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Abstract: The definition of the language syntax and accompanying semantics for the specification of
verification intent and behaviors reusable across multiple target platforms and allowing for the automation of
test generation is provided. This standard provides a declarative environment designed for abstract behavioral
description using actions, their inputs, outputs, and resource dependencies, and their composition into use
cases including data and control flows. These use cases capture verification intent that can be analyzed to
produce a wide range of possible legal scenarios for multiple execution platforms. It also includes a
preliminary mechanism to capture the programmer’s view of a peripheral device, independent of the
underlying platform, further enhancing portability.

Keywords: behavioral model, constrained randomization, functional verification, hardware-software inter-
face, portability, PSS, test generation.
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Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve with-
out compensation. While Accellera administers the process and establishes rules to promote fairness in the
consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied **AS 1S."

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, mea-
sure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.

8698 Elk Grove Blvd Suite 1, #114
Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not
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be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1,
#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the Portable Test and Stimulus Standard 2.1 are welcome. They should be
posted to the PSS Community Forum at:

https://forums.accellera.org/forum/44-portable-stimulus-discussion/

The current Working Group web page is:
http://www.accellera.org/activities/working-groups/portable-stimulus
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Introduction

The definition of a Portable Test and Stimulus Standard (PSS) will enable user companies to select the best
tool(s) from competing vendors to meet their verification needs. Creation of a specification language for
abstract use-cases is required. The goal is to allow stimulus and tests, including coverage and results
checking, to be specified at a high level of abstraction, suitable for tools to interpret and create scenarios and
generate implementations in a variety of languages and tool environments, with consistent behavior across
multiple implementations.

This revision adds new features, corrects errors, clarifies aspects of the language and semantic
definitions, removes some features, and reorganizes some sections relative to version 2.0 of the Portable
Test and Stimulus Standard (April 2021). The most substantial feature removed relative to version 2.0 is the
use of C++ as an input format for PSS.

The new features include (by section number):

Section(s) Description

4.6,7.3, Floating-point data types and associated math functions

23.

7.5.1 Added the ability to specify a base data type for enumerated types

7.9.3.4, Support for randomizing the content of the list collection type

16.4.2

12.3.7 Support for specifying atomic regions protected from interference by inferred actions

15.3.1 Convenience features to assist with static binding to arrays of components

16.1.11 Support for specifying value distributions across expressions of random variables

16.4.6, Support for randomizing data inside procedural functions and exec blocks

21.7.12,

234

22.2.1 Support for conditional compilation directives in covergroups, exec blocks, constraints, and override
blocks

21.1.2 Addition of a pre_body solve-platform exec block, in which assignment of memory allocation and
executors is guaranteed to be complete

21.2 Support for static functions in component contexts

23.1 Functions for string formatting and output

232 Functions for operating on files

233 Functions for error reporting

23.7.3.1, | Support for associating a string tag with an address-space region, and retrieving the tag associated with

2398 an address handle

239 Allow packed structs to contain Boolean fields, and enumerated types that specify a base data type

23.9.6, Functions to query resolved memory-allocation addresses on the solve platform

23.9.7

23.9.9.5 Support user-specified address translation on a per-executor basis

23.10.1 Added register masked-write functions to simplifying writing individual register fields
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Participants

The Portable Stimulus Working Group (PSWGQ) is entity-based. At the time this standard was developed, the
PSWG had the following active participants:
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Arteris, Inc.: Jamsheed Agahi

Breker Verification Systems, Inc.: Leigh Brady, Adnan Hamid, David Kelf

Cadence Design Systems, Inc.: Sergey Khaikin, Rodion Melnikov, Angelina Silver, Yuri Tsoglin,
Matan Vax

Intel Corporation: Jonathan Edwards, Faris Khundakjie
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Siemens EDA: Tom Fitzpatrick

Synopsys, Inc.: Dmitry Korchemny, Hillel Miller
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Western Digital Corporation: Kuntal Nanshi
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Portable Test and Stimulus Standard
Version 2.1

1. Overview

This clause explains the purpose of this standard, describes its key concepts and considerations, details the
conventions used, and summarizes its contents.

The Portable Test and Stimulus Standard syntax is specified using Backus-Naur Form (BNF). The rest of
this standard is intended to be consistent with the BNF description. If any discrepancies between the two
occur, the BNF formal syntax in Annex B shall take precedence.

1.1 Purpose

The Portable Test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration under different
configurations, enabling the generation of different implementations of a scenario that run on a variety of
execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA prototyping, and
post-silicon. With this standard, users can specify a set of behaviors once, from which multiple
implementations may be derived.

1.2 Language design considerations

The Portable Test and Stimulus Standard (PSS) describes a declarative domain-specific language (DSL),
intended for modeling scenario spaces of systems, generating test cases, and analyzing test runs. Scenario
elements and formation rules are captured in a way that abstracts from implementation details and is thus
reusable, portable, and adaptable. The portable stimulus specification captured in the DSL is herein referred
to as PSS.

PSS borrows its core concepts from object-oriented programming languages, hardware-verification
languages, and behavioral modeling languages. PSS features native constructs for system notions, such as
data/control flow, concurrency and synchronization, resource requirements, and states and transitions. It also
includes native constructs for mapping these to target implementation artifacts.

Introducing a new language has major benefits insofar as it expresses user intention that would be lost in
other languages. However, user tasks that can be handled well enough in existing languages should be left to
the language of choice, so as to leverage existing skill, tools, flows, and code bases. Thus, PSS focuses on
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the essential domain-specific semantic layer and links with other languages to achieve other related
purposes. This eases adoption and facilitates project efficiency and productivity.

Finally, PSS builds on prevailing linguistic intuitions in its constructs. In particular, its lexical and syntactic
conventions come from the C/C++ family, and its constraint and coverage language uses SystemVerilog
(IEEE Std 1800)l as a reference.

1.3 Modeling basics

A PSS model is a representation of some view of a system’s behavior, along with a set of abstract flows. It is
essentially a set of class definitions augmented with rules constraining their legal instantiation. A model
consists of two types of class definitions: elements of behavior, called actions; and passive entities used by
actions, such as resources, states, and data flow items, collectively called objects. The behaviors associated
with an action are specified as activities. Actions and object definitions may be encapsulated in components
to form reusable model pieces. All of these elements may also be encapsulated and extended in a package to
allow for additional reuse and customization.

