
September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 1

SV-EC/BC

Name resolution meeting

9/25/2007

Gord Vreugdenhil
Mentor Graphics

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 2

Purpose and Goals

• To discuss issues related to name resolution and to
reach consensus on principles and directions to be used
as the foundation for specific proposals.

• To determine the amount of work needed to resolve
issues for P1800-2008 and a sense of the seriousness of
those issues.

• This is a non-voting meeting in terms of any specific
proposal. It is likely worthwhile to try to garner the
“sense of the group” in terms of level of support for
specific suggestions.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 3

Agenda

• What is the goal

• The basic problem of opaque types

• Issues independent of opaque types

• Discussion on managing opaque types

Unless otherwise noted “the LRM” shall mean
P1800-2008 Draft 3a

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 4

LRM Deficiencies

• LRM, Sec. 22.8 is “Scope Rules”. Clearly those

rules are incomplete and contradicted by other

parts of the LRM. In particularly, $unit and class

issues are not addressed in 22.8 and conflict

with the specific rules there.

• Issues related to overloaded syntax (dotted

names and “::” syntax are simple examples).

• Special rules in some cases interact poorly with

other general rules

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 5

Opaque types

• The term opaque type is not in the LRM but for

this meeting we’ll use that term to mean type

names that can denote types that require

elaboration to be known

– There are two basic kinds of opaque types – type

parameters and a typedef of an interface type. i.e.

type declarations of the form:

typedef intf.T myT;

parameter type T = int;

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 6

Opaque types (continued)

• An opaque type does not permit an

implementation to have knowledge about the

nature of the type prior to elaboration. This

definitely complicates the management of

classes and the handling of identifiers imported

from packages.

• The set of rules for how to deal with name

resolution in the presence of opaque types is at

the core of some of the deeper disagreements.

This will be covered in depth later.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 7

Other Resolution Issues

• There are numerous issues which don’t

directly interact with the decisions

regarding opaque types.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 8

(A) Declaration before use

• The LRM says (6.5):
Data must be declared before they are used, apart

from implicit nets…

• Even this isn’t really true – certainly hierarchical

references violate this rule. Even the concept of

“declaration” is a bit fuzzy in various cases.

• Types are not directly addressed.

• The exact “point of declaration” is not specified.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 9

(A) Declaration before use (continued)

• Example 1:
int A = A;

• Example 2:
module top;

int x = top.y;

int y;

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 10

(A) Declaration before use (continued)

• Suggestions:

– We should clarify that “hierarchical” resolution is not

dependent on order of declaration, just on the

existence of a declaration. All non-hierarchical

resolution is order of declaration dependent. We

need to be very careful to distinguish when

“hierarchical” rules apply.

– We need to more carefully state requirements

regarding type knowledge – type references must

either be known to be type names or, in the context of

a typedef, be asserted to be a type. The latter is a

way to think about typedefs to interface types:
typedef intf.T T;

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 11

(A) Declaration before use (continued)

• Suggestions:
– For a data object’s initial value, we should disallow references to

the value of a data object being declared. We could allow

references to the type but could restrict that as well.

– For a typedef, we should disallow references to the type name

within the default type.

– Examples:
int A = A; // illegal

int A = type(A)’(7); // legal?

parameter type T = T[]; // illegal

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 12

(B) Visibility into $unit
• The LRM says (3.10):

• When an identifier is referenced within a scope:
– First, the nested scope is searched (see 22.7) (including

nested module declarations), including any identifiers
made available through package import declarations.

– Next, the compilation-unit scope is searched (including
any identifiers made available through package import
declarations).

– Finally, the instance hierarchy is searched (see 22.6).

• The second bullet is unclear in terms of whether
“declaration before use” is expected.

• Example:
module top;

int x = y;
endmodule

int y;

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 13

(B) Visibility into $unit (continued)

• Also in 3.10, the LRM says:
$unit is the name of the scope that encompasses a

compilation unit. Its purpose is to allow the unambiguous

reference to declarations at the outermost level of a

compilation unit …

and later:

Within a particular compilation unit, however, the special

name $unit can be used to explicitly access the declarations

of its compilation-unit scope.

• The first part implies that “$unit::” is only intended for

disambiguation. That is less obvious from the latter

statement.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 14

(B) Visibility into $unit (continued)

• If “$unit::” is only for disambiguation of names, is it true

that in the absence of a name ambiguity, that a “$unit::”

reference is valid if and only if the equivalent non-

prefixed name is valid?

