
“System Verilog Tagged Unions and Pattern Matching”

(An extension to System Verilog 3.1 proposed to Accellera)

Bluespec, Inc.

Contact :
Rishiyur S. Nikhil, CTO, Bluespec, Inc.
c/o Sandburst Corp.,
600 Federal St., Andover, MA 01810, USA
Email: nikhil AT bluespec.com
Phone: +1 (978) 689 1679

Original: September 9, 2003
Revision: October 3, 2003

c© 2003 Bluespec, Inc.

(should Accellera adopt this proposal, copyright will transfer to Accellera)

Abstract

System Verilog has structure and union types. We propose related extensions: a qualification on
unions for “Tagged unions”, together with pattern matching on tagged unions and structures. These
yield the following benefits: (1) complete type-safety (which ordinary unions lack), (2) greater brevity,
(3) a more“visual” (i.e., readable) way of programming with unions and structures, (4) direct expressions
to build tagged union values, usable in arbitrary expression contexts, (5) zero implementation overhead,
and (6) customizable bit representations. These properties raise the level of programming with structures
and unions, thereby eliminating a number of common errors and making programs more readable. The
proposed constructs are synthesizable, and the underlying ideas have been used in some languages for
many years.

October 3 Revision Notes: Simplifies the proposal, integrates better into the language, simplifies
parsing. Tagged unions are now just a qualification on unions.

Contents

The actual extensions to the LRM are quite small (BNF changes: 2 lines changed, 3 lines added) and are
described in a few pages in the Appendices.

Most of this document is about rationale and motivation (intended for the Accellera committees and not
part of the LRM). It describes the extension, gives examples, compares it to existing constructs, and
discusses implementation issues.

1

1 Background concepts: tagged and untagged unions

Mathematics has the concepts of untagged unions (A + B, or A∪B) and tagged unions (A⊕B). The latter
are also called discriminated unions or discriminated sums. The difference is the following.

In untagged unions, when a component value (of type A or B) is injected into a union value (of type A+B),
it loses its identity, i.e., there is no way to know which summand it came from. This loss of information is
the source of type-loopholes, because it is possible to inject an A value into an A + B value and then to
project it out as a B value, thereby misinterpreting the representation (bits).

In tagged unions, a union value (of type A⊕B) always has a tag that “remembers”which summand it came
from, so that it is possible to examine a union value to determine which summand it came from. This
allows correct (type-safe) projection of the contained value back into the summand domains.

The union construct in System Verilog (and C/C++) corresponds to untagged unions. This proposal
introduces tagged unions.

2 Motivating Examples

Example 1: Imagine that we are designing hardware in which some processor has two kinds of instructions:
Add and Jump. An Add instruction contains three 5-bit register names (two sources and a destination).
A Jump instruction is either unconditional and contains a 10-bit immedate address offset, or conditional
and contains a register name (for destination address) and a 2-bit condition-code register name.

Note that the certain members are meaningful only in certain contexts. For example, the destination
register member is meaningful only in an Add instruction. A condition-code register member is meaningful
only in a conditional Jump instruction.

Example 2: Imagine that we are designing hardware in which we wish to represent an integer together
with a “valid” bit.

Note that the integer member is meaningful only if the valid bit is set.

Both these examples can be expressed using existing struct and union notations. We will show how they can
be improved significantly using tagged unions. The primary benefit is type-safety (a verification benefit)
because members can be examined/assigned only when they are meaningful. Additional benefits include
greater brevity and a more “visual” (readable) notation.

3 Background: SystemVerilog 3.1 structs and unions

In this section we recap some features of existing structs and unions in System Verilog 3.1, which will be
improved/fixed in the proposed tagged unions introduced in § 4.

Members of structs and unions are set and accessed only using traditional“dot-notation”(structure.member).
The tagged union proposal improves this with pattern matching and tagged union expressions.