A particular instantiation of a given PSS model is a called a scenario. Each scenario consists of a set of
action instances and data object instances, as well as scheduling constraints and rules defining the
relationships between them. The scheduling rules define a partial-order dependency relation over the
included actions, which determines the execution semantics. A consistent scenario is one that conforms to
model rules and satisfies all constraints.

Actions constitute the main abstraction mechanism in PSS. An action represents an element in the space of
modeled behavior. Actions may correspond directly to operations of the underlying system under test (SUT)
and test environment, in which case they are called atomic actions. Actions also use activities to encapsulate
flows of simpler actions, constituting some joint activity or scenario intention. As such, actions can be used
as top-level test intent or reusable test specification elements. Actions and objects have data attributes and
data constraints over them.

Actions define the rules for legal combinations in general, not relative to a specific scenario. These are stated
in terms of references to objects, having some role from the action’s perspective. Objects thus serve as data,
and control inputs and outputs of actions, or they are exclusively used as resources. Assembling actions and
objects together, along with the scheduling and arithmetic constraints defined for them, produces a model
that captures the full state-space of possible scenarios. A scenario is a particular solution of the constraints
described by the model to produce an implementation consistent with the described intent.

1.4 Test realization

A key purpose of PSS is to automate the generation of test cases and test suites. Tests for electronic systems
often involve code running on embedded controllers, exercising the underlying hardware and software
layers. Tests may involve code in hardware-verification languages (HVLs) controlling bus functional
models, as well as scripts, command files, data files, and other related artifacts. From the PSS model
perspective, these are called target files, and target languages, which jointly implement the test case for a
target platform.

The execution of a consistent scenario essentially consists of invoking its actions’ implementations, if any,

in their respective scheduling order. An action is invoked immediately after all its dependencies have
completed, and subsequent actions wait for it to complete. Thus, actions that have the same set of

nformation on references can be found in Clause 2.
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dependencies are logically invoked at the same time. Mapping atomic actions to their respective
implementation for a target platform is captured in several ways, defined in Clause 21.

PSS features a native mechanism for referring to the actual state of the system under test (SUT) and the
environment. Runtime values accessible to the generated test can be sampled and fed back into the model as
part of an action’s execution. These external values are sampled and, in turn, affect subsequent generation,
which can be checked against model constraints and/or collected as coverage. The system/environment state
can also be sampled during pre-run processing utilizing models and during post-run processing, given a run
trace.

Similarly, the generation of a specific test-case from a given scenario may require further refinement or
annotations, such as the external computation of expected results, memory modeling, and/or allocation
policies. For these, external models, software libraries, or dedicated algorithmic code in other languages or

tools may need to be employed. In PSS, the execution of these pre-run computations is defined using the
same scheme as described above, with the results linked in the target language of choice.

1.5 Conventions used
The conventions used throughout the document are included here.
1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate keywords and punctuation, text that shall be typed exactly as
A

it appears. For example, in the following line, the keyword "'state’* and special characters ** {
and '"}"" shall be typed exactly as they appear:

state identifier [ template param_decl list ] [ struct_super_spec ] { { struct_body item } }

plain text The normal or plain text font indicates syntactic categories. For example, an identifier shall be
specified in the following line (after the "*state’* keyword):

state identifier [ template param_decl list ] [ struct_super_spec ] { { struct_body item } }

italics The italics font in running text indicates a definition. For example, the following line shows
the definition of ""activities'":

The behaviors associated with an action are specified as activities.

The italics font in syntax definitions depicts a meta-identifier, e.g., action_identifier.
See also 4.2.

courier The courier font in running text indicates PSS code. For example, the following line indi-
cates PSS code (for a state):

state power_state s { int in [0..4] val; };

[ ] square brackets | Square brackets indicate optional items. For example, the struct_super_spec is optional in the
following line:

state identifier [ template_param_decl_list ] [ struct_super_spec ] { { struct_body _item } }

Copyright © 2023 Accellera. All rights reserved.
30



Portable Test and Stimulus Standard 2.1 — October 2023

Table 1—Document conventions (Continued)

Visual cue Represents

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example, the
following line shows that zero or more struct_body_items can be specified in this declaration:

state identifier [ template param_decl list ] [ struct super spec ] { { struct body item } }

| separator bar The separator bar (]) character indicates alternative choices. For example, the following line
shows that the ""input™ or ""output’* keywords are possible values in a flow object reference:

flow_ref field declaration ::=
(input | output ) flow_object_type object ref field {, object ref field } ;

() parentheses Parentheses ( () ) group together alternative choices. For example, the following line shows
that a flow object reference begins with either an ""input"* or an ""output™ keyword:

flow_ref field declaration ::=
(input | output ) flow_object_type object ref field {, object ref field } ;

1.5.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.

1.5.3 Examples

Any examples shown in this standard are for information only and are only intended to illustrate the use of
PSS.

Many of the examples use “. . .” to indicate code omitted for brevity.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

—  Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

—  Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

— Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

— Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

—  Clause 4 defines the lexical conventions used in PSS.

— Clause 5 defines the PSS modeling concepts.
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Clause 6 defines the PSS execution semantic concepts.
Clause 7 highlights the PSS data types.

Clause 8 describes the operators and operands that can be used in expressions and how expressions
are evaluated.

Clause 9 - Clause 20 describe the PSS abstract modeling constructs.

Clause 21 describes the realization of PSS atomic actions.
Clause 22 describes the process for conditional code processing.

Clause 23 describes the PSS core library, which consists of portable functionality and utilities that
PSS tools must implement.

Annexes. Following Clause 23 is a series of annexes.
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2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

ANSI X3.4-1986: Coded Character Sets—7-Bit American National Standard Code for Information Inter-
change (7-Bit ASCII)2 (ISO 646 International Reference Version)

IEEE Std 1800™-2017, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Ver-
ification Language.3’ 4

The IETF Best Practices Document (for notational conventions) is available from the IETF web site:
https://www.ietf.org/rfc/rfc2119.txt.

ISO/IEC 14882:2011, Programming Languages—Cv“Jr.5

ZANSI publications are available from the American National Standards Institute (https://www.ansi.org/).

3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (https://standards.ieee.org/).

SISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Swit-
zerland/Suisse (https://www.iso.org/). ISO/IEC publications are also available in the United States from Global Engineering Docu-
ments, 15 Inverness Way East, Englewood, Colorado 80112, USA (https://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (https:/
www.ansi.org/).
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3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]° should be referenced for terms not defined in this clause.

3.1 Definitions
action: An element of behavior.

activity: An abstract, partial specification of a scenario that is used in a compound action to determine the
high-level intent and leaves all other details open.

atomic action: An action that corresponds directly to operations of the underlying system under test (SUT)
and test environment.

component: A structural entity, defined per type and instantiated under other components.
compound action: An action that includes an activity to traverse one or more sub-actions.

constraint: An algebraic expression relating attributes of model entities used to limit the resulting scenario
space of the model.

coverage: A metric to measure the percentage of possible scenarios that have actually been processed for a
given model.

exec block: Specifies the mapping of PSS scenario entities to their non-PSS implementation.

field: A variable associated with an instance of a type.

inheritance: The process of deriving one model element from another of a similar type, but adding or mod-
ifying functionality as desired. It allows multiple types to share functionality that only needs to be specified
once, thereby maximizing reuse and portability.

loop: A traversal region of an activity in which a set of sub-actions is repeatedly executed. Values for the
fields of the action are selected for each traversal of the loop, subject to the active constraints and resource
requirements present.

model: A representation of some view of a system’s behavior, along with a set of abstract flows.

object: A passive entity used by an action, such as resources, states, and data flow items.

override: To replace one or all instances of an element of a given type with an element of a compatible type
inherited from the original type.

package: A way to group, encapsulate, and identify sets of related definitions, namely type declarations and
type extensions.

resource: A computational element available in the target environment that may be claimed by an action for
the duration of its execution.

The numbers in brackets correspond to those of the bibliography in Annex A.
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root action: An action designated explicitly as the entry point for the generation of a specific scenario. Any
action in a model can serve as the root action of some scenario.

scenario: A particular instantiation of a given PSS model.

solve platform: The platform on which the test scenario is solved and, where applicable, target test code is
generated. In some generation flows, the solve and target platforms may be the same.

target file: Contains textual content to be used in realizing the test intent.

target language: The language used to realize a specific unit of test intent, e.g., ANSI C, assembly lan-
guage, Perl.

target platform: The execution platform on which test intent is executed.

type extension: The process of adding additional functionality to a model element of a given type, thereby
maximizing reuse and portability. As opposed to inheritance, extension does not create a new type.

3.2 Acronyms and abbreviations
API Application Programming Interface
PI Procedural Interface

PSS Portable Test and Stimulus Standard
SUT  System Under Test

UVM  Universal Verification Methodology
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4. Lexical conventions

PSS borrows its lexical conventions from the C language family.

4.1 Comments

The token /* introduces a comment, which terminates with the first occurrence of the token */. The C++
comment delimiter // is also supported and introduces a comment which terminates at the end of the
current line.

4.2 ldentifiers

An identifier is a sequence of letters, digits, and underscores; it is used to give an object a unique name so
that it can be referenced. In a given namespace, identifiers shall be unique. Identifiers are case-sensitive.

A meta-identifier can appear in syntax definitions using the form: construct name_identifier, e.g.,
action_identifier. See also B.18.

4.3 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab,
newline). They provide a means of including any of the printable non-whitespace ASCII characters in an
identifier (the decimal values 33 through 126, or 0x21 through OX7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the
identifier. Therefore, an escaped identifier \Ccpus3 is treated the same as a non-escaped identifier cpu3.

Some examples of legal escaped identifiers are shown here:
\busa+index
\-clock
\***error-condition***
\netl/\net2
\{a,b}
\a*(b+c)
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4.4 Keywords

PSS reserves the keywords listed in Table 2.

Table 2—PSS keywords

abstract action activity array as assert
atomic bind bins bit body bool

break buffer chandle class compile component
const constraint continue covergroup coverpoint Cross
declaration default disable dist do dynamic
else enum exec export extend false

file float32 float64 forall foreach function
has header if iff ignore_bins illegal_bins
import in init init_down init_up inout

input instance int join_branch join_first join_none
join_select list lock map match null

output override package parallel pool post_solve
pre_body pre_solve private protected public pure

rand randomize ref repeat replicate resource
return run_end run_start schedule select sequence
set share solve state static stream
string struct super symbol target this

true type typedef unique void while

with

4.5 Operators

Operators are single-, double-, and triple-character sequences and are used in expressions. Unary operators
appear to the left of their operand. Binary operators appear between their operands. A conditional operator
has two operator characters that separate three operands.
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4.6 Numbers

Constant numbers are specified as integer constants (see 4.6.1) or floating-point constants (see 4.6.2). The
formal syntax for numbers is shown in Syntax 1.

number ::=
integer number

| floating_point number

integer number ::=
bin_number

| oct_number

| dec_number

| hex_number

| based _bin_number

| based_oct number

| based dec _number

| based_hex number
bin_digit ::=[0-1]
oct_digit ::=[0-7]
dec digit ::=[0-9]
hex_digit ::=[0-9] | [a-f] | [A-F]
bin_number ::= 0[b|B] bin_digit { bin_digit| }
oct number ::=0 { oct_digit|_}
dec_number ::=[1-9] { dec_digit| }
hex_number ::= 0[x|X] hex_digit { hex digit| }
BASED BIN LITERAL ::= '[s|S]b|B bin_digit { bin_digit|
BASED OCT LITERAL ::="[s|S]o|O oct digit { oct digit|_ }
BASED DEC LITERAL ::="[s|S]d|D dec_digit { dec digit| }
BASED HEX LITERAL ::="[s|S]h|H hex digit { hex digit|_}
based bin_number ::=[ dec_number ]| BASED BIN LITERAL
based oct number ::=[ dec number | BASED OCT LITERAL
based _dec _number ::=[ dec_number ]| BASED DEC LITERAL
based hex number ::=[ dec number ]| BASED HEX LITERAL
floating_point_number ::=

floating_point_dec_number
| floating_point_sci_number
unsigned number ::=dec_digit { dec_digit|_ }
floating_point_dec_number ::= unsigned number . unsigned number
floating_point_sci_number ::=
unsigned number [ . unsigned number ] exp [ sign | unsigned number
exp:=¢el|E

sign ==+ | -

Syntax 1—Numeric constants
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4.6.1 Integer constants
Integer literal constants can be specified in decimal, hexadecimal, octal, or binary format.