• Example:
module top;

int x = $unit::y;

endmodule

int y;

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 15

(C) How “package like” is $unit

• The LRM says:
• Packages must not contain any processes. Therefore, net

declarations with implicit continuous assignments are not

allowed. (25.2)

• Items within packages cannot have hierarchical references.

(25.2)

• Packages must exist in order for the items they define to be

recognized by the scopes in which they are imported. (25.3)

• Do these rules apply to $unit?

• If so, does the third bullet disallow forward
function references into $unit?

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 16

(C) How “package like” is $unit (continued)

• Example 1:
wire w = 1;

module top;

assign w2 = w;

endmodule

• Example 2:
module top;

int x = f(1);

endmodule

function int f(int a);

return a;

endfunction

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 17

(C) How “package like” is $unit (continued)

• Example 3:
module top;

$unit::T x;

endmodule

typedef int T;

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 18

(C) How “package like” is $unit (continued)

• Should $unit references be equivalent to an import?
typedef int T;
module top;

T x; // like “import $unit::T” ?
int T; // then this is illegal

endmodule

• Equivalent issues exist even in 1364-2001 so making $unit
references behave like imports would be both inconsistent and
incompatible.

module top;
integer x;
generate if (1) begin

integer y = x; // means top.x
integer x;

end endgenerate
endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 19

(C) How “package like” is $unit (continued)

• Can one reference hierarchically into a package (or
$unit) item?

package p;
task t;

int x;
endtask

endpackage
module top;

int y = p::t.x;

import p::t;
int z = t.x;

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 20

(D) How static are “::” references?

• The LRM (and Mantis 227) are clear that

references into packages can only be made

after compilation of the package.

• This means that “::” can be considered a “static

resolution operator” in the sense that “existence

before use” applies.

• Does the same apply to the class resolution

operator?

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 21

(D) How static are “::” references?(continued)

• Example 1:
module top;

typedef C;

C::T x;

class C;

typdef int T;

endclass

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 22

(D) How static are “::” references?(continued)

• Example 2:
module top;

typedef C;

typedef T2;

T2 x;

class C;

typdef T2 T;

endclass

typedef C::T T2;

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 23

(E) When is a dotted name hierarchical?
• For now, consider a “dotted name” to be the names derivable from

hierarchical_identifier in the BNF (ignoring package prefixing, etc).

• Neither in the context of structs or classes does the LRM talk about
“.” as a field/property select operation. From a narrow LRM
perspective, any dotted name is hierarchical.

• Clearly a purely “hierarchical” view of dotted names is nonsense
since initial terms in a hierarchical name are required to be scopes.

• The rules that govern hierarchical name resolution are different in
that they are dependent on the order of declaration within a scope.

• In 1364 (all versions), there was no ambiguity when one saw a
dotted name – the name was hierarchical.

• In some circumstances we need a dotted name to be treated as a
field/member select and not as a hierarchical name.

• Names can also be mixed – a combination of hierarchical and
selected.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 24

(E) When is a dotted name hierarchical? (continued)

• Suggestion: A dotted name shall be considered to be
composed of a possibly empty hierarchical prefix
followed by a possibly empty selected name.

• Intent: Once we start with a “selected” name, we never
revert to a hierarchical resolution.

• Example:
module top;

int x;
child c();

endmodule
module child;

struct { int y; } top;
int z= top.x; // should fail

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 25

(E) When is a dotted name hierarchical? (continued)

• This approach makes the question of when one “commits” to a non-
hierarchical resolution critical.

• Example 1 (example 7 in discussion examples)

int x;
generate if (1) begin : b

int z;
initial z = x;
int x;

end endgenerate

• Example 2 (example 8 in discussion examples)

struct { int y; } x;
generate if (1) begin : b

int z;
initial z = x.y;
struct { int y; } x;

end endgenerate

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 26

(E) When is a dotted name hierarchical? (continued)

• Suggestion: Name resolution should be biased towards

a non-hierarchical resolution for a dotted name.

• Essentially this boils down to saying that one resolves

the first item of a dotted name as though it were a

normal “simple” reference. If it resolves to a non-scope

identifier, then you are committed to resolving the full

reference from that “anchor” point. If the name resolves

to a scope identifier, then (for compatibility) you treat the

name as hierarchical.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 27

(E) When is a dotted name hierarchical? (continued)

• Next implied issue – what forms the hierarchical “prefix”

during dotted name resolution?

• The current algorithm in 22.7 is simplistic, even for 1364

compliant code. It only directly deals with dotted names

of the form:

scope_name.item_name

The assumption in the LRM (and in implementations) is

that the “item_name” can itself be a hierarchical name

that is resolved in a downwards manner.