There are several potential non-orthogonalities in the facilities for struct and union “values”, i.e., some
facilities are missing, and some can be used only in limited contexts:

2

• An entire struct value can be transferred in an assignment, or in argument- and result-passing. But
the LRM seems to be silent on whether union values can be similarly passed (LRM § 3.11), possibly
because unions are untagged and so union values are considered to be the same as summand values
(so, presumably, a union inherits its assignment semantics from the summands).

• There are two very similar but separately described constructs for creating structure values: “structure
literals” (LRM § 2.8) and “structure expressions” (LRM § 7.13).

• There do not seem to be analogous union values (union literals or union expressions), perhaps because
unions are untagged, so a summand literal/expression can be used directly.

• The syntax of structure expressions (LRM § 7.13) overlaps with the syntax of bit-concatenation
(braces and commas). Hence structure expressions can be used only in limited contexts (e.g., as the
top-level of a right-hand side of an assignment to a structure variable, see LRM § 7.13).

The packed qualifier allows structs and unions to be considered as bit-vectors. But in a packed union, all
members must be packed elements with the same size (we drop this restriction in tagged unions).

3.1 Simulating tags using existing structs and unions

Tagged unions can be simulated by manual coding with existing structs and unions, but this is not type-safe,
and they are generally not as concise or visually obvious.

Here are some definitions for Example 1.

typedef enum { A, J } Opcode;
typedef enum { JC, JU } JumpOpcode;

typedef struct {
Opcode op;
union {

struct {
bit [4:0] reg1;
bit [4:0] reg2;
bit [4:0] regd;

} A_operands;
struct {

JumpOpcode jop;
union {

bit [9:0] JU_operand;
struct {

bit [1:0] cc;
bit [4:0] addr;

} JC_operands;
} J_suboperands;

} J_operands;
} operands;

} Instr;

3

Note that the op member acts as a “tag” which indicates how to intepret the remaining bits, i.e., as add
operands or as jump operands. Similarly, the jop member acts as another tag which indicates whether to
interpret the remaining members as unconditional or condition jump operands.

A typical usage, employing dot-notation to access components:

Instr instr;

...
case (instr.op)
A: rf [instr.operands.A_operands.regd] =

rf [instr.operands.A_operands.reg1] +
rf [instr.operands.A_operands.reg2];

J: case (instr.operands.J_operands.jop)
JU: pc = pc + instr.operands.J_operands.J_suboperands.JU_operand;
JC: if (cf [instr.operands.J_operands.J_suboperands.JC_operands.cc])

pc = instr.operands.J_operands.J_suboperands.JC_operands.addr;
endcase

endcase

where rf is the main register file and cf is the condition-code register file. Often, programmers use macros
to abbreviate such multi-level dot-selections.

Lack of type-safety: Extracting a union member opens a type-loophole. For example, we can set the
tag to “A” and assign “J” members:

Instr instr;

instr.op = A;
instr.operands.J_operands.jop = JC; // meaningless when op == A

Or, when the tag is “A” we can still examine “J” members:

case (instr.op)
A : ...

instr.operands.J_operands.jop ... // meaningless since tag is A
endcase

This lack of type-safety introduces a verification obligation to ensure that members are only used mean-
ingfully.

Note: very occasionally, this kind of type loophole, or “type laundering”, is exactly what the designer
wants, because he intends to view the same bits in two different ways. It might be better to make those
(dangerous) situations clearly visible using an explicit ’cast’ operation.

4 Proposed Extensions: Tagged Unions and Pattern Matching

We propose to add a new construct called a “Tagged Union” type, together with an extension to case-
statements called“Pattern Matching”, and an extension to expressions for constructing tagged union values.
With these, our examples can be rendered:

4

• with complete type-safety (so, simpler verification),

• with greater brevity, and

• with a more visually apparent notation

These properties raise the level of programming with structures and unions and thereby eliminate a number
of common errors and make programs more readable.

4.1 Tagged union types

We extend the syntax of types to include tagged unions. The keyword “tagged” can prefix a “union”
type, making it a tagged union. The identifier for each summand can now be regarded as a tag for that
summand.