Several forms may be used to express an integer literal constant. The first form is a simple unsized decimal
number, which is specified as a sequence of digits starting with 1 though 9 and containing the digits O
through 9.

The second form is an unsized hexadecimal number, which is specified with a prefix of OX or OX followed
by a sequence of digits O through 9, a through F, and A through F.

The third form is an unsized octal number, which is specified as a sequence of digits starting with O and
containing the digits O through 7.

The fourth form is an unsized binary number, which is specified with a prefix of Ob or OB followed by a
sequence of digits O and 1.

The fifth form specifies a based literal constant, which is composed of up to three tokens:
— An optional size constant
— An apostrophe character () followed by a base format character

— Digits representing the value of the number.

The first token, a size constant, specifies the size of the integer literal constant in bits. This token shall be
specified as an unsigned non-zero decimal number.

The second token, a base format, is a case-insensitive letter specifying the base for the number. The base is
optionally preceded by the single character S (or S) to indicate a signed quantity. Legal base specifications
are d, D, h, H, 0, O, b, or B. These specify, respectively, decimal, hexadecimal, octal, and binary formats.
The base format character and the optional sign character shall be preceded by an apostrophe. The
apostrophe character and the base format character shall not be separated by white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token immediately follows the base format, optionally separated by white space.

Simple decimal and octal numbers without the size and the base format shall be treated as signed integers.
Unsized unbased hexadecimal and binary numbers shall be treated as unsigned. Numbers specified with a
base format shall be treated as signed integers only if the S designator is included. If the S designator is not
included, the number shall be treated as an unsigned integer.

If the size of an unsigned number is smaller than the size specified for the literal constant, the unsigned
number shall be padded to the left with zeros. If the size of an unsigned number is larger than the size
specified for the literal constant, the unsigned number shall be truncated from the left.

The number of bits that compose an unsized number is tool-specific, but shall be at least 32. An unsized
number that requires more than 32 bits shall have at least the minimum width needed to properly represent
the value, including a sign bit if the number is signed. For example, Ox7_0000_0000, an unsigned
hexadecimal number, shall have at least 35 bits. 4294967296 (2**32), a positive signed integer, shall be
represented by at least 34 bits.

The underscore character (_) shall be legal anywhere in a number except as the first character. The
underscore character can be used to break up long integer literals to improve readability.
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4.6.1.1 Using integer literals in expressions

A negative value for an integer with no base specifier shall be interpreted differently from an integer with a
base specifier. An integer with no base specifier shall be interpreted as a signed value in two’s-complement
form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.

The following example shows four ways to write the expression “minus 12 divided by 3.” Note that -12 and
-"d12 both evaluate to the same two’s-complement bit pattern, but, in an expression, the —*d12 loses its
identity as a signed negative number.

int IntA;

IntA = -12 / 3; // The result is -4.

IntA = -"d12 / 3; // The result is 1431655761.

IntA = -"sd12 / 3; // The result is -4.

IntA = -4"sd12 / 3; // -47sd12 is the negative of the 4-bit quantity 1100,

// which is -4_. -(-4) = 4. The result is 1.
4.6.2 Floating-point constants

Floating-point constant numbers can be specified either in decimal notation (e.g., 14 .72) or in scientific
notation (e.g., 39€8, which means 39 multiplied by 10 to the 8th power). Floating-point numbers expressed
with a decimal point shall have at least one digit on each side of the decimal point. Whitespace is not
permitted between the components of a floating-point constant.

Examples:
20.14 // Legal
20 .15 // l1llegal. No whitespace is permitted between components.
2e6 // Legal, means 2 * 10**6
le-9 // Legal, means 1 * 10**-9

4.7 String literals

A string literal is a sequence of ASCII characters enclosed by a single pair of quotation marks (** ... "),

called a quoted string, or a triple pair of quotation marks ( I ), called a triple-quoted string.
There is no predefined limit to the length of a string literal. The formal syntax for string literals is shown in

Syntax 2.

string_literal ::=
QUOTED STRING

| TRIPLE_QUOTED_STRING
QUOTED_STRING ::="" { unescaped_character | escaped character } "'
TRIPLE QUOTED_STRING ::="""{any ASCII character}""""
unescaped character ::= any printable ASCII character
escaped_character ::= \('|""|?|\|a|b|f|n|r|t|v|[0-7][0-7][0-7])
filename string ::= QUOTED STRING

Syntax 2—String literals

PSS also includes a string data type to which a string literal can be assigned or compared. Variables of type
string have arbitrary length; they are dynamically resized to hold any string. String literals are implicitly
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converted to the string type when assigned to a string type or used in an expression involving string type
operands.

The empty string literal ("***) represents an empty, or null, string.

Quoted string literals may only contain printable ASCII characters (the decimal values 32 through 126, or
0x20 through OX7E in hexadecimal). Certain characters can be used in quoted string literals when preceded
by an escape character (a backslash). Table 3 lists these characters, with the escape sequence that represents
them. A quoted string shall be contained in a single line.

Table 3—Specifying special characters in string literals

55532% e AS\ZIILQEX Character produced by escape sequence
\a 0x07 Alert (Beep, Bell)
\b 0x08 Backspace
\f 0x0C Formfeed
\n O0x0A Newline
\r 0x0D Carriage return
\t 0x09 Horizontal tab
\v 0x0B Vertical tab
\\ 0x5C \ character (backslash)
\" 0x22 ** character (double quotation mark)
\*" 0ox27 " character (apostrophe, single quotation mark)
\? Ox3F ? character (question mark)
\ddd any A character specified in 3 octal digits (see Syntax 1). Implementations may issue
an error if the character represented is greater than \377.

An escape sequence is considered a single character in the string literal. An escaped apostrophe or question
mark is treated the same as an unescaped apostrophe or question mark, respectively, i.e., the backslash is
ignored. The other escaped characters in the table have different meanings from their unescaped versions. It
is illegal for an escape character in a quoted string literal to be followed by any character not appearing in
the table above.

