or if the item is a range, to every value
in the range.

The :/ operator assigns the specified weight to the item, or if the item is a range, to the range as
a whole. If there are n values in the range, the weight of each value is range_weight / n.

For example:

x dist {100 := 1, 200 := 2, 300 := 5}

means x is equal to 100, 200, or 300 with weighted ratio of 1-2-5. If an additional constraint is
added that specifies that x cannot be 200:

x != 200;
x dist {100 := 1, 200 := 2, 300 := 5}

then x is equal to 100 or 300 with weighted ratio of 1-5.

It is easier to think about mixing ratios, such as 1-2-5, than the actual probabilities because
mixing ratios do not have to be normalized to 100%. Converting probabilities to mixing ratios is
straightforward.

When weights are applied to ranges, they can be applied to each value in the range, or they can
be applied to the range as a whole. For example,

x dist { [100:102] := 1, 200 := 2, 300 := 5}

means x is equal to 100, 101, 102, 200, or 300 with a weighted ratio of 1-1-1-2-5.

x dist { [100:102] :/ 1, 200 := 2, 300 := 5}

means x is equal to one of 100, 101, 102, 200, or 300 with a weighted ratio of 1/3-1/3-1/3-2-5.

In general, distributions guarantee two properties: set membership and monotonic weighting,
which means that increasing a weight will increase the likelihood of choosing those values.

Limitations:
� A dist operation may not be applied to randc variables.
� A dist expression requires that expression contain at least one rand variable.

Random Constraints SystemVerilog 3.1

November 18, 2002 10

9 Implication
Constraints provide two constructs for declaring conditional (predicated) relations: implication
and if-else.

The implication operator (=>) can be used to declare an expression that implies a constraint.

The syntax to define an implication constraint is:

expression => constraint;
expression => constraint_block;

The expression can be any integral SystemVerilog expression.

The implication operator => evaluates to true if the expression is false or the constraint is
satisfied; otherwise it evaluates to false.

The constraint is any valid constraint, and constraint_block represents an anonymous constraint
block. If the expression is true, all of the constraints in the constraint block must also be satisfied.

For example:

mode == small => len < 10;
mode == large => len > 100;

In this example, the value of mode implies that the value of len is less than 10 or greater than
100. If mode is neither small nor large, the value of len is unconstrained.

The boolean equivalent of (a => b) is (!a || b). Implication is a bidirectional operator. Consider
the following example:

bit[3:0] a, b;
constraint c {(a == 0) => (b == 1)};

Both a and b are 4 bits, so there are 256 combinations of a and b. Constraint c says that a == 0
implies that b == 1, thereby eliminating 15 combinations: {0,0}, {0,2}, … {0,15}. The
probability that a == 0 is thus 1/(256-15) or 1/241.

It is important to that the constraint solver be designed to cover the whole random value space
with uniform probability. This allows randomization to better explore the whole design space
than in cases where certain value combinations are preferred over others.

10 if-else Constraints
If-else style constraint are also supported.

The syntax to define an if-else constraint is:

Random Constraints SystemVerilog 3.1

November 18, 2002 11

if (expression) constraint; [else constraint;]
if (expression) constraint_block [else constraint_block]

expression can be any integral SystemVerilog expression.

constraint is any valid constraint. If the expression is true, the first constraint must be satisfied;
otherwise the optional else-constraint must be satisfied.

constraint_block represents an anonymous constraint block. If the expression is true, all of the
constraints in the first constraint block must be satisfied, otherwise all of the constraints in the
optional else-constraint-block must be satisfied. Constraint blocks may be used to group multiple
constraints.

If-else style constraint declarations are equivalent to implications:

if (mode == small)
len < 10;

else if (mode == large)
len > 100;

is equivalent to

mode == small => len < 10 ;
mode == large => len > 100 ;

In this example, the value of mode implies that the value of len is less than 10, greater than 100,
or unconstrained.

Just like implication, if-else style constraints are bi-directional. In the declaration above, the
value of mode constraints the value of len, and the value of len constrains the value of mode.

