
Add the text in 12.3.3 Constant function calls
SystemVerilog adds the following additional restrictions on constant functions:

— A constant function shall not have output, inout, or ref arguments.
— A void function shall not be a constant function.
— A constant function shall not contain a statement that directly schedules an event to execute after

the function has returned.
— An import "DPI" function (see 12.5) shall not be a constant function.
— A constant function may have default argument values (see 12.4.3), but any such default argument

value shall be a constant expression.
— A constant function shall not have any fork/join, fork/join_any, fork/join_none

statements, or task enables.

Add a new section 12.3.4 Background processes spawned by function calls
.

12.3.4 Background processes spawned by function calls
Functions shall execute with no delay. Thus, a process calling a function shall return immediately.
SystemVerilog allows any statement that does not block inside of a function. Specifically, non-blocking
assignments, procedural continuous assignments, event triggers, clocking drives, and fork/join blocks are
allowed inside a function.

A function that schedules an event to mature after that function returns shall be illegal in any context in
which a side effect is disallowed or in any context other than procedural code originating in an initial or
always block.

A task enable or any blocking statement shall be illegal inside a function unless that statement is within a
fork/join_none block (See 11.6.1).

Note to editor: 11.6.1 was added by mantis 1615

	12.3.4 Background processes spawned by function calls