Here is our 2-instruction example, using a tagged union:

typedef tagged union {
struct {

bit [4:0] reg1;
bit [4:0] reg2;
bit [4:0] regd;

} A;
tagged union {

bit [9:0] JU;
struct {

bit [1:0] cc;
bit [9:0] addr;

} JC;
} J;

} Instr;

Here, Instr is declared as a new tagged union type. A and J are now also tags for the summands. The
representation of a tagged union value always contains enough additional bits to contain the tags. In this
example, the tag occupies 1 bit and plays the role of the opcode (A or J). Similarly, JU and JC are tags for
the nested union.

The scope of the identifiers defined in a tagged union is exactly the same as in ordinary unions.

Note that the original version using ordinary unions required several extra levels of nesting, with several
corresponding extra member names. The orginal opcode members are not necessary in the tagged union
because the tags now carry that information.

4.2 Tagged union expressions

We extend the syntax of expressions to include tagged union expressions (or tagged union literals). These
are expressions that evaluate to tagged union values, and can be used in any expression context. A tagged
union expression consists of the keyword “tagged” followed by a tag identifier, optionally followed by an
expression for the the corresponding summand.

5

expression ::=
...

| tagged identifier expression
| tagged identifier ()
| tagged identifier

The first form is used in most situations, and of course the expression must have the correct type for
the summand represented by the tag identifier. The second and third forms are used only when the tag
identifier is for a summand of void type (this is similar to the syntax for tasks and functions with void
arguments).

Examples of tagged union expressions, evaluating to tagged union values:

tagged A { e1, e2, ed } // struct members by position
tagged A { reg2:e2, regd:ed, reg1:e1 } // by name
tagged J (tagged JU eOffset)
tagged J (tagged JC { eC, eAddr }) // inner struct by position
tagged J (tagged JC { cc:eC, addr:eAddr }) // by name

Here, the expressions in braces are structure expressions using the standard syntax.

4.3 Pattern Matching

We extend the syntax of case statements to include structure and tagged union patterns on the left-hand-
side of each case item. Here is our example, again:

Instr instr;

...
case (instr)
tagged A {r1,r2,rd} : rf[rd] = rf[r1] + rf[r2];
tagged J j : case (j)

tagged JU a : pc = pc + a;
tagged JC {c,a}: if (cf[c]) pc = a;

endcase
endcase

Here, the pattern “tagged A {r1,r2,rd}” will “match” tagged union values that have tag A, and in that
case implictly declares and binds the variables r1, r2 and rd to the values of the members reg1, reg2 and
regd, respectively. r1 is implicitly declared to be of type bit [4:0], and similarly for r2 and rd. These
variables can then be used in the statement after the “:”, i.e., the scope of these declarations is the RHS
of the same case item. It is a type checking error if instead of {r1,r2,rd} we had a pattern that could
not match the summand corresponding to tag “A” (e.g., a 4-member structure or something that was not
a structure).

Similarly, the pattern “J j” matches only tagged union values that have tag J, and in that case implicitly
declares and binds the variable j to the nested tagged union value. The nested case statement further
discriminates j between JU and JC.

Patterns can be nested, so the above example can also be written directly using a single case statement as
follows:

6

case (instr)
tagged A {r1,r2,rd} : rf[rd] = rf[r1] + rf[r2];
tagged J (tagged JU a) : pc = pc + a;
tagged J (tagged JC {c,a}): if (cf[c]) pc = a;

endcase

Observe the substantial increase in brevity, and the more “visual” access to the members of the structures
due to pattern matching. In particular, tagged union expressions, which are used to build tagged union
values, look exactly the same as tagged union patterns, which are used to deconstruct such values. They
both suggest the “layout” of the structure.

The above example used “positional” pattern matching. When the summand is a struct, pattern matching
can also be done by name (in which case the ordering of the members is not relevant):

case (instr)
tagged A {reg2:r2,regd:rd,reg1:r1} : rf[rd] = rf[r1] + rf[r2];
tagged J (tagged JC {cc:c,addr:a}) : if (cf[c]) pc = a;

endcase

Further, when done by name, we can omit members that are not of interest in a particular case item.