11 Global Constraints
When an object member of a class is declared rand, all of its constraints and random variables
are randomized simultaneously along with the other class variables and constraints. Constraint
expressions involving random variables from other objects are called global constraints.

class A; // leaf node
rand bit[7:0] v;

endclass

class B extends A; // heap node
rand A left;
rand A right;

constraint heapcond {left.v <= v; right.v <= v;}
endclass

.left .right

.v

.v.v

B

A A

Random Constraints SystemVerilog 3.1

November 18, 2002 12

This example uses global constraints to define the legal values of an ordered binary tree. Class A
represents a leaf node with an 8-bit value x. Class B extends class A and represents a heap-node
with value v, a left sub-tree, and a right sub-tree. Both sub-trees are declared as rand in order to
randomize them at the same time as other class variables. The constraint block named heapcond
has two global constraints relating the left and right sub-tree values to the heap-node value.
When an instance of class B is randomized, the solver simultaneously solves for B and its left
and right children, which in turn may be leaf nodes or more heap-nodes.

The following rules determines which objects, variables, and constraints are to be randomized:

1. First, determine the set of objects that are to be randomized as a whole. Starting with the
object that invoked the randomize() method, add all objects that are contained within it, are
declared rand, and are active (see $rand_mode). The definition is recursive and includes all
of the active random objects that can be reached from the starting object. The objects selected
in this step are referred to as the active random objects.

2. Next, select all of the active constraints from the set of active random objects. These are the
constraints that are applied to the problem.

3. Finally, select all of the active random variables from the set of active random objects. These
are the variables that are to be randomized. All other variable references are treated as state
variables, whose current value is used as a constant.

12 Variable Ordering
The solver assures that the random values are selected to give a uniform value distribution over
legal value combinations (that is, all combinations of values have the same probability of being
chosen). This important property guarantees that all value combinations are equally probable.

Sometimes, however, it is desirable to force certain combinations to occur more frequently.
Consider this case where a 1-bit “control” variable s constrains a 32-bit “data” value d:

class B;
rand bit s;
rand bit[31:0] d;

constraint c { s => d == 0; }
endclass

The constraint c says “s implies d equals zero”. Although this reads as if s determines d, in fact s
and d are determined together. There are 232 valid combinations of {s,d}, but s is only true for
{1,0}. Thus, the probability that s is true is 1/232, which is practically zero.

The constraints provide a mechanism for order variables so that s can be chosen independent of
d. This mechanism defines a partial ordering on the evaluation of variables, and is specified
using the solve keyword.

Random Constraints SystemVerilog 3.1

November 18, 2002 13

class B;
rand bit s;
rand bit[31:0] d;
constraint c { s => d == 0; }
constraint order { solve s before d; }

endclass

In this case, the order constraint instructs the solver to solve for s before solving for d. The effect
is that s is now chosen true with 50% probability, and then d is chosen subject to the value of s.
Accordingly, d == 0 will occur 50% of the time, and d != 0 will occur for the other 50%.

Variable ordering can be used to force selected corner cases to occur more frequently than they
would otherwise.

The syntax to define variable order in a constraint block is:

solve variable_list before variable_list ;

variable_list is a comma-separated list of integral scalar variables or array elements.

The following restrictions apply to variable ordering:
� Only random variables are allowed, that is, they must be rand.
� randc variables are not allowed. randc variables are always solved before any other.
� The variables must be integral scalar values.
� A constraint block may contain both regular value constraints and ordering constraints.
� There must be no circular dependencies in the ordering, such as “solve a before b” combined

with “solve b before a”.
� Variables that are not explicitly ordered will be solved with the last set of ordered variables.

These values are deferred until as late as possible to assure a good distribution of value.
� Variables can be solved in an order that is not consistent with the ordering constraints,

provided that the outcome is the same. An example situation where this might occur is:
x == 0;
x < y;
solve y before x;

In this case, since x has only one possible assignment (0), x can be solved for before y. The
constraint solver can use this flexibility to speed up the solving process.

13 Randomization Methods

13.1 randomize()
Variables in an object are randomized using the randomize() class method. Every class has a
built-in randomize() virtual method, declared as:

virtual function int randomize();

The randomize() method is a virtual function that generates random values for all the active
random variables in the object, subject to the active constraints.

Random Constraints SystemVerilog 3.1

November 18, 2002 14

The randomize() method returns 1 if it successfully sets all the random variables and objects to
valid values, otherwise it returns 0.