In contrast, a triple-quoted string literal may contain any ASCII character, printing or nonprinting. There is
no escape character. All characters are passed as they are, unchanged. For example, triple-quoted strings
may contain both single and double quotation marks (except for three consecutive double quotation marks)
and newline characters.

Both quoted string literals and triple-quoted string literals may be used anywhere a string literal is desired or
required, except for filename_strings (see target file_exec block in Syntax 71), where a quoted string is
required.

In a string literal that appears in target-template code, mustache notation ({{expression}}) can be used
to reference PSS variables. See 21.5.3 and 21.6 for details.
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4.7.1 Examples
The following string literals are equivalent:

" \"Humpty Dumpty sat on a wall_\nHumpty Dumpty had a great fall_\" "

Humpty Dumpty sat on a wall.
Humpty Dumpty had a great fall.™ "

4.8 Aggregate literals

Aggregate literals are used to specify the content values of collections and structure types. The different
types of aggregate literals are described in the following sections. The use of aggregate literals in
expressions is described in 8.4.2.

aggregate literal ::=
empty aggregate literal
| value list_literal
| map_literal
| struct_literal

Syntax 3—Aggregate literals

4.8.1 Empty aggregate literal

empty aggregate literal ::={}

Syntax 4—Empty aggregate literal

Aggregate literals with no values specify an empty collection (see 7.9) when used in the context of a
variable-sized collection type (list, set, map).

4.8.2 Value list literals

value_list_literal ::= { expression { , expression } }

Syntax 5—Value list literal

Aggregate literals for use with arrays, lists, and sets (see 7.9) use value list literals. Each element in the list
specifies an individual value. When used in the context of a variable-size data type (list, set), the number of
elements in the value list literal specifies the size as well as the values. However, when used in the context of
sets, each value is counted only once, even if it appears multiple times. When used in the context of arrays
and lists, the value list literal also specifies the order of elements, starting with element 0. The data types of
the values must match the data type specified in the collection declaration.

When a value list literal is used in the context of an array, the value list literal must have the same number
of elements as the array. It is an error if the value list literal has more or fewer elements than the array.
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int cl[4] = {1, 2, 3, 4}; // OK
int c2[4] = {1}: // Error: literal has fewer elements than array
int c3[4] = {1, 2, 3, 4, 5, 6}; // Error: literal has more elements than array

Example 1—Value list literals

Values in value list literals may be non-constant expressions.

4.8.3 Map literals

map_literal ::= { map_literal item {, map _literal item } }
map_literal item ::= expression : expression

Syntax 6—Map literal

Aggregate literals for use with maps (see 7.9.4) use map literals. The first element in each colon-separated
pair is the key. The second element is the value to be associated with the key. The data types of the
expressions must match the data types specified in the map declaration. If the same key appears more than
once, the last value specified is used.

In Example 2, a map literal is used to set the value of a map with integer keys and Boolean values.

struct t {
map<int,bool> m = {1:true, 2:false, 4:true, 8:false};
constraint m[1]; // True, since the value "true" iIs associated with key "1™

}

Example 2—Map literals

Both keys and values in map literals may be non-constant expressions.

4.8.4 Structure literals

struct_literal ::= { struct_literal item { , struct literal item } }
struct_literal item ::= . identifier = expression

Syntax 7—Structure literal

A structure literal explicitly specifies the name of the struct attribute that a given expression is associated
with. Struct attributes whose value is not specified are assigned the default value of the attribute’s data type.
The order of the attributes in the literal does not have to match their order in the struct declaration. It shall
be illegal to specify the same attribute more than once in the literal.

In Example 3, the initial value for the attributes of S1 is explicitly specified for all attributes. The initial
value for the attributes of S2 is specified for a subset of attributes. The resulting value of both S1 and S2 is
{.a=1, .b=2, .c=0, .d=0}. Consequently, the constraint S1==s2 holds.
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struct s {
int a, b, c, d;

};

struct t {
s s1 = {.a=1,.b=2,.c=0, .d=0};
s s2 = {.b=2,.a=1};
constraint sl == s2;

hs

Example 3—Structure literals

Values in structure literals may be non-constant expressions.

4.8.5 Nesting aggregate literals

Aggregate literals may be nested to form the value of data structures formed from nesting of aggregate data

types.

In Example 4, an aggregate literal is used to form a list of struct values. Each structure literal specifies a

subset of the struct attributes.

struct s {

int a, b, c, d;
};
struct t {

list<s> my I = {
{.a=1, .d=4},
{-b=2, .c=8}
};
3

Example 4—Nesting aggregate literals
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5. Modeling concepts

A PSS model is made up of a number of elements (described briefly in 1.3) that define a set of possible
scenarios to be applied to the Design Under Test (DUT) via the associated test environment. Scenarios are
composed of behaviors—ultimately executed on some combination of components that make up the DUT or
on verification components that define the test environment—and the communication between them. This
clause introduces the elements of a PSS model and defines their relationships.

The primary behavior abstraction mechanism in PSS is an action, which represents a particular behavior or
set of behaviors. Actions combine to form the scenarios that represents the verification intent. Actions that
correspond directly to operations performed by the underlying DUT or test environment are referred to as
atomic actions, which contain an explicit mapping of the behavior to an implementation on the target
platform in one of several supported forms. Compound actions encapsulate flows of other actions using an
activity that defines the critical intent to be verified by specifying the relationships between specific actions.

The remainder of the PSS model describes a set of rules that are used by a PSS processing tool to create the
scenarios that implements the critical verification intent while satisfying the data flow, scheduling, and
resource constraints of the target DUT and associated test environment. In the case where the specification
of intent is incomplete (partial), the PSS processing tool shall infer the execution of additional actions and
other model elements necessary to make the partial specification complete and valid. In this way, a single
partial specification of verification intent may be expanded into a variety of actual scenarios that all
implement the critical intent, but might also include a wide range of other behaviors that may provide
greater coverage of the functionality of the DUT as demonstrated in the example in Figure 1.

&

a
-

[=x

Figure 1—Partial specification of verification intent
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In Figure 1, actions a, b, and ¢ are specified to be traversed sequentially in an activity. Depending on the
data flow between them, and on other constraints in the model, this may describe a complete scenario
specification (see Figure 1(i)), or it may describe a partial specification, which may be expanded into
multiple scenarios that infer other actions. All scenarios satisfy the critical intent defined by the activity,
where a will be traversed, followed sometime later by b, followed sometime later by c. Figure 1 shows
several possible scenarios that may be generated from the partial specification, depending on various factors
to be discussed later in this section.