In a case statement, pattern matching is attempted sequentially, from first case item to last case item. In
particular, if more than one pattern matches the case value, the first one is selected.

Patterns can also be used with ordinary structs, and with integral and string values. Example:

case (instr)
tagged A a: case (a)

{r1,r2,0} : ; // No op
{r1,r2,rd} : rf[rd] = rf[r1] + rf[r2];

endcase
...

endcase

Here, “a” is bound to the structure inside an “A” tagged union. This, in turn, is matched in the inner case
statement with one of two structure patterns. The first structure pattern matches if the destination register
is Register 0 (traditionally a “throw away the value” register). The second structure pattern matches all
the remaining possibilities.

The set of patterns in a case statement need not be exhaustive. The usual default mechanism can be used
as a final catch-all if all patterns fail.

Note: there are well-known techniques in the literature describing how to compile this kind of pattern
matching into deterministic decision trees avoiding repeated tests, exploiting mutual exclusion, etc.

4.3.1 Optional extension: pattern matching in if statements

An option to this proposal is to extend if statements so that the predicate uses pattern matching:

7

if (e matches tagged J (tagged JC {cc:c,addr:a}))
... // c and a can be used here

else
...

Here, “matches” is a new keyword. If the value of expression e matches the pattern, the then-arm is
executed, otherwise the else-arm is executed. The scope of the variables c and a is the then-arm, and they
will be bound to the values of the corresponding members.

This example would be much more verbose if written using ordinary struct-and-union notation and without
the implicit declaration of pattern variables:

x = e;
if ((x.op == J) &&

(x.operands.J_operands.jop == JC))
begin
bit [1:0] c;
bit [4:0] a;
c = x.operands.J_operands.J_suboperands.cc;
a = x.operands.J_operands.J_suboperands.addr;
... // c and a can be used here

end
else

...

(this relies on the sequential evaluation of the && operator, since its right operand is meaningful only if the
left operand is true).

4.4 Type-safety and verification

All these examples are completely type-safe because the compiler ensures that the reg1, reg2 and regd
members can be accessed only in the A case, and the cc and addr members can be accessed only in the
J/JC case. It is syntactically impossible, for example, to access the reg1 member in the J case.

This type-safety directly impacts verification. If the same functionality were manually coded using ex-
isting structs and unions, then we are left with a verification obligation to ensure that members are
accessed/updated meaningfully with respect to the tags. Here, that obligation is discharged automatically
by static type-checking based on the syntactic structure.

Note: by ’type-safe’ we mean that it is impossible to misinterpret or “launder” the bits in a tagged union,
the way it is possible to do in an ordinary (untagged) union. Tagged unions can still, of course, raise
run-time errors, but these situations are can now be reported, and are controllable.

4.5 Dot notation to select and assign members type-safely

“Dot notation” can still be used to access and assign members of a tagged union:

x = instr.A.reg1

instr.A.reg2 = eNew;

8

but these will now be completely type-safe, because they are defined to be equivalent to:

case (instr)
tagged A {r1,r2,rd} : x = r1;
default : $error (....);

endcase

case (instr)
tagged A {r1,r2,rd} : instr = tagged A {eNew,r2,rd};
default : $error (....);

endcase

i.e., the access or assignment is only allowed if the tag has the correct value.

4.6 Packed representations (canonical)

Tagged unions can be packed, using the packed keyword, just like structs and unions, provided their
components are packed items.

Tagged unions have a simple, orthogonal and transparent canonical representation in bits (non-canonical,
or custom, representations, which are also useful in real hardware, are discussed in § 4.8). The canonical
representation of a tagged union value is:

+-----+-------+--------+--------+-----+--------+
| tag | XXXXX | field1 | field2 | ... | fieldN |
+-----+-------+--------+--------+-----+--------+

where the fieldJ’s are appropriate for the tag.