Example:

class SimpleSum;
rand bit[7:0] x, y, z;
constraint c {z == x + y;}

endclass

This class definition declares three random variables, x, y, and z. Calling the randomize()
method will randomize an instance of class SimpleSum:

SimpleSum p = new;
int success = p.randomize();
if (success == 1) ...

Checking results is always needed because the actual value of state variables or addition of
constraints in derived classes may render seemingly simple constraints unsatisfiable.

13.2 pre_randomize() and post_randomize()
Every class contains built-in pre_randomize() and post_randomize() functions, that are
automatically called by randomize() before and after computing new random values.

Built-in definition for pre_randomize():

function void pre_randomize;
if (super) super.pre_randomize();
// Optional programming before randomization goes here.

endfunction

Built-in definition for post_randomize():

function void post_randomize;
if (super) super.post_randomize();
// Optional programming after randomization goes here.

endfunction

When obj.randomize() is invoked, it first invokes pre_randomize() on obj and also all of its
random object members that are enabled. pre_randomize() then recursively calls
super.pre_randomize(). After the new random values are computed and assigned,
randomize() invokes post_randomize() on obj and also all of its random object members that
are enabled. post_randomize() then recursively calls super.post_randomize().

Users may overload the pre_randomize() in any class to perform initialization and set pre-
conditions before the object is randomized.

Random Constraints SystemVerilog 3.1

November 18, 2002 15

Users may overload the post_randomize() in any class to perform cleanup, print diagnostics,
and check post-conditions after the object is randomized.

If these methods are overloaded, they must call their associated parent class methods, otherwise
their pre- and post-randomization processing steps will be skipped.

Notes:
� Random variables declared as static are shared by all instances of the class in which they are

declared. Each time the randomize() method is called, the variable is changed in every class
instance.

� If randomize() fails, the constraints are infeasible and the random variables retain their
previous values.

� If randomize() fails post_randomize() is not be called.
� The randomize() method may not be overloaded.
� The randomize() method implements object random stability. An object can be seeded by

the $srandom() system call, specifying the object in the second argument.

14 Inline Constraints - randomize() with
By using the randomize() with construct, users can declare inline constraints at the point where
the randomize() method is called. These additional constraints are applied along with the object
constraints.

The syntax for randomize() with is:

result = object_name.randomize() with constraint_block;

object_name is the name of an instantiated object.

The anonymous constraint block contains additional inline constraints to be applied along with
the object constraints declared in the class.

For example:

class SimpleSum
rand bit[7:0] x, y, z;
constraint c {z == x + y;}

endclass

task InlineConstraintDemo(SimpleSum p);
int success;
success = p.randomize() with {x < y;};

endtask

This is the same example used before, however, randomize() with is used to introduce an
additional constraint that x < y.

Random Constraints SystemVerilog 3.1

November 18, 2002 16

The randomize() with construct can be used anywhere an expression can appear. The constraint
block following with can define all of the same constraint types and forms as would otherwise be
declared in a class.

The randomize() with constraint block may also reference local variables and task and function
parameters, eliminating the need for mirroring a local state as member variables in the object
class. The scope for variable names in a constraint block, from inner to outer, is: randomize()
with object class, automatic and local variables, task and function parameters, class variables,
variables in the enclosing scope. The randomize() with class is brought into scope at the
innermost nesting level.

For example, see below, where the randomize() with class is “Foo.”

class Foo;
rand integer x;

endclass

class Bar;
integer x;
integer y;

task doit(Foo f, integer x, integer z);
int result;
result = f.randomize() with {x < y + z;};

endtask
endclass

In the “f.randomize() with” constraint block, x is a member of class Foo, and hides the x in class
Bar. It also hides the x parameter in the doit() task. y is a member of Bar. z is a local parameter.

15 Disabling Random Variables
The $rand_mode() system task can be used to control whether a random variable is active or
inactive. When a random variable is inactive, it is treated the same as if it had not been declared
rand or randc. Inactive variables are not randomized by the randomize() method, and their
values are treated as state variables by the solver. All random variables are initially active.

15.1 $rand_mode()
The syntax for the $rand_mode() subroutine is:

task $rand_mode(ON | OFF, object [.random_variable]);
or

function int $rand_mode(object.random_variable);

object is any expression that yields the object handle in which the random variable is defined.

Random Constraints SystemVerilog 3.1

November 18, 2002 17

random_variable is the name of the random variable to which the operation is applied. If it is
not specified, the action is applied to all random variables within the specified object.