• Clarifying this part to allow a downwards “dotted name”

is trivial and one could argue that this may be implied by

the combined LRM since “item_name” isn’t discussed.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 28

(E) When is a dotted name hierarchical? (continued)

• Suggestion: if during a downwards resolution of “item_name”, a
component of “item_name” permits a dotted select, resolution
commits to that resolution path and no futher upwards resolution can
occur. This is the same bias as suggested earlier.

• Example:
module top;

task mid;
struct { int x; } s;

endtask
mid m();

endmodule
module mid;

struct { int y; } s;
child c();

endmodule
module child;

int z1 = mid.s.x; // fails
int z2 = s.x; // fails

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 29

(E) When is a dotted name hierarchical? (continued)

• The following assumes that anchored hierarchical
references into a package item are permitted.

• Example:
package p;

task t;

int x;

endtask

endmodule

…

module child;

import p::*;

int z1 = p::t.y; // fails?

int z2 = t.y; // what to do?

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 30

(E) When is a dotted name hierarchical? (continued)

• Suggestion: a package or class prefixed dotted name

shall always be treated in a downward manner.

• Suggestion: a reference to a visible scope name from a

package shall cause that name to be imported. A dotted

name without a “::” prefix shall become hierarchical (with

possible upwards resolution) if the first name denotes a
scope name imported from a package.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 31

(E) When is a dotted name hierarchical? (continued)

• In 6.21, the LRM restricts hierarchical references to be to static variables. It
is not specified whether references to non-static variables cause errors or
cause resolution to continue in an upwards manner.

• Example:
module top;

task mid;
struct { int x; } s;

endtask
mid m();

endmodule
module mid;

task automatic mid;
struct { int x; } s;

endtask
child c();

endmodule
module child;

int z1 = mid.s.x;
// fails since top.m.mid is is automatic?
// or resolves to top.mid.s.x?

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 32

(E) When is a dotted name hierarchical? (continued)

• Suggestion: if a downwards resolution succeeds,

it shall be an error if the resolved name is not a

static declaration.

• This would permit a resolution to succeed into

an automatic context if the target declaration is
explicitly static.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 33

(F) What to consider during the upwards phase

• The algorithm for upwards hierarchical name
resolution in 22.7 has, as step (b), the following:

• b) Look in the parent module’s outermost scope for a scope
named scope_name. If found, the item name shall be
resolved from that scope.

• This doesn’t cover issues related to having a
parent that is a generate scope. That is a minor
change that should have been made in 1364-
2001. The upwards search should move
upwards through the instance tree starting in the
scope of the instantiation rather than the
“outermost scope” of the parent.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 34

(F) What to consider.. (continued)

• The algorithm currently requires that the first component of the
resolution be a scope name. This implies that upwards resolution
should not even consider variables that admit dotted selects.

• Example:
module top;

task s;
int x;

endtask
mid m();

endmodule
module mid;

struct { int y; } s;
child c();

endmodule
module child;

int z2 = s.x; // Ok by current rules
endmodule

• Suggestion: leave this alone and continue to require a “scope” as
the first upwards name.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 35

(G) Packages and upwards resolution

• The LRM says:

Items defined in the compilation-unit scope cannot be
accessed by name from outside.

• This should be clarified to also explain that a hierarchical name does not
consider any $unit declarations during upwards resolution. The implication
is that although hierarchical references can initially consider a scope name
visible within the local $unit, once the upwards resolution begins, the
compilation units of ancestors will not be considered.

• Example (assumes separate compilation unit model):
// file1.sv
task t;

int x;
endtask
module top;

int y = t.x; // Ok
child c();

endmodule

// file2.sv
module child;

int z2 = t.x; // Should fail
endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 36

(G) Packages and upwards resolution (continued)

• Similarly for packages, imported names should not be
considered.

• Example:

package p;
task t;

int x;
endtask

endpackage
module top;

import p::*;
child c();

endmodule
module child;

int z2 = t.x; // Should fail
endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 37

(H) Name resolution for bind instances

• What names are considered when handling a

bind instance?

• The LRM talks both about referencing items

“declared in” the target instance and also that

the bound instance is treated “as though” it was

instantiated at the end of the module.

• The assumed intent of the “at the end” is that the

addition of an extra module cannot cause name

resolution differences.