Unlike the requirement for unions, the tagged union summands do not have to be of the same size. A
tagged union value, no matter what the current tag value, has a fixed, definite size which is easily and
transparently apparent from the summand sizes.

• The size is always equal to the number of bits needed to represent the tag plus the maximum of the
sizes of the summands.

• The size of the tag is the minimum number of bits needed to represent the number of summands.

• The tag bits are always left-justified (i.e., towards the most-significant bits).

• For each summand, the summand bits are always right-justified (i.e., towards the least-significant
bits).

• The bits between the tag bits and the summand bits are undefined (the “XXX”s in the figure above).
In the extreme case of a summand of void type, only the tag is significant and all the remaining bits
are undefined.

Following these principles, the representations for Example 1 is directly evident from its type declaration:

9

1 5 5 5
+-+---------+---------+---------+
|A| reg1 | reg2 | regd |
+-+---------+---------+---------+

1 2 1 2 10
+-+---+-+---+-------------------+
|J| X |J| X | |
| | |U| | |
+-+---+-+---+-------------------+

1 2 1 2 10
+-+---+-+---+-------------------+
|J| X |J|cc | addr |
| | |C| | |
+-+---+-+---+-------------------+

These representation choices make tagged union values synthesizable with efficient circuits (tags and fields
are always at known bit positions).

Note to committee: The particular choice of the tag located at the upper-order bits and the summand
contents right-justified at the lower-order bits is arbitrary. But it should be specified, so that there is no
ambiguity about representation.

4.7 Zero implementation overhead

Tagged union values have zero overhead with respect to the number of bits in their representation, compared
to manually coding the same functionality explicitly with structs and unions. The struct-and-union version
of the Instr structure is represented in 16 bits: 1 bit for the opcode and 15 bits for the largest summand.
The tagged union version is also represented in 16 bits: 1 bit for the tag and 15 bits for the largest
summand.

Note: in the limit case of a tagged union with just one summand, 0 bits are needed for the tag, i.e., there
is no representation overhead at all. This is sometimes useful in place of an ordinary struct, allowing the
use of pattern matching to access the members instead of dot notation.

Similarly, the circuits produced for case statements with tagged union values are exactly the same as those
that would be produced if the same functionality were coded manually using unions and structs.

4.8 Non-canonical (custom) representations

Sometimes, the designer wants a non-canonical (usually non-orthogonal) representation. For example,
processor instruction encodings are typically full of special tricks to fit an instruction into the shortest
possible instruction word, where the packing is highly dependent on the particular opcode, sub-opcodes,
and so on.

To support non-canoncial encodings, the designer can customize the representation of a tagged union by
defining two methods pack and unpack associated with the tagged union type. This is allowed only for
packed tagged unions. For example,

10

function Instr Instr.unpack (Bit [n:0] bits);
function Bit [n:0] Instr.pack (Instr instr);

If the designer provides these function definitions in the same scope as the tagged union typedef for Instr,
the compiler will automatically use these functions to convert a literal tagged union into its packed bit-
representation, and to unpack the members out of a packed tagged union value in a pattern-match.

With this mechanism, the designer can choose any preferred representation, which sometimes can be more
efficient than the canonical representation. For example, suppose we want to represent something that
is:

• Either a 32b byte pointer, but which is always word-aligned, or
• a 31b immediate integer value.

(This is a standard representation in garbage-collected languages.) The tagged union definition for this
might be:

typedef tagged union {
bit [31:0] Ptr;
bit [30:0] Immed31;

} PtrOrImmed;

The canonical (orthogonal) representation would take 33 bits (32 bits for the pointer, plus 1 bit for the
tag). However, by defining an explicit pack and unpack, we can represent it in 32 bits, exploiting the fact
that Ptr LSBs are always zero due to word-alignment. We can represent Ptr summands just using their
32 bits (LSB always 0), and Immed31 summands as {31b_value, 1’b1}, with LSB always 1.

