Sec 12.8 Port Connection Rules
Replace with:

12.8 Port Connections Rules

SystemVerilog extends Verilog port connections by making all variable data types
available to pass through ports. It does this by allowing both sides of a port connection to
have the same compatible data type, and by allowing continuous assignments to
variables. It also creates a new type of port qualifier, ref, to allow shared variable
behavior across a port by passing a hierarchical reference.

12.8.1 Port Connection Rules for variables

If a port declaration has a variable data type, then its direction controls how it can be
connected when instantiated, as follows:

— Ani nput port may be connected to any expression of a compatible data type. A
continuous assignment is implied when a variable is connected to an input port
declaration. Assignments to variable declared as an input port are illegal. If left
unconnected, the port has the default initial value corresponding to the data type.

— An out put port may be connected to a variable (or a concatenation) of a
compatible data type. A continuous assignment is implied when a variable is
connected the output port of an instance. Procedural or continuous assignments
to a variable connected to the output port of an instance are illegal.

— Anout put port may be connected to a net (or a concatenation) of a compatible
data type. In this case, multiple drivers are permitted on the net as in Verilog-
2001.

— A variable data type is not permitted on either side of an i nout port.

— A ref port shall be connected to an equivalent variable data type. References to
the port variable are treated as hierarchal references to the variable it is connected
to in its instantiation. This kind of port may not be left unconnected

112.8.2 Port Connection Rules for nets

If a port declaration has a wire type (which is the default), or any other net type, then its
direction controls how it can be connected as follows:
— Ani nput may be connected to any expression of a compatible data type. If left
unconnected, it has the value ’ z.
— An out put may be connected to a net type (or a concatenation of net types) or a
compatible variable type (or a concatenation of variable types).
— Ani nout may be connected to a net type (or a concatenation of net types) or
left unconnected, but not to a variable type.
Note that where the data types differ between the port declaration and connection, an
initial value change event may be caused at time zero.



12.8.3 Port Connection Rules for interfaces

A port declaration may be a generic i nt er f ace or named interface type.. An interface
port instance must always be connected to an interface instance or a higher-level interface
port. An interface port cannot be left unconnected.

If a port declaration has a generic i nt er f ace type, then it can be connected to an
interface instance of any type.If a port declaration has a named interface type, then it
must be connected to an interface instance of the identical type.

See Section XX for more port connection rules with interfaces.

12.8.4 Compatible Port Types

The same rules for assignment compatibility are used for compatible port types for ports
declared as ani nput or an out put variable, or for out put ports connected to
variables. SystemVerilog does not change any of the other port connection compatibility
rules

12.8.5 Unpacked array ports and arrays of instances

For an unpacked array port, the port and the array connected to the port must have the
same number of unpacked dimensions, and each dimension of the port must have the
same size as the corresponding dimension of the array being connected.

If the size and type of the port connection match the size and type of a single instance
port, the connection shall be made to each instance in an array of instances.

If the port connection is an unpacked array, the unpacked array dimensions of each port
connection shall be compared with the dimensions of the instance array. If they match
exactly in size, each element of the port connection shall be matched to the port left index
to left index, right index to right index. If they do not match it shall be considered an
error.

If the port connection is a packed array, each instance shall get a part-select of the port
connection, starting with all right-hand indices to match the right most part-select, and
iterating through the right most dimension first. Too many or too few bits to connect all
the instances shall be considered an error.



	Sec 12.8 Port Connection Rules
	12.8 Port Connections Rules
	12.8.1 Port Connection Rules for variables
	I12.8.2 Port Connection Rules for nets
	12.8.3 Port Connection Rules for interfaces
	12.8.4 Compatible Port Types
	12.8.5 Unpacked array ports and arrays of instances