• Unfortunately that isn’t true in the presence of

imports and scope nesting.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 38

(H) Name resolution for bind instances (continued)

• Example:
package p;

typedef int t;
endpackage

import p::*;
module top;

// child c(t); -- post-bind form
endmodule

int t;
module child(input int a);
endmodule

bind top child c(t);

• If the intent is to insulate names in the target from the impact of the
“bind”, this needs to be stated explicitly. If not addressed, this is
likely to become more problematic with any future extensions for
bind targets of generate scopes, nested modules, etc.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 39

(I) Resolution of clocking block names

• In 22.8 (Scope rules), clocking blocks are not listed as a

scope. In addition, the LRM general refers to the

“clocking block construct” and doesn’t talk about it as a

scope.

• However, clocking blocks clearly admit internal

declarations.

• If clocking blocks are scopes, they are candidates for a

match during upwards resolution. Is that the expected

behavior?

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 40

(I) Resolution of clocking block names (continued)

• Example:
module m(output wire w, input reg clk);

clocking cb(@clk);

output w;

endclocking

child c();

endmodule

module child;

initial cb.w <= 1;

endmodule

• Suggestion: Add clocking blocks to the list of scopes.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 41

(J) Modport issues

• This area is incomplete due to lack of time in formulating

all of the issues clearly.

• Some basic questions (not covering all issues):
– How authoritative are modport directions?

– How do modport directions impact procedural and continuous

assignment determination? What about driver uniqueness for

always_comb and similar?

– Is an interface port (or modport) considered a “scope” for the purposes

of upwards hierarchical name resolution? If so, if the search in the port

fails, what is the next parent? The parent of the instance or the parent

of the module containing the interface port or modport?

– Can one see non-modport items when hierarchically resolving through a

modport?

– Is a modport name a “scope” containing indirections back into the

interface when resolving into an interface? (i.e. is intf.mport.name

valid?)

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 42

(K) Forward references to class properties

• This area is incomplete due to lack of time in formulating

all of the issues clearly.

• The question has been raised about whether P1800

should allow forward references to class properties.

• Example
class C;

function int f();

return x;

endfunction

int x;

endclass

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 43

(K) Forward references to class properties (continued)

• Although this would conceptually bring SV closer to C++

class resolution, there are numerous interactions that

would have to be very carefully defined.

• Issues:

– Legality of a change in the “kind” of a reference.

– Legality of forward references to types, parameters, etc. within

the class body (not the methods).

– Interactions with opaque types, package imports, etc.

• Although we believe that this would be tractable, the

changes are non-trivial and there would likely be

incompatibilities with existing SV code or inconsistencies

between method and non-method referencing of class

properites.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 44

Opaque types

• Reminder: For this presentation, opaque types are those formed
from a typedef of an interface type or a type parameter.

typedef intf.T myT;

parameter type T = int;

• The key tradeoff is between a more dynamic name referencing or a
more local determination of what a name means in the context of the
reference.

• Mentor’s assertion – It is crucial for long term correctness of designs
to maximize one’s ability to reason about the correctness of design
units locally. Dynamic resolution of simple names leads to
surprising and unintended effects that interfere with correctness and
local reasoning about designs.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 45

Opaque types (continued)

• The problems occur in two contexts, both related to

classes.

• Situation 1: Extension of a type parameter. Issues arise

since one no longer knows the set of basic names that

are being inherited.

• Example:

module m #(parameter type T = int);

int x;

class C extends T;

function int get_from_env();

return x;

endfunction

endclass

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 46

Opaque types (continued)

• Situation 2: Inline constraints. Issues arise since there

are special rules regarding resolution of a name into the

object context within the constraint and one cannot know

the universe of names within the object.

• Example:

module m #(parameter type T = int);

T c = new;

int x;

initial c.randomize with { y > x; };

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 47

Opaque types (continued)

• In both of the scenarios, allowing dynamic resolution of

names can result in late errors or non-obvious “capture”

of a name.

• On the other side of the issue, the argument is that not

adopting dynamic resolution creates a more limiting set

of rules than what applies in the context of non-opaque

types.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 48

Opaque types (continued)

• Mentor’s suggestion is to regularize the handling of all
scenarios by requiring explicit specifications (or
assertions) from the designer regarding the requirements
on the opaque type.

• We believe that this is consistent with the spirit of
Verilog. In Verilog a designer could not be surprised by
a local name reference being hijacked. Non-local
(hierarchical) references were always clear – they were
dotted names that could be determined by local
inspection. This meant that local naming correctness
couldn’t be compromised. Global dependencies were
explicit by way of “escaping” names. We believe that
retaining locally reliable reasoning is very important for
the long term success of the language.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 49

Opaque types (continued)

• There are both long and short term directions that such a

regularization can take. In the short term, minor

restrictions or syntactic enhancements can be used to

express intent.

