| Insert the following sections after 5.7

5.8 Type Compatibility

Some SystemVerilog constructs and operations require a certain level of type compatibility for their operands to
be legal. There are four levels of type compatibility, formally defined here: Equivalent, Assignment Compati-
ble, Cast Compatible, and Non-Equivalent.

5.8.1 Equivalent Types

Two data types will be defined as equivalent data types using the following inductive definition. If the two data
types are not defined equivalent using the following definition then they are defined to be non-equivalent.

1. Any built-in type is equivalent to every other occurrence of itself, in every scope.
2. A simple typedef or type parameter override that renames a built-in or user defined type is equivalent
to that built-in or user defined type within the scope of the type identifier.
typedef bit node; // ‘bit’ and ‘node’ are equivalent types
typedef typel type2; // ‘typel’ and ‘type2’ are equivalent types
3. Ananonymous enum, struct, or union type is equivalent to itself among variables declared within
the same declaration statement and no other types.
struct {int A; int B;} ABl, AB2; // ABl, AB2 have equivalent types
struct {int A; int B;} AB3; // AB3 is not type equivalent to AB1
4. An user defined type (An typedef for an enum, unpacked struct, or unpacked union, ora
class) is equivalent to itself and variables declared using that type within the scope of the type iden-
tifier.
typedef struct {int A; int B;} AB t;
AB t ABl; AB t AB2; // ABl and AB2 have equivalent types
typedef struct {int A; int B;} otherAB t;
otherAB t AB3; // AB3 is not type equivalent to ABl or AB2

5. Packed arrays, packed structures, and built-in integral types are equivalent if they contain the same
number of total bits, are either all 2-state or all 4-state, and are either all signed or all unsigned. Note
that if any bit of a packed structure or union is 4-state, the entire structure or union is considered 4-
state.

typedef bit signed [7:0]BYTE; // equivalent to the byte type
typedef struct packed signed {bit[3:0] a,b;} uint8;
// equivalent to the byte type
6. Unpacked array types are equivalent by having equivalent element types and identical shape. Shape is
defined as the number of dimensions and the number of elements in each dimension, not the actual
range of the dimension.
bit [9:0] A[0:5];
bit [1:10] BI[6];
typedef bit [10:1] uintlO;
uintl0 C[6:1]; // A, B and C have equivalent types
typedef int anint[0:0]; // anint is not type equivalent to int
7. Explicitly adding signed or unsigned modifiers to a type that does not change its default signing, does
not create a new type. Otherwise, the signing must match to have equivalence
typedef bit unsigned ubit; // type equivalent to bit
8. A user defined type declared in a package is always equivalent to itself, regardless of the scope where
the type is imported.

The scope of a type identifier includes the hierarchical instance scope. This means that each instance with user
defined types declared inside the instance creates a unique type. To have type equivalence among multiple in-
stances of the same module, interface, or program, a type must be declared at higher level in the compilation
unit scope than the declaration of the module, interface or program, or imported from a package.

The following example is assumed to be within one compilation unit, although the package declaration need not
be in the same unit:

package pi1;
typedef struct {int A} t_1;
endpackage
typedef struct {int A} t_2;
nodul e sub();
import pl:t_1;
paraneter type t_3 i nt;
paraneter type t_4 i nt;
typedef struct {int A} t_5;
t 1 vl t 2 v2; t_ 3 v3, t_4v4;, t_5 v5;
endnodul e
nmodul e top();
typedef struct {int A} t_B6;
sub #(.t_3(t_6)) sl ();
sub #(.t_3(t_6)) s2 ();
initial begin
sl.vl = s2.vl; // legal - both types from package pl (rule 8)
sl.v2 = s2.v2; // legal - both types from$unit (rule 4)
sl.v3 = s2.v3; // legal - both types fromtop (rule 2)
sl.v4 = s2.v4; // legal - both types are int (rule 1)

sl.v5 = s2.v5; // illegal - types fromsl and s2 (rule 4)
end
endnodul e

5.8.2 Assignment Compatible

All equivalent types, and all non-equivalent types that have implicit casting rules defined between them are as-
signment compatible types. For example, all integral types are assignment compatible. Conversion between
assignment compatible types may involve loss of data by truncation or rounding.