An activity primarily specifies the set of actions to be executed and the scheduling relationships between
them. Actions may be scheduled sequentially, in parallel, or in various combinations based on conditional
evaluation, looping, or randomization constructs. Activities may also include explicit data bindings between
actions. An activity that traverses a compound action is evaluated hierarchically, i.e., when a compound sub-
action is traversed in an activity, the sub-action activity is traversed fully at that point in the parent activity
(see 5.3.2).

5.1 Modeling data flow

Actions may be declared to have inputs and/or outputs of a given data flow object type. The data flow object
types define scheduling semantics for the given action relative to those with which it shares the object. Data
flow objects may be declared directly or may inherit from user-defined data structures or other flow objects
of a compatible type. An action that outputs a flow object is said to produce that object and an action that
inputs a flow object is said to consume the object. Data flow objects are described in Clause 13.

5.1.1 Buffers

The first kind of data flow object is the buffer type. A buffer represents persistent data that can be written
(output) by a producing action and may be read (input) by any number of consuming actions. As such, a
buffer defines a strict scheduling dependency between the producer and the consumer that requires the
producing action to complete its execution—and, thus, complete writing the buffer object—before execution
of the consuming action may begin to read the buffer (see Figure 2). Note that other consuming actions may
also input the same buffer object. While there are no implied scheduling constraints between the consuming
actions, none of them may start until the producing action completes.

observed
behavior

prod_mem_a)%}( cons_mem_a >—

Figure 2—Buffer flow object semantics

Figure 2 illustrates the sequential scheduling semantics between the producer and consumer of a buffer flow
object.

In Figure 1(i), assume that action a produces a buffer of a particular type, and b inputs a buffer object of a
compatible type, In this case, we say that the buffer object is bound from the output of a to the input of b,
since the semantics of the buffer object support the activity. Similarly, in Figure 1(ii), if, instead of action a,
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action d produced a buffer object of a compatible type for action b, action d could be inferred as the
producer of the buffer for action b to consume. The buffer scheduling semantics allow action d to be
inferred at any point in the schedule prior to the start of action b (shown in Figure 1(ii) as either d4, do, or
dg3), while the activity requires only that action a completes before action b starts. In this case, there is no
explicit scheduling constraint between a and d.

5.1.2 Streams

The stream flow object type represents transient data exchanged between actions. The semantics of the
stream flow object require that the producing and consuming actions execute in parallel (i.e., both activities
shall begin execution when the same preceding actions complete; see Figure 3). In a stream object, there
shall be a one-to-one connection between the producer and consumer.

observed
behavior

: \
_+@__ —< prod_mem_a)
! cons_mem_a}

Figure 3—Stream flow object semantics

Figure 3 illustrates the parallel scheduling semantics between the producer and the consumer of a stream
flow object.

In Figure 1(iii), the parallel execution of actions ¥ and g dictates that any data exchanged between these
actions shall be of the stream type. Again, assuming that action a does not output a compatible buffer for
action b to input, then action F may be inferred to supply the buffer to action b . If action F inputs or outputs
a stream object, then the one-to-one requirement of the stream object would require that action g, which has
a compatible stream type, also be inferred to execute in parallel with F. Action € may be inferred if it is
needed to supply a buffer input to either ¥ or g.

NOTE—Figure 1(iv) shows an alternate inferred scenario that also satisfies the base scenario of sequential execution of
actions a, b, and c, but in this case, the binding between a and b is legal, and action ¢ requires a buffer input that can
only be supplied by F or g.

5.1.3 States

The state flow object represents the state of some element in the DUT or test environment at a given time.
Multiple actions may read or write the state object, but only one write action may execute at a time. Any
number of read actions may execute in parallel, but read and write actions shall be sequential (see Figure 4).
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observed
behavior

{ wr_st_a H wr_st_a )j

Figure 4—State flow object semantics

State flow objects have a built-in Boolean initial attribute that is automatically set to true initially and
automatically set to false on the first write operation to the state object. This attribute can be used in
constraint expressions to define the starting value for fields of the state object and then allow the values to be
modified on subsequent writes of the state object.

5.1.4 Data flow object pools

Data flow objects are grouped into pools, which can be used to limit the set of actions that can communicate
using objects of a given type. For buffer and stream types, the pool will contain the number of objects of the
given type needed to support the communication between actions sharing the pool. For state objects, the
pool will only contain a single object of the state type at any given time. Thus, all actions sharing a state
object via a pool will see the same value for the state object at a given time. Pools are described in
Clause 15.

5.2 Modeling system resources
5.2.1 Resource objects

In addition to declaring inputs and outputs, actions may require system resources that must be accessible in
order to accomplish the specified behavior. The resource object is a user-defined data object that represents
this functionality. Similar to data flow objects, a resource may be declared directly or may inherit from a
user-defined data structure or another resource object. Resource objects are described in Clause 14.

5.2.2 Resource pools

Resource objects are also grouped into pools to define the set of actions that have access to the resources. A
resource pool is defined to have an explicit number of resource objects in it (the default is 1), corresponding
to the available resources in the DUT and/or test environment. In addition to optionally randomizable data
fields, the resource has a built-in non-negative integer attribute called instance_id, which serves to
identify the resource and is unique for each resource in the given pool. Pools are described in Clause 15.

5.2.2.1 Locking resources

An action that requires exclusive access to a resource may lock the resource, which prevents any other action
that claims the same resource instance from executing until the locking action completes. For a given pool of
resource R, with size S, there may be S actions that lock a resource of type R executing at any given time.
Each action that locks a resource in a given pool at a given time shall have access to a unique instance of the
resource, identified by the integer attribute Instance_id. For example, if a DUT contains two DMA
channels, the PSS model would define a pool containing two instances of the DMA_channel resource type.
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In this case, no more than two actions that lock the DMA_channel resource could be scheduled
concurrently.

5.2.2.2 Sharing resources

An action that requires non-exclusive access to a resource may share the resource. An action may not share
a resource instance that is locked by another action, but may share the resource instance with other actions
that also share the same resource instance. If all resources in a given pool are locked at a given time, then no
sharing actions can execute until at least one locking action completes to free a resource in that pool.