• In the longer term, there are many avenues that could be

considered to make such compositional invariants
explicit.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 50

Basic Algorithm Difference

• The approach taken in the Mentor algorithm (as outlined

by Gord Vreugdenhil) treats an opaque type as a

boundary. One never looks into an opaque type when

resolving a simple name. Resolution of the name

ignores the opaque context and either resolves or does

not resolve. Elaboration type binding cannot impact the

decision for that name.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 51

Basic Algorithm Difference (continued)

• The approach taken in the Synopsys algorithm (as

outlined by Mark Hartoog) is more dynamic. When

encountering an opaque type boundary, one defers the

final binding. Information regarding an alternative

binding or possible error condition is collected but not

reported. The final decision about the binding (or error

reporting) is deferred until elaboration when the nature of

the final type is known.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 52

Basic Algorithm Difference (continued)

• Although perhaps not obvious from discussion on the

reflector, we believe that the intent of both algorithms is

the same for non-opaque types and that results will

always match in such scenarios. That is certainly

Mentor’s intent.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 53

Examples of opaque types and discussion

• Example 1:
module child #(type T = int);

int x;

class C extends T;

int y = x; // (1)

endclass

endmodule

• Mentor would resolve the reference to “x” in (1) to the locally visible

“x”. In existing syntax, users could explicitly say “super.x” to

effectively assert that “T” must have a member “x” and that is the

desired binding. There are various models one could use to extend

the current language to couple this assertion to the declaration of “T”

and eliminate the need for the “super.” prefix.

• Synopsys would conditionally resolve the “x” in (1) to either “super.x”

or “child.x” depending on whether type T had a member named “x”.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 54

Examples of opaque types and discussion (continued)

• Example 2:
package p;

int x;
endpackage
module child #(type T = int);

import p::*;
class C extends T;

int y = x; // (1)
endclass
int x;

endmodule

• Mentor would call this an error. The reference to “x” in (1) binds “eagerly” to
the p::x reference. The import then conflicts with the declaration of “int x;” in
“child”.

• Synopsys would conditionally resolve the “x” in (1) to either “super.x” or
“child.x” depending on whether type T had a member named “x”.
If T does not have a member “x” then an elaboration time error would be
reported due to the conflict with child.x. If T has a member named “x”, no
error occurs.

• In either case approach, explicit use of either “child.x” or “super.x” yields
consistent behavior.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 55

Examples of opaque types and discussion (continued)

• Example 3:
package p;

int x;
endpackage
module child #(type T = int);

import p::*;
class C extends T;

function int f();
return x; // (1)

endfunction
endclass

endmodule

• Mentor would resolve “x” to p::x.

• Synopsys would conditionally resolve the “x” in (1) to
either “super.x” or “p::x” depending on whether type T
had a member named “x”.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 56

Opaque types (continued)

• Example 4:
module child #(type T = int);

int T2;
class C extends T;

T2 x;
endclass

endmodule

• Mentor would call this an error. In order to permit
references to a type inherited from an opaque base
using (essentially) existing forms, Mentor would require
either:

typedef super.T2 T2;
typedef T::T2 T2;

Either form makes the assumed type invariant regarding
the base type explicit. This closely resembles the form
for being able to use a type from an interface.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 57

Opaque types (continued)

• It is not clear whether Synopsys would call the original
form an error.

• The suggestion on the reflector would be to use:
type(T2)

in place of each reference to T2. Since the type operator
can be used with both types and variables, if T2 did not
exist in the base class, the type of child.T2 would be
used instead.

• It is not clear whether there is any way to handle
inherited types in a dynamic approach without
introducing some form of a more restrictive rule or the
use of the type operator as suggested or by adopting
some more explicit form as suggested by Mentor.

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 58

Opaque types (continued)

• The type issue can also occur in the context of inline

constraints.

• Example 5:
module child #(type T = int);

int T2;

T c = new;

initial c.randomize with { x < T2’(y); }

endmodule

September 21, 2007 Gord Vreugdenhil, Mentor Graphics Slide 59

Summary of Mentor’s position on Opaque Types

• Mentor believes that a more explicit approach to dealing
with resolution through opaque types leads to more clear
designs with simpler to reason about invariants. There
are clear paths along various fronts for creating
extensible, general syntactic forms to make design
invariants explicit and composable. We believe that this
will lead to a fundamentally stronger language.

