SystemVerilog
Missing Conveniences

Matt Maidment

"
@
O
=
2
=
0
>
c
o
o
o
=
"
B
=

Jan 22, 2002

Overview

@ Unpacked Array Type “Mismatch”
® Packed Array of Packed Structs
® Unpacked Variables In Ternary Operators

"
@
O
=
2
=
0
>
c
o
o
o
=
"
B
=

Jan 22, 2002

Unpacked Array Type “Mismatch”

3 @ Unpacked Arrays of the same “shape” but different
o types are not assignment compatible

c .

[T ® Consider

dCJ wire [2:0] wiremda [1:07];

E logic [2:0] logicmda [1:0];

8 ® They have the same shape

=1 | 2| 10 | 2| 10
= wiremda logicmda

D 2! 1]0 2| 1]o
=

® But cannot be assigned to each other
" assitgn_wiremda—="logicmda;
" Joglemda = wIlIremda;

Jan 22, 2002

Unpacked Array Type “Mismatch” (cont.)

e A nettype is not a type?

* |f so then it's interesting properties are
* Resolution Mechanism,
 Direction of Assignment
* If so then
» Variable(s) to which it points
« Shape of pointers
Are interesting

® WWhy not same shape unpacked arrays to be
assignment compatible?

(7))
)
&)
c
o
o
()
>
c
o
o
(@)
£
7))
o
=

Jan 22, 2002

Packed Array of Packed Structs

If you want a hierarchy of typedef struct packed {
packed structs then you logic al;
cannot array any sub-struct

® Because of need for array of
ps_t b ps_ti

typedef struct packed {

logic az2;

ps t a3[1l+0];
logie” [1:0] a4;
}root t;

® root_t cannot be packed root_t pr;

typedef struct packed {
ps t ([1:0])a3;

@ Why not allow packed array fogic [1:0] a4;
of packed structs? } root t;

(7))
)
&)
c
o
o
()
>
c
o
o
(@)
£
7))
o
=

Jan 22, 2002

Unpacked Variables in Ternary Operators

® Given Type Compatible typedef struct {
Unpacked Variables logic al;
logic az2;
® Cannot Do This: } ups t;
ut = en ? us : ut; _

typedef struct {
ups t a3[1:0];

& Why Not Allow [t? logic [1:0] a4;
= The types match 1 root t:
= |t's a natural thing to do root t ur[1:0],

us[1:0],ut[1:0];

(7))
)
&)
c
o
o
()
>
c
o
o
(@)
£
7))
o
=

Jan 22, 2002