To get a non-canonical representation, the designer simply provides definitions for pack and unpack.
Except for this, the tagged unions are used in expressions and pattern matching in the normal way. It
is straightforward for the compiler automatically to insert the pack/unpack routines wherever necessary
while generating code for tagged union expressions and pattern matching. Again, this automation removes
another potential source of programming errors.

5 Example 2

Example 2 (an integer together with a valid bit) can be expressed as follows:

typedef tagged union {
void Invalid;
int Valid;

} VInt;

The representation will have 33 bits: 32 bits for the int, plus 1 bit for the tag (but note, following the
discussion on non-canonical representations in § 4.8, if a particular application does not use all possible
integer values, VInt can be represented in 32 bits by using one of the unused values to encode the invalid
summand).

A valid VInt value is constucted by the expression:

11

tagged Valid e

where e is an integer expression. The “invalid” VInt value is constructed by:

tagged Invalid ()

or by:

tagged Invalid

A VInt value v can be examined using pattern matching:

case (v)
tagged Invalid : $display ("Is invalid");
tagged Valid x : $display ("Valid with value %d", x);

endcase

Note: again, it is syntactically impossible to extract an int value from a VInt value that has the Invalid
tag.

6 Maturity of the proposed constructs

All these constructs have been implemented and well-tested for over a decade in many high-level program-
ming languages, including Haskell and SML. There are plenty of of papers in the literature on how to
implement tagged unions and pattern matching efficiently.

Tagged unions have also been implemented and used in the Hardware Description Language Bluespec for
over 3 years. Tagged unions, tagged union expressions and pattern matching are eminently synthesizable
into efficient hardware.

Although the ideas behind tagged unions and pattern matching are very mature from previous languages,
to our knowledge this is the first time they are being cast into syntax that is consistent with System Verilog.

7 Some comments on the relationship to existing constructs

A tagged union in which each summand has the void type is equivalent to an enumeration. Example:

typedef enum { red, yellow, green } Colors;

is equivalent to:

typedef tagged union {
void red;
void yellow;
void green;

} Colors;

12

The representation needs exactly the same number of bits (2, in this example).

A tagged union with a single summand is equivalent to a struct. Example:

typedef struct {
byte b;
int i;

} s;

is equivalent to:

typedef tagged union {
struct {

byte b;
int i;

} T;
} s;

and is represented in exactly the same number of bits (because a single tag can always be represented in
0 bits).

Thus, in principle, tagged unions could subsume enumerations, structs and unions. However, since enu-
merations, structs and unions have a long tradition in C/C++ and are familiar to legions of programmers,
we do not propose replacing them with tagged unions; we simply propose tagged unions and pattern
matching as extensions that provide a new opportunity for type-safety, brevity, and a more visual style of
programming.

13

A Additions to LRM Text

In the syntax box at the top of Section 3.11, prefix both the union keywords with the optional keyword
tagged.

data type ::= // from Annex A.2.2.1
...

| [tagged] union packed [signing] { { struct union member } } { packed dimension }
...

| [tagged] union [signing] { { struct union member } }

At the end of Section 3.11, add the following text.

Tagged unions capture certain common usages of structs and unions. Together with tagged
union expressions (Section 7.13+) and pattern matching (Section 8.4.1), they providing addi-
tional type-safety, brevity and readability.

In tagged unions, each struct union member is also known as a summand, and the identifiers
declared by the summands are called tags. Conceptually, a tagged union is a like a union, but
it also contains the tag itself to remember which summand the value came from. This, in turn,
allows the contained value to be extracted with type-safety.

Example: an integer together with a valid bit:

typedef tagged union {
void Invalid;
int Valid;

} VInt;

Example: two kinds of instructions in a processor: Add and Jump. An Add instruction contains
three 5-bit register names (two sources and a destination). A Jump instruction is either uncon-
ditional and contains a 10-bit immedate address offset, or conditional and contains a register
name (for destination address) and a 2-bit condition-code register name.

typedef tagged union {
struct {

bit [4:0] reg1;
bit [4:0] reg2;
bit [4:0] regd;

} A;
tagged union {

bit [9:0] JU;
struct {

bit [1:0] cc;
bit [9:0] addr;

} JC;
} J;

} Instr;

14

In a packed tagged union, all summand types must also be packed types. The (standard)
representation for a packed tagged union is the following.