The first argument to the $rand_mode task determines the operation to be performed:

Constant Value Description
OFF 0 Sets the specified variables to inactive so that they are not randomized on

subsequent calls to the randomize() method.

ON 1 Sets the specified variables to active so that they are randomized on
subsequent calls to the randomize() method.

For array variables, random_variable can specify individual elements using the corresponding
index. Omitting the index results in all the elements of the array being affected by the call.

If the variable is an object, only the mode of the variable is changed, not the mode of random
variables within that object (see Global Constraints in Section 11).

A compiler error is issued if the specified variable does not exist within the class hierarchy or it
exists but is not declared as rand or randc.

The function form of $rand_mode() returns the current active state of the specified random
variable. It returns 1 if the variable is active (ON), and 0 if the variable is inactive (OFF).
The function form of $rand_mode() only accepts scalar variables, thus, if the specified variable
is an array, a single element must be selected via its index.

Example:

class Packet;
rand integer source_value, dest_value;
... other declarations

endclass

int ret;
Packet packet_a = new;

// Turn off all variables in object.
$rand_mode(OFF, packet_a);

// ... other code
// Enable source_value.

$rand_mode(ON, packet_a.source_value);

ret = $rand_mode(packet_a.dest_value);

This example first disables all random variables in the object packet_a, and then enables only the
source_value variable. Finally, it sets the ret variable to the active status of variable dest_value.

Random Constraints SystemVerilog 3.1

November 18, 2002 18

16 Disabling Constraints
The $constaint_mode() system task can be used to control whether a constraint is active or
inactive. When a constraint is inactive, it is not considered by the randomize() method. All
constraints are initially active.

16.1 $constraint_mode()
The syntax for the $constraint_mode() subroutine is:

task $constraint_mode(ON | OFF, object [.constraint_name]);
or

function int $constraint_mode(object. constraint_name);

object is any expression that yields the object handle in which the constraint is defined.

constraint_name is the name of the constraint block to which the operation is applied. The
constraint name can be the name of any constraint block in the class hierarchy. If no constraint
name is specified, the operation is applied to all constraints within the specified object.

The first argument to the $constraint_mode task determines the operation to be performed:

Constant Value Description
OFF 0 Sets the specified constraint block to active so that it is considered by

subsequent calls to the randomize() method.

ON 1 Sets the specified constraint block to inactive so that it is not enforced on
subsequent calls to the randomize() method.

A compiler error is issued if the specified constraint block does not exist within the class
hierarchy.

The function form of $constraint_mode() returns the current active state of the specified
constraint block. It returns 1 if the constraint is active (ON), and 0 if the constraint is inactive
(OFF).

Example:
class Packet;

rand integer source_value;
constraint filter1 { source_value > 2 * m; }

endclass

function integer toggle_rand(Packet p);
if($constraint_mode(p.filter1))

$constraint_mode(OFF, p.filter1);
else

$constraint_mode(ON, p.filter1);

toggle_rand = p.randomize();
endfunction

Random Constraints SystemVerilog 3.1

November 18, 2002 19

In this example, the toggle_rand function first checks the current active state of the constraint
filter1 in the specified Packet object p. If the constraint is active then the function will deactivate
it; if it’s inactive the function will activate it. Finally, the function calls the randomize method to
generate a new random value for variable source_value.

17 Static Constraint Blocks
Constraint blocks can be defined as static by including the static keyword in their definition.

The syntax to declare a static constraint block is:

static constraint constraint_name { contraint_expressions }

If a constraint block is declared as static, then calls to $constraint_mode() affect all instances of
the specified constraint in all objects. Thus, if a static constraint is set to OFF, it is OFF for all
instances of that particular class.

18 Dynamic Constraint Modification
There are several ways to dynamically modify randomization constraints:

� Implication and if-else style constraints allow declaration of predicated constraints.

� Constraint blocks can be made active or inactive using the $constraint_mode() system task.
Initially, all constraint blocks are active. Inactive constraints are ignored by the randomize()
function.

� Random variables can be made active or inactive using the $rand_mode() system task.
Initially, all rand and randc variables are active. Inactive variables are ignored by the
randomize() function.

� The weights in a dist constraint can be changed, affecting the probability that particular
values in the set are chosen.

