This proposal updates section 22, System tasks and functions, to handle SV3.1 data types and include data
types as arguments.

Replace all the text in section 22.2 $bits with

size_function ::= // not in Annex A

Shits (expression)

$bits (type identifier)

variable identifier::bits() // method form
type identifier::bits // method form

Syntax 22-1—Size function syntax (not in Annex A)

The bi t s system function returns the number of bits required to hold an expression as a bit stream. See
section 3.16 bit-stream cast for a definition of legal types. A 4 state value counts as one bit. Given the
declaration:

logic [31:0] foo;

Then $bits(foo) shall return 32, even if the implementation uses more than 32-bits of storage to represent the 4-
state values.

Given the declaration:
typedef struct {
logic valid;
bit [8:1] data;
} MyType;

The expression MyType: : bi t s shall return 9, the number of data bits needed by a variable of type My Ty pe.

The bits function can be used as an elaboration-time constant when used on fixed sized types; hence, it can
be used in the declaration of other types or variables.

typedef bit [MyType::bits : 1] MyBits;// same as typedef bit [9:1] MyBits;
MyBits b;

Variable b can be used to hold the bit pattern of a variable of type MyType without loss of information.

The bi t s system function returns logic X when called on a dynamically sized type that is currently empty .It
is an error to use the bi t s system function directly on a dynamically sized type identifier.

Replace section 22.4 array query functions with

array _query_functions ::=// not in Annex A
array _dimension_function (array identifier [, dimension_expression])
| array_dimension_function (type identifier [, dimension _expression |)
| Sdimensions (array_identifier)
| $dimensions (type identifier)

array _dimension_function ::=
Sleft
| Sright
| Slow
| $high
| Sincrement
\ $size
dimension_expression ::= expression
array query methods ::=// not in Annex A
array dimension_method ([dimension_expression |)
| dimensions

array _dimension_methods ::=
left
| right
| low
| high
| first
| last
| increment
size

Syntax 22-2—Array querying function syntax (not in Annex A)

SystemVerilog provides system functions to return information about a particular dimention of an array
variable or type. The default for the optional dimension expression is 1. The array dimension can specify any
fixed sized index (packed or unpacked), or any dynamically sized index (dynamic, associative, or queue).

— $l ef t shall return the left bound (msb) of the dimension

— $ri ght shall return the right bound (Isb) of the dimension

— %1 ow shall return the minimum of $I ef t and $ri ght of the dimension

— $hi gh shall return the maximum of $| ef t and $ri ght of the dimension

$—$i ncrement shall return 1 if $I ef t is greater than or equal to $ri ght, and -1 if $| ef t is less than
right

— $si ze shall return the number of elements in the dimension, which is equivalent to $hi gh - $l ow + 1

— $di nensi ons shall return the number of dimensions in the array, or 0 for a singular object

The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or
unpacked) is dimension 1. Successively faster varying dimensions have sequentially higher dimension
numbers.

For instance:

// Dimension numbers

// 3 4 1 2
reg [3:0][2:1] n [1:5][2:8];

For an integer or bit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bi t s(N) - 1: 0] . If an out-of-range dimension is specified, these functions shall
return a logic X.

When used on a dynamic array or queue dimension, these functions return information about the current state
of the array. If the dimention is currently empty, these functions shall return a logic X. .It is an error to use
these functions directly on a dynamically sized type identifier.

Use on associative array dimentions is restricted to index types with integral values. These functions will
return:

—$l eft shall return 0

— $ri ght shall return the highest possible index value

— %1 ow shall return the lowest currently allocated index

— $hi gh shall return the largest currently allocated index

— $i ncrenment shall return -1

— $si ze shall return the number of elements currently allocated

If the array identifier is a fixed sized array, these query functions may be used as a constant function and
passed as a parameter before elaboration. These query functions may also be used on fixed sized type
identifiers in which case it is always treated as a constant function.

Given the declaration below:

Typedef logic [16:1] Word;
Word Ram[0:9];

The following functions all return 16:

Ssize (Word)
Ssize (Ram, 2)
Word: :size
Ram: :size (2)