• The size is always equal to the number of bits needed to represent the tag plus the maxi-
mum of the sizes of the summands.

• The size of the tag is the minimum number of bits needed to represent the number of
summands.

• The tag bits are always left-justified (i.e., towards the most-significant bits).

• For each summand, the summand bits are always right-justified (i.e., towards the least-
significant bits).

• The bits between the tag bits and the summand bits are undefined. In the extreme case
of a summand of void type, only the tag is significant and all the remaining bits are
undefined.

For greater control on representation of a tagged union type T (where the standard represen-
tation does not suffice), the representation can be customized simply by defining the following
functions in the same scope as T’s declaration:

function T T.unpack (Bit [n:0] bits);
function Bit [n:0] T.pack (T t);

These functions can perform arbitrary packing and unpacking to and from bits. Note, the type
definition for T, and its uses in expressions and patterns are unaffected by this; this mechanism
is simply a hook to customize the representation. Such non-standard representations may be
necessary either to meet external representation requirements or to obtain a more efficient
representation than the standard one (such as Huffman encoding).

The following is a new section to be added after Section 7.13:

Section 7.13+ Tagged union expressions

expression ::= from Annex A.8.3
...

| tagged union expression

tagged union expression ::=
tagged identifier expression

| tagged identifier ()
| tagged identifier

A tagged union expression (packed or unpacked) is built from the keyword tagged followed by
a tag identifier optionally followed by an expression representing the value of the summand for
that tag.

Examples (the expressions in braces are structure expressions (Section 7.13):

tagged Valid e
tagged Invalid ()

15

tagged Invalid

tagged A { e1, e2, ed } // struct members by position
tagged A { reg2:e2, regd:ed, reg1:e1 } // by name
tagged J (tagged JU eOffset)
tagged J (tagged JC { eC, eAddr }) // inner struct by position
tagged J (tagged JC { cc:eC, addr:eAddr }) // by name

Section 7.13+ Tagged union member access

An entire tagged union summand, or a sub-field within a tag union summand, can be read or
assigned with the usual dot-notation, but the operation is valid only if the tagged union value
has the correct tag. Examples:

x = instr.A.reg1 // legal if instr has tag A

instr.A.reg2 = eNew; // legal if instr has tag A

In general this is a runtime check but it can often be removed by optimization.

The following is a new sub-section to be added at the end of Section 8.4:

Section 8.4.1 Pattern matching

In a case statement, if the expression being tested is a structure or a tagged union, then patterns
may be used on the left-hand side of each case item. A pattern is simply an expression built
from the following syntax (this syntax is not in the formal grammar because it is simply a
subset of the syntax of expressions):

pattern ::=
identifier

| number
| string literal
| tagged identifier
| tagged identifier ()
| tagged identifier pattern
| { pattern, ... ,pattern }
| { identifier : pattern, ... , identifier : pattern }

i.e., nested tagged union and struct expressions with identifiers, integral constants or string
literals at the leaves. The identifiers in a pattern must be unique. In structure patterns with
named members, the order of members does not matter, and some members may be omitted.

The value V being tested by the case statement is matched against the patterns in the case
items, one case item at a time, in top-to-bottom (textual) order. The pattern matching rules
are simple:

• An identifier pattern always succeeds (matches any value), and the identifier is bound to
that value.

• A number or string literal pattern succeeds if V is equal to that value.

16

• a tagged union pattern succeeds if the value has the same tag, and if the nested pattern
matches the summand contents of the tagged union.

• a structure pattern succeeds if each of the members patterns matches the corresponding
members in the structure value.