5.3 Basic building blocks
5.3.1 Components and binding

A critical aspect of portability is the ability to encapsulate elements of verification intent into “building
blocks” that can be used to combine and compose PSS models. A component is a structural element of the
PSS model that serves to encapsulate other elements of the model for reuse. A component is typically
associated with a structural element of the DUT or testbench environment, such as hardware engines,
software packages, or testbench agents, and contains the actions that the element is intended to perform, as
well as the data and resource pools associated with those actions. Each component declaration defines a
unique type that can be instantiated inside other components. The component declaration also serves as a
type namespace in which other types may be declared.

A PSS model is composed of one or more component instantiations constituting a static hierarchy beginning
with the top-level or root component, called pss_top by default, which is implicitly instantiated.
Components are identified uniquely by their hierarchical path. In addition to instantiating other components,
a component may declare functions and class instances (see Clause 9).

When a component instantiates a pool of data flow or resource objects, it also shall bind the pool to a set of
actions and/or subcomponents to define who has access to the objects in the pool. Actions may only
communicate via an object pool with other actions that are bound to the same object pool. Object binding
may be specified hierarchically, so a given pool may be shared across subcomponents, allowing actions in
different components to communicate with each other via the pool.

5.3.2 Evaluation and inference

A PSS model is evaluated starting with the top-level root action, which shall be specified to a tool. The
component hierarchy, starting with pSS_top or a user-specified top-level component, provides the context
in which the model rules are defined. If the root action is a compound action, its activity forms the root of a
potentially hierarchical activity tree that includes all activities present in any sub-activities traversed in the
activity. Additional actions may be inferred as necessary to support the data flow and binding requirements
of all actions explicitly traversed in the activity, as well as those previously inferred. Resources add an
additional set of scheduling constraints that may limit which actions actually get inferred, but resources do
not cause additional actions to be inferred.

The semantics of data flow objects allow the tool to infer, for each action in the overall activity, connections
to other actions already instantiated in the activity; or to infer and connect new action instances to conform
to the scheduling constraints defined in the activity and/or by the data and resource requirements of the
actions, including pool bindings. The model thus consists of a set of actions, with defined scheduling
dependencies, along with a set of data flow objects that may be explicitly bound or inferred to connect
between actions and a set of resources that may be claimed by the actions as each executes. Actions and flow
objects and their bindings may only be inferred as required to make the (partial) activity specification legal.
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A PSS implementation shall not infer an action or object binding that is not required, either directly or
indirectly, to make the activity specification legal. Clause 17 describes action inferencing in more detail.

Figure 5 demonstrates how actions can be inferred to generate multiple scenarios from a single activity.

(ii) (iii)
Figure 5—Single activity, multiple scenarios

Looking at Figure 5, actions &, b, and ¢ are scheduled sequentially in an activity. The data flow and
resource requirements specified in the model (which are not shown in Figure 5) allow for multiple scenarios
to be generated. If action a has a buffer or state input, then an action, T in this case, is inferred to execute
sequentially before a in order to provide the buffer or state object. If a does not have a buffer or state input,
T may still be inferred in order to supply an input to b or C, and may ultimately be scheduled before a as
shown, although the only real scheduling constraint is that ¥ complete before the start of the action that
requires the input flow object.

Once inferred, if T also has a buffer or state input, then another action shall be inferred to supply that object
and so on until an action is inferred that does not have an input (or the tool’s inferencing limit is exceeded, at
which point an error shall be generated). For the purposes of this example, action T does not have an input.

In Figure 5(i), presume that action a produces (or consumes) a stream object. In this case, action d is
inferred in parallel with a since stream objects require a one-to-one connection between actions. Actions a
and d both start upon completion of action F. If action d also has a buffer input, then another action shall be
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inferred to provide that input. For Figure 5(i), action T can be presumed to have a second buffer output that
gets bound to action d, although a second buffer-providing action could also have been inferred.

If action a produces a buffer object, the buffer may be connected to another action with a compatible input
type. In the case where a.out and b . In are incompatible, action e (or a series of actions) may be inferred
to receive the output of action a and produce the input to action b. If a.out and b. In are compatible, then
the direct connection between a.out and b. In would be inferred here, in which case no action would be
inferred between them, although an action inferred to supply the input to C (or for some other reason) could
be scheduled between them.

Similarly, in the absence of an explicit binding of b.out to C. in, and if they are incompatible, a series of
actions may be inferred prior to the start of action C in order to provide the input of action C. These inferred
actions will be scheduled independent of b unless their data flow requirements create scheduling constraints
relative to b. As the terminal action in the activity, no action may be inferred after action ¢ however, even if
action C produces a buffer object as an output.

If b.out and c. In are incompatible, it is possible to infer another action, J, to supply the buffer input to
C. in, as shown in Figure 5(ii). In this case, there are two constraints on when the execution of action C may
begin. The activity scheduling requires action b to complete before action C starts. The buffer object
semantics also require action J to complete before action C starts. If action j requires a buffer input, a series
of actions could be inferred to supply the buffer object. That inferred action chain could eventually be bound
to a previously inferred action, such as action d as shown in Figure 5(ii), or it may infer an independent
series of actions until it infers an initial action that only produces an output or until the inferencing limit is
reached. Since the output of action b is not bound to action C, action b is treated as a terminating action, so
no subsequent actions may be inferred after action b.

Finally, Figure 5(iii) shows the case where action C produces or consumes a stream object. In this case, even
though action C is the terminating action of the activity, action p shall be inferred to satisfy the stream object
semantics for action C. Here, action p is also treated as a terminating action, so no subsequent actions may
be inferred. However, additional actions may be inferred either preceding or in parallel to action p to satisfy
its data flow requirements. Each action thus inferred is also treated as a terminating action. Similarly, since
action b is not bound to action C, b shall also be treated as a terminating action.

5.4 Constraints and inferencing

Data flow and resource objects may define constraint expressions on the values of their data fields
(including instance_id in the case of resource objects). In addition, actions may also define constraint
expressions on the data fields of their input/output flow objects and locked/shared resource objects. For data
flow objects, all constraints defined in the object and in all actions that are bound to the object are combined
to define the legal set of values available for the object field. Similarly, the constraints defined for a resource
object shall be combined with the constraints defined in all actions that claim the resource. Inferred actions
or data flow objects that result in constraint contradictions are excluded from the legal scenario. At least one
valid solution must exist for the scenario model for that model to be considered valid.

