August 5, 2002

SystemVerilog Extension Committee SV-EC

--

Questions from Meeting on July 22

2. why concatenation not supported for array initialization.

 The following array initialization is not allowed in Vera.

 integer a[2][2] = {1,2, {2'b10,2'h01}, 3 };

 This is because in Vera (like in C/C++) the brackets that can be used to

 group the elements of each dimension are optional. For example, the

 following are all valid in Vera:

 integer a[2][2] = {1, 2, 3, 4 };

 integer a[2][2] = {{1, 2}, 3, 4 };

 integer a[2][2] = {{1, 2}, {3, 4} };

 Since the brackets are optional, they are ambiguous in this context; they

 can specify concatenation or array dimension. Basically, this grammar

 construct is not context-free and the compiler parse this grammar.

 Note that in System-Verilog all the dimensional brackets are required, which

 doesn't remove the grammtical ambiguity, but does allows the compiler to

 distinguish conatenation from dimensional brackets.

3. clarify how arrays can be initialized and note on 1-12. See above.

4 documentation on system task (printf)

Predefined format specifiers for the printf() task
	Specifier
	Format
	Argument type expected

	%d or %D
	decimal
	integer, bit vector, enum

	%i or %I
	decimal
	integer, bit vector, enum

	%h or %H
	hexadecimal
	integer, bit vector, enum

	%x or %X
	hexadecimal
	integer, bit vector, enum

	%o or %O
	octal
	integer, bit vector, enum

	%b or %B
	binary
	integer, bit vector, enum

	%u or %U
	unsigned integer
	integer, bit vector, enum

	%c or %C
	first character
	string

	%s or %S
	a string
	string or enum

	%p or %P
	name of the main program
	none

	%m or %M
	execution trace

[from main to the context of

the printf() statement]
	none

	%v or %V
	instance path of the VERA shell (i.e. module)
	none

	%_
	path separator for the

current HDL simulator
	none

	%%
	%
	none

5. Verify that error produced for 2d array of enum.

Need to find which references to this.

7. initialization values instead of x for types such as string.

 Default initial values are as follows:

 Strings are initialized to the special value null.

 Enums are initialized to X.

 Objects are initialized to the special value null.

 Integers are initialized to 32'bX.

8. List types allowed in assoc array

 Associative Arrays can be created with any type that can be an L-value,

 except concatenations (this excludes arrays).

 For example:

 integer aa[];

 enum col { red, blue }; col aa[];

 bit [23:0] aa[];

 string aa[];

 class Foo { .. }; Foo aa[];

 Associative arrays can be indexed by any numerical data type: integer,

 or bit vector.. If a type is specified, the index type can be constrained

 to be of a specific type; currently allows integer or string:

 integer aa[string];

9. Definition of void, need example to show void return value

 void is a special name that exists only in the compiler. Note that it is

 not a data type as in System Verilog.

 For the purposes of the donation, void can be used in two contexts:

 a) As the LHS of a function call, to indicate that the return value is

 to be ignored:

 void = someFunction();

 This is similar to System-Verilog's cast:

 `void someFunction();

 b) As the LHS of a signal-drive to indicate synchronize only, i.e.,

 wait for the clock edge used to sample the give signal:

 void = interface.signal

10. Clarify rules for order of value assignment in enum

 initialization when mixing with auto-assigned values

 Rules for enum initialization are the same as for C, with one

 difference.: each enumerated value can appear only once in

 any given enumeration The compiler enforces this.

 The rule for auto-assigned values is just previous value plus 1.

 Here are some Examples:

 enum EE { A = 5, B, C, D, E };

 results in: A=5, B=6, C=7, D=8, D=9

 enum EE { A = 5, B, C = 1, D, E };

 results in: A=5, B=6, C=1, D=2, D=3

 enum EE { A = 5, B, C = 3, D, E }; => invalid: compiler error

 results in: A and E are both 5

 enum EE { A = -5, B, C, D, E };

 results in: A=-5, B=-4, C=-3, D=-2, D=-1

 Unlike System-Verilog, an enum declaration always declares a

 type (as in typedef enum {...} TypeName;).