Note that type-checking ensures that V is of the correct type for the pattern (number, string,
structure of the correct type, tagged union of the correct type).

If a case-item’s pattern matches successfully, that case-item is selected, and the identifiers in
the pattern are bound to the corresponding members in the value, so that they can be used in
the right-hand side of the case-item.

The identifiers in a pattern are implicitly declared to have the type of the corresponding mem-
bers (this is statically determinable from the pattern and the tagged union declaration), and
their scope is the right-hand side of the same case-item.

For struct components, pattern matching can be done either positionally or by name.

Example:

case (v)
tagged Invalid : $display ("Is invalid");
tagged Valid x : $display ("Valid with value %d", x);

endcase

Example:

Instr instr;

...
case (instr)
tagged A {r1,r2,rd} : rf[rd] = rf[r1] + rf[r2];
tagged J j : case (j)

tagged JU a : pc = pc + a;
tagged JC {c,a}: if (cf[c]) pc = a;

endcase
endcase

Example (nested patterns):

case (instr)
tagged A {r1,r2,rd} : rf[rd] = rf[r1] + rf[r2];
tagged J (tagged JU a) : pc = pc + a;
tagged J (tagged JC {c,a}): if (cf[c]) pc = a;

endcase

Example (nested patterns and struct components by name):

case (instr)
tagged A {reg2:r2,regd:rd,reg1:r1} : rf[rd] = rf[r1] + rf[r2];
tagged J (tagged JC {cc:c,addr:a}) : if (cf[c]) pc = a;

endcase

17

The following is an optional new subsection to be added at the end of Section 8.4, if pattern-matching in
if-statements is adopted:

Section 8.4.2 Pattern matching in if statements

match expression ::= expression matches expression from Annex A.6.6

The predicate of an if statement can use pattern matching using the form e1 matches pattern.
The matching rules are exactly as described in Section 8.4.1. If the pattern matches, the “then”
arm of the if statement is executed, and the identifiers bound during the pattern-match may
be used in the “then” arm. If the pattern fails, the “else” arm is executed.

The identifiers in the pattern are implicitly declared to have the type of the corresponding
members (this is statically determinable from the pattern and the tagged union declaration),
and their scope is the “then arm” of the conditional statement.

Example:

if (e matches (tagged J (tagged JC {cc:c,addr:a})))
... // c and a can be used here

else
...

18

B Additions to LRM BNF

A.2.2.1 Net and variable types

data type ::=
...

| taggedunion packed [signing] { { struct union member } } { packed dimension }
| taggedunion [signing] { { struct union member } }

A.8.3 Expressions

expression ::=
...

| tagged identifier expression
| tagged identifier ()
| tagged identifier

No BNF extension is necessary for tagged union patterns in case statements, since the LHS of case_item
is already an expression, and patterns are just a subset of expressions.

B.1 Optional extension: tagged union patterns in if statements

If we add the option of pattern matching in if-statements:

A.6.6 Conditional statements

conditional statement ::=
[unique priority] if (match expression) statement or null
[else statement or null]

| ...

match expression ::= expression matches expression

where the expression after the new matches keyword is restricted to be a tagged union pattern.

C Additions to LRM Annex B Keywords

Add the keyword “tagged”.

For pattern-matching in if-statements, add the keyword “matches”.

19

	Background concepts: tagged and untagged unions
	Motivating Examples
	Background: SystemVerilog 3.1 structs and unions
	Simulating tags using existing structs and unions

	Proposed Extensions: Tagged Unions and Pattern Matching
	Tagged union types
	Tagged union expressions
	Pattern Matching
	Optional extension: pattern matching in if statements

	Type-safety and verification
	Dot notation to select and assign members type-safely
	Packed representations (canonical)
	Zero implementation overhead
	Non-canonical (custom) representations

	Example 2
	Maturity of the proposed constructs
	Some comments on the relationship to existing constructs
	Additions to LRM Text
	Additions to LRM BNF
	Optional extension: tagged union patterns in if statements

	Additions to LRM Annex B Keywords