19 Random Number System Functions

19.1 $urandom
The system function $urandom provides a mechanism for generating random numbers. The
function returns a new 32-bit random number each time it is called. The number is unsigned.

The syntax for $urandom is:

function unsigned int $urandom [(int seed)] ;

Random Constraints SystemVerilog 3.1

November 18, 2002 20

The seed is an optional argument that determines which random number is generated. The seed
can be any integral expression. The random number generator generates the same number every
time the same seed is used.

The random number generator is deterministic. Each time the program executes, it cycles
through the same random sequence. This sequence can be made non-deterministic by seeding
the $urandom function with an extrinsic random variable, such as the time of day.

For example:
bit [64:1] addr;

$urandom(254); // Initialize the generator
addr = {$urandom, $urandom }; // 64-bit random number
number = $urandom & 15; // 4-bit random number

The $urandom function is similar to the $random system function, with two exceptions.
$urandom returns unsigned numbers and it’s automatically thread stable (see Section 20.2).

19.2 $urandom_range()
The $urandom_range() function returns an unsigned integer within a specified range.

 The syntax for $urandom_range is:

function unsigned int $urandom_range(unsigned int maxval, unsigned int minval = 0);

The function returns an unsigned integer in the range maxval .. minval.
Example: val = $urandom_range(7,0);

If minval is omitted, the function returns a value in the range maxval .. 0.
Example: val = $urandom_range(7);

If maxval is less than minval, the arguments are automatically reversed so that the first argument
is larger than the second argument.

Example: val = $urandom_range(0,7);

All of three previous examples produce a value in the range of 0 to 7, inclusive.

$urandom_range() is automatically thread stable (see Section 20.2).

19.3 $srandom()
The system function $srandom() allows manually seeding the RNG of objects or threads.

The syntax for the $srandom() system task is:

Random Constraints SystemVerilog 3.1

November 18, 2002 21

task $srandom(int seed, [object obj]);

The $srandom() system task initializes the local random number generator using the value of the
given seed. The optional object argument is used to seed an object instead of the current process
(thread). The top level randomizer of each program is initialized with $srandom(1) prior to any
randomization calls.

20 Random Stability
The Random Number Generator (RNG) is localized to threads and objects. Because the stream
of random values returned by a thread or object is independent of the RNG in other threads or
objects, this property is called Random Stability. Random stability applies to:

� the system randomization calls, $urandom, $urandom_range(), and $srandom().
� the object randomization method, randomize().

Test-benches with this feature exhibit more stable RNG behavior in the face of small changes to
the user code. Additionally, it enables more precise control over the generation of random values
by manually seeding threads and objects.

20.1 Random Stability Properties
Random stability encompasses the following properties:

� Thread stability

Each thread has an independent RNG for all randomization system calls invoked from that
thread. When a new thread is created, its RNG is seeded with the next random value from its
parent thread. This property is called “hierarchical seeding.”

Program and thread stability is guaranteed as long as thread creation and random number
generation is done in the same order as before. When adding new threads to an existing test,
they can be added at the end of a code block in order to maintain random number stability of
previously created work.

� Object stability

Each class instance (object) has an independent RNG for all randomization methods in the
class. When an object is created using new, its RNG is seeded with the next random value
from the thread that creates the object.

Object stability is guaranteed as long as object and thread creation, as well as random number
generation is done in the same order as before. In order to maintain random number stability,
new objects, threads and random numbers can be created after existing objects are created.

Random Constraints SystemVerilog 3.1

November 18, 2002 22

� Manual seeding

All RNG’s can be manually seeded. Combined with hierarchical seeding, this facility allows
users to define the operation of a subsystem (hierarchy sub-tree) completely with a single
seed at the root thread of the system.

20.2 Thread Stability
Random values returned from the $urandom system call are independent of thread execution
order. For example:

integer x, y, z;
fork //set a seed at the start of a thread

begin $srandom(100); x = $urandom; end
//set a seed during a thread

begin y = $urandom; $srandom(200); end
// draw 2 values from the thread RNG

begin z = $urandom + $urandom ; end
join

The above program fragment illustrates several properties:

� Thread Locality. The values returned for x, y and z are independent of the order of thread
execution. This is an important property because it allows development of subsystems that
are independent, controllable, and predictable.