Compatibility may be in one direction only. For example, an enum can be converted to an integral type without
a cast, but not in the other way around. Implicit casting rules are defined in Section 3 Data Types and Section 7
Operators and Expressions.

5.8.3 Cast Compatible

All assignment compatible types, plus all non-equivalent types that have defined explicit casting rules are cast
compatible types. For example, an integral type requires a cast to be assigned to an enum.

Explicit casting rules are defined in Section 3 Data Types.

5.8.4 Type Incompatible

These are all the remaining non-equivalent types that have no defined implicit or explicit casting rules. Class
handles and chandles are type incompatible with all other types.

Add the text in blue to the sentence in section 7.15 Aggregate expressions

To be copied or compared, the type of an aggregate expression must be equivalent. See section 8.5.1 Equivalent
Types.

Remove the text at the end of section 7.15 Aggregate expressions.

WITH

Arguments passed by reference must be matched with equivalent data types. No casting shall be permitted. See
section 8.5.1 Equivalent Types.

Add the following text in blue in section 18.9.1 Port connection rules for variables

— A ref port shall be connected to an equivalent variable data type. References to the port variable shall be
treated as hierarchal references to the variable it is connected to in its instantiation. This kind of port can
not be left unconnected. See section 8.5.1 Equivalent Types.

| Insert the following sections between 22.1 and 22.22

22.1 Elaboration-time Typeof Function

type_function ::=// not in Annex A
$Stypeof (expression)

| Stypeof (type identifier)

| Stypeof (data type)

Syntax 22-1—typeof function syntax (not in Annex A)

The $typeof system function returns a type_identifier derived from its argument. The data type returned by
the $typeof system function may be used to assign or override a type parameter, or in a comparison with an-
other $typeof, evaluated during elaboration.

When called with an expression as its argument, $typeof returns a type identifier that represents the self-
determined type result of the expression. The expression’s return type is determined during elaboration but
never evaluated. The expression shall not contain any hierarchical identifiers or references to elements of dy-
namic objects. In all contexts, $typeof together with its argument can be used in any place an elaboration
constant is required.

When used in a comparison, equality (==) or case equality is true if the operands are type equivalent. (See sec-
tion 5.8 Type Equivalency).

For example:

bit [12:0] A bus, B bus;
parameter type bus t = $typeof(A7bus);
generate
case ($typeof (but t))
Stypeof (bit[12:0]): addfixed int #(bus_t) (A bus,B bus);
Stypeof (real): add float #(S$typeof(A bus)) (A bus,B bus);
endcase

endgenerate

The actual value returned by $typeof is not visible to the user and is not defined.

22.2 Typename Function

typename_function ::=// not in Annex A
$Stypename (expression)

| Stypename (type_identifier)

| Stypename (data type)

Syntax 22-1—type function syntax (not in Annex A)
The $typename system function returns a string that represents the resolved type of its argument.

The return string is constructed in the following steps:
1. Simple typedefs are resolved back to built-in or user defined types.
The default signing is removed, even if present explicitly in the source
System generated names are created for anonymous user defined types (structs/unions/enums).
A $’ is used as the placeholder for the name of anonymous unpacked array
Actual encoded values are appended with numeration labels.
User defined type names are prefixed with their defining package or scope namespace.
Array ranges are represented as unsized decimal numbers.
Whitespace in the source is removed and a single space is added to separate identifiers and keywords
from each other.

PNRANR LD

This process is similar to the way that type equality is computed, except that array ranges and built-in equiva-
lent types are not normalized in the generated string. Thus $typename can be used in string comparisons for
stricter type-checking of arrays than $typeof.

When called with an expression as its argument, $typename returns a string that represents the self-determined
type result of the expression. The expression’s return type is determined during elaboration but never evaluated.
When used as an eleboration time constant, the expression shall not contain any hierarchical identifiers or refer-
ences to elements of dynamic objects.

