Add after 19.4.3 An example of connecting a port bundle to a generic interface

19.4.3+ Modport expressions

A modport expression allows elements of arrays and structures, concatenations of elements, aggregate
expressions of elements declared in an interface to be included in a modport list. This modport expression is
explicitly named with a port identifier, visible only through the modport connection.

Like explicitly named ports in a module port declaration, port identifiers exist in their own namespace for
each modport list. When modport item is just a simple port identifier, that identifier is used as both a reference
to an interface item and a port identifier. Once a port identifier has been defined, there shall not be another
port definition with this same name.

For example:

interfce I;
logic [7:0] r;
const int x=1;
bit R;
modport A (output .P(r[3:0]), , ;
modport B (output .P(r[7:4]), input .Q(2), R);
endinterface

module M (interface 1i);,
initial 1.P = 1i.Q;
endmodule

module top;

I 11;

M ul (il1l.RA);

M u2 (il1.B);

initial #1 $display("%b", il.r); // displays 00010010
endmodule

The self-determined type of the port expression becomes the type for the port. If the port expression is to be
an aggregate expression, then a cast must be used since self-determined aggregate expressions are not
allowed. The port_expression must resolve to a legal expression for type of module port (See section 18.8 —
Port Connection Rules). In the example above, the Q port could not be an output or inout because the port
expression is a constant. The port expression is optional because ports can be defined that do not connect to
anything internal to the port

Add after 18.5 Port declarations

18.5+ List of Port expressions

Verilog 1364-2001 created a list_of port _declarations alternate style which minimized the duplication of data
used to specify the ports of a module. SystemVerilog adds add an explicitly named port declaration to that
style, allowing elements of arrays and structures, concatenations of elements, or aggregate expressions of
elements declared in a module, interface or program to be specified on the port list.

Like explicitly named ports in a module port declaration, port identifiers exist in their own namespace for
each port list. When port item is just a simple port identifier, that identifier is used as both a reference to an
interface item and a port identifier. Once a port identifier has been defined, there shall not be another port
definition with this same name.

For example:

module mymod (
output .P1(r[3:01]),
output .P2(r[7:4]),
ref .Y(x),
input bit R);

logic [7:0] «r;
int x;

endmodule

The self-determined type of the port expression becomes the type for the port. If the port expression is to be
an aggregate expression, then a cast must be used since self-determined aggregate expressions are not
allowed. The port_expression must resolve to a legal expression for type of module port (See section 18.8 —
Port Connection Rules). The port expression is optional because ports can be defined that do not connect to
anything internal to the port

BNF change

In section A.2.3, replace

list of port_identifiers ::= port_identifier { unpacked dimension }
{, port_identifier { unpacked dimension } }
list of modport port_identifiers ::= port_identifier { , port_identifier }

with

list of port identifiers ::= port_identifier { unpacked dimension }

{, port_identifier { unpacked dimension } }

| . port_identifier ([expression]) {.port identifier ([expression]) }
list of modport port_identifiers ::= port_identifier { , port_identifier }

| . port_identifier ([expression]) {.port identifier ([expression]) }

	BNF change