� Hierarchical seeding. When a thread is created, its random state is initialized using the next
random value from the parent thread as a seed. The three forked threads are all seeded from
the parent thread.

Each thread is seeded with a unique value, determined solely by its parent. The root of a
thread execution subtree determines the random seeding of its children. This allows entire
subtrees to be moved, and preserve their behavior by manually seeding their root thread.

20.3 Object Stability
The randomize() method built into every class exhibits object stability. This is the property that
calls to randomize() in one instance are independent of calls to randomize() in other instances,
and independent of calls to other randomize functions.

For example:

class Foo;
rand integer x;

endclass

class Bar;
rand integer y;

endclass

Random Constraints SystemVerilog 3.1

November 18, 2002 23

initial begin
Foo foo = new();
Bar bar = new();
integer z;
void = foo.randomize();
// z = $random;
void = bar.randomize();

begin

� The values returned for foo.x and bar.y are independent of each other.
� The calls to randomize() are independent of the $random system call. If one uncomments the

line “z = $random” above, there is no change in the values assigned to foo.x and bar.y.
� Each instance has a unique source of random values that can be seeded independently. That

random seed is taken from the parent thread when the instance is created.
� Objects can be seeded at any time using the $srandom() system task with an optional object

argument.

class Foo;
function void new (integer seed);

//set a new seed for this instance
$srandom(seed, this);

endfunction
endclass

Once an object is created there is no guarantee that the creating thread can change the object’s
random state before another thread accesses the object. Therefore, it is best that objects self-seed
within their new method rather than externally.

An object’s seed may be set from any thread. However, a thread’s seed can only be set from
within the thread itself.

21 Manually Seeding Randomize
Each object maintains its own internal random number generator, which is used exclusively by
its randomize() method. This allows objects to be randomized independent of each other and of
calls to other system randomization functions. When an object is created, its random number
generator (RNG) is seeded using the next value from the RNG of the thread that creates the
object. This process is called hierarchical object seeding.

Sometimes it is desirable to manually seed an object’s RNG using the $srandom() system call.
This can be done either in a class method, or external to the class definition:

internally:

class Packet;
rand bit[15:0] header;
...
function void new (int seed);

Random Constraints SystemVerilog 3.1

November 18, 2002 24

$srandom(seed, this);
...
endtask

endclass

or externally:

Packet p = new(200); // Create p with seed 200.
$srandom(300, p); // Re-seed p with seed 300.

Calling $srandom() in an object’s new() function, assures the object’s RNG is set with the new
seed before any class member values randomized.

Random Constraints SystemVerilog 3.1

November 18, 2002 25

Appendix A Operator Preced ence and Associativity
Table 2 below shows the precedence and associativity of all SystemVerilog operators, including
the additional operators used by random constraints. The new operators are shown in Table 1.

Operator Description
dist Distribution
inside Set Membership
=> Implication

Table 1 Additional operators proposed for constraints

Operator Associativity
() [] . left
Unary ! ~ ++ -- + - & ~& | ~| ^ ~^ right
** left
* / % left
+ - left
<< >> <<< >>> left
< <= > >= inside dist left
== != === !== left
& left
^ ~^ left
| left
&& left
|| left
=> right
? : right
= += -= *= /= %= &= |= ^= <<= >>= <<<= >>>= none

Table 2 Operator precedence and associativity in SystemVerilog including new operators

Appendix B Keywords
Below is the list of all new keywords added by this proposal.�

� The keywords solve and before need not be implemented as keywords, but as context recognized identifiers.

before�

constraint
inside
rand

randc
solve�

with

	Introduction
	Overview
	Random Variables
	rand Modifier
	randc Modifier

	Constraint Blocks
	External Constraint Blocks
	Inheritance
	Set Membership
	Distribution
	Implication
	if-else Constraints
	Global Constraints
	Variable Ordering
	Randomization Methods
	randomize()
	pre_randomize() and post_randomize()

	Inline Constraints - randomize() with
	Disabling Random Variables
	$rand_mode()

	Disabling Constraints
	$constraint_mode()

	Static Constraint Blocks
	Dynamic Constraint Modification
	Random Number System Functions
	$urandom
	$urandom_range()
	$srandom()

	Random Stability
	Random Stability Properties
	Thread Stability
	Object Stability

	Manually Seeding Randomize
	Operator Precedence and Associativity
	Keywords