// source code // S$typename would return
typedef bit node; // “bit”
node signed [2:0] X; // “bit signed[2:0]”
int signed Y; // “int”
package A;
enum {A,B,C=99} X; // “enum{A=32'd0,B=32"dl,C="32bX}A::e31”

typedef bit [9:1'bl] word // “A::bit[9:1]”
endpackage : A
import A:.*;
module top;
typedef struct {node A,B;} AB t;
AB t AB[10]; // “struct{bit A;bit B;}top.AB t$[0:9]"

| Replace all the text in section 22.2 $bits with

size_function ::=// not in Annex A
$bits (expression)
| $bits (type identifier)

Syntax 22-2—Size function syntax (not in Annex A)

The $bits system function returns the number of bits required to hold an expression as a bit stream. See sec-
tion 3.16 bit-stream cast for a definition of legal types. A 4-state value counts as one bit. Given the declaration:

logic [31:0] foo;

Then $bits(foo) shall return 32, even if the implementation uses more than 32-bits of storage to represent the
4-state values. Given the declaration:

typedef struct {
logic valid;

bit [8:1] data;
} MyType;

The expression $bits(MyType) shall return 9, the number of data bits needed by a variable of type MyType.
The $bits function can be used as an elaboration-time constant when used on fixed sized types; hence, it can
be used in the declaration of other types or variables.

typedef bit[S$bits (MyType):1] MyBits;//same as typedef bit [9:1]
MyBits;
MyBits b;

Variable b can be used to hold the bit pattern of a variable of type MyType without loss of information.

The $bits system function returns logic X when called with a dynamically sized type that is currently empty.
It is an error to use the $bits system function directly with a dynamically sized type identifier.

| Replace section 22.4 array query functions with

array query_functions ::=// not in Annex A
array dimension_function (array_identifier [, dimension_expression])
| array_dimension_function (type identifier [, dimension_expression |)
| $dimensions (array_identifier)
| $dimensions (type identifier)

array _dimension_function ::=
Sleft
| Sright
| Slow
| $high
| Sincrement
| $size
dimension_expression ::= expression

Syntax 22-2—Array querying function syntax (not in Annex A)

SystemVerilog provides system functions to return information about a particular dimention of an array variable
or type. The default for the optional dimension expression is 1. The array dimension can specify any fixed
sized index (packed or unpacked), or any dynamically sized index (dynamic, associative, or queue).

— Sleft shall return the left bound (msb) of the dimension

— Sright shall return the right bound (Isb) of the dimension

— $1low shall return the minimum of s1eft and $right ofthe dimension

— Shigh shall return the maximum of $1eft and $right of the dimension

— S$increment shallreturn 1 if $1eft is greater than or equal to Sright, and -1 if $1eft is less than
Sright

— $size shall return the number of elements in the dimension, which is equivalent to $high - $low + 1
— S$dimensions shall return the number of dimensions in the array, or 0 for a singular object

The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or unpacked)
is dimension 1. Successively faster varying dimensions have sequentially higher dimension numbers. Interme-
diate type definitions are expanded first before numbering the dimensions.

For example:
// Dimension numbers

// 3 4 1 2

reg [3:0][2:1] n [1:5][2:8];

typedef reg [3:0][2:1] packed reg;

packed reg n[1:5][2:8]; // same dinensions as in the |lines above

For a fixed sized integer type (integer, shortint, longint, and byte), dimension 1 is pre-defined. For an integer N
declared without a range specifier, its bounds are assumed to be [Sbits (N)-1:0].

If an out-of-range dimension is specified, these functions shall return a logic X.

When used on a dynamic array or queue dimension, these functions return information about the current state of
the array. If the dimention is currently empty, these functions shall return a logic X. It is an error to use these
functions directly on a dynamically sized type identifier.

Use on associative array dimentions is restricted to index types with integral values. With integral indexes,
these functions shall return:

— $left shall return 0

— Sright shall return the highest possible index value

— S$low shall return the lowest currently allocated index value
— S$high shall return the largest currently allocated index value
— Sincrement shall return -1

— $size shall return the number of elements currently allocated

If the array identifier is a fixed sized array, these query functions may be used as a constant function and passed
as a parameter before elaboration. These query functions may also be used on fixed sized type identifiers in
which case it is always treated as a constant function.

Given the declaration below:
typedef logic [16:1] Word;
Word Ram([0:9];

The following system functions return 16:

Ssize (Word)
$si ze(Ram 2)

	5.8 Type Compatibility
	5.8.1 Equivalent Types
	5.8.2 Assignment Compatible
	5.8.3 Cast Compatible
	5.8.4 Type Incompatible
	22.1 Elaboration-time Typeof Function
	22.2 Typename Function

