
Jan 22, 2002

M
is

si
ng

 C
on

ve
ni

en
ce

s

SystemVerilog
Missing Conveniences

Matt Maidment

Jan 22, 2002

M
is

si
ng

 C
on

ve
ni

en
ce

s
Overview

Unpacked Array Type “Mismatch”
Packed Array of Packed Structs
Unpacked Variables In Ternary Operators

Jan 22, 2002

M
is

si
ng

 C
on

ve
ni

en
ce

s Unpacked Arrays of the same “shape” but different
types are not assignment compatible
Consider
wire [2:0] wiremda [1:0];
logic [2:0] logicmda [1:0];
They have the same shape

wiremda logicmda

But cannot be assigned to each other
assign wiremda = logicmda;
logicmda = wiremda;

Unpacked Array Type “Mismatch”

2 1 0

2 1 0

2 1 0

2 1 0

Jan 22, 2002

M
is

si
ng

 C
on

ve
ni

en
ce

s
Unpacked Array Type “Mismatch” (cont.)

A nettype is not a type?
If so then it’s interesting properties are

• Resolution Mechanism,
• Direction of Assignment

If so then
• Variable(s) to which it points
• Shape of pointers

Are interesting
Why not same shape unpacked arrays to be
assignment compatible?

Jan 22, 2002

M
is

si
ng

 C
on

ve
ni

en
ce

s typedef struct packed {
logic a1;
logic a2;

} ps_t;
typedef struct packed {

ps_t a3[1:0];
logic [1:0] a4;

} root_t;
root_t pr;

typedef struct packed {
ps_t [1:0] a3;
logic [1:0] a4;

} root_t;

Packed Array of Packed Structs
If you want a hierarchy of
packed structs then you
cannot array any sub-struct
Because of need for array of
ps_t

root_t cannot be packed

Why not allow packed array
of packed structs?

Jan 22, 2002

M
is

si
ng

 C
on

ve
ni

en
ce

s
Unpacked Variables in Ternary Operators

Given Type Compatible
Unpacked Variables

Cannot Do This:
ut = en ? us : ut;

Why Not Allow It?
The types match
It’s a natural thing to do

typedef struct {
logic a1;
logic a2;

} ups_t;
typedef struct {

ups_t a3[1:0];
logic [1:0] a4;

} root_t;
root_t ur[1:0],

us[1:0],ut[1:0];