5.5 Summary

In portable stimulus, a single PSS model may be used to generate a set of scenarios, each of which may have
different sets of inferred actions, data flow objects, and resources, while still implementing the critical
verification intent explicitly specified in the activity. Each resulting scenario may be generated as a test
implementation for the target platform by taking the behavior mapping implementation embedded in each
resulting atomic action and generating output code that assembles the implementations and provides any
other required infrastructure to ensure the behaviors execute on the target platform according to the
scheduling semantics defined by the original PSS model.
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6. Execution semantic concepts

6.1 Overview

A PSS test scenario is identified given a PSS model and an action type designated as the root action. The
execution of the scenario consists essentially in executing a set of actions defined in the model, in some
(partial) order. In the case of atomic actions, the mapped behavior of any exec body clauses (see 21.1.2) is
invoked in the target execution environment, while for compound actions the behaviors specified by their
activity statements are executed.

All action executions observed in a test run either correspond to those explicitly called by traversed activities
or are implicitly introduced to establish flows that are correct with respect to the model rules. The order in
which actions are executed shall conform to the flow dictated by the activities, starting from the root action,
and shall also be correct with respect to the model rules. Correctness involves consistent resolution of
actions’ inputs, outputs, and resource references, as well as satisfaction of scheduling constraints. Action
executions themselves shall reflect data attribute assignments that satisfy all constraints.

6.2 Assumptions of abstract scheduling

Guarantees provided by PSS are based on general capabilities that test realizations need to have in any target
execution environment. The following are assumptions and invariants from the abstract semantics
viewpoint.

6.2.1 Starting and ending action executions

PSS semantics assume that target-mapped behavior associated with atomic actions can be invoked in the
execution environment at arbitrary points in time, unless model rules (such as state or data dependencies)
restrict doing so. They also assume that target-mapped behavior of actions can be known to have completed.

PSS semantics make no assumptions on the duration of the execution of the behavior. They also make no
assumptions on the mechanism by which an implementation would monitor or be notified upon action
completion.

6.2.2 Concurrency

PSS semantics assume that actions can be invoked to execute concurrently, under restrictions of model rules
(such as resource contentions).

PSS semantics make no assumptions on the actual threading framework employed in the execution
environment. In particular, a target may have a native notion of concurrent tasks, as in SystemVerilog
simulation; it may provide native asynchronous execution threads and means for synchronizing them, such
as embedded code running on multi-core processors; or it may implement time sharing of native execution
thread(s) in a preemptive or cooperative threading scheme, as is the case with a runtime operating system
kernel. PSS semantics do not distinguish between these.

6.2.3 Synchronized invocation

PSS semantics assume that action invocations can be synchronized, i.e., logically starting at the same time.
In practice there may be some delay between the invocations of synchronized actions. However, the “sync-
time” overhead is (at worse) relative to the number of actions that are synchronized and is constant with
respect to any other properties of the scenario or the duration of any specific action execution.
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PSS semantics make no assumptions on the actual runtime logic that synchronizes native execution threads
and put no absolute limit on the “sync-time” of synchronized action invocations.

6.3 Scheduling concepts

PSS execution semantics define the criteria for legal runs of scenarios. The criterion covered in this section
is stated in terms of scheduling dependency—the fundamental scheduling relation between action
executions. Ultimately, scheduling is observed as the relative order of behaviors in the target environment
per the respective mapping of atomic actions. This section defines the basic concepts, leading up to the
definition of sequential and parallel scheduling of action executions.

6.3.1 Preliminary definitions

a)

b)

d)

e)

An action execution of an atomic action type is the execution of its exec-body block,” with values
assigned to all of its parameters (reachable attributes). The execution of a compound action consists
in executing the set of atomic actions it contains, directly or indirectly. For more on execution
semantics of compound actions and activities, see Clause 12.

An atomic action execution has a specific start-time—the time in which its exec-body block is
entered, and end-time—the time in which its exec-body block exits (the test itself does not complete
successfully until all actions that have started complete themselves). The start-time of an atomic
action execution is assumed to be under the direct control of the PSS implementation. In contrast,
the end-time of an atomic action execution, once started, depends on its implementation in the target
environment, if any (see 6.2.1).

The difference between end-time and start-time of an action execution is its duration.

A scheduling dependency is the relation between two action executions, by which one necessarily
starts after the other ends. Action execution b has a scheduling dependency on a if b’s start has to
wait for a’s end. The temporal order between action executions with a scheduling dependency
between them shall be guaranteed by the PSS implementation regardless of their actual duration or
that of any other action execution in the scenario. Taken as a whole, scheduling dependencies con-
stitute a partial order over action executions, which a PSS solver determines and a PSS scheduler
obeys.

Consequently, the lack of scheduling dependency between two action executions (direct or indirect)
means neither one must wait for the other. Having no scheduling dependency between two action
executions implies that they may (or may not) overlap in time.

Action executions are synchronized (scheduled to start at the same time) if they all have the exact
same scheduling dependencies. No delay shall be introduced between their invocations, except a
minimal constant delay (see 6.2.3).

Two or more sets of action executions are independent (scheduling-wise) if there is no scheduling
dependency between any two action executions across the sets. Note that within each set, there may
be scheduling dependencies.

Within a set of action executions, the initial ones are those without scheduling dependency on any
other action execution in the set. The final action executions within the set are those in which no
other action execution within the set depends.

7Throughout this section, exec-body block is referred to in the singular, although it may be the aggregate of multiple exec-body clauses
in different locations in PSS source code (e.g., multiple declarations in a given action type definition or in different extensions of the
same action type).
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6.3.2 Sequential scheduling

Action executions a and b are scheduled in sequence if b has a scheduling dependency on a. Two sets of
action executions, S; and S,, are scheduled in sequence if every initial action execution in S, has a
scheduling dependency on every final action execution in S;. Generally, sequential scheduling of N action
execution sets S .. S, is the scheduling dependency of every initial action execution in Sj on every final
action execution in Sj_q for every i from 2 to N, inclusive.

For examples of sequential scheduling, see 12.3.3.2.
6.3.3 Parallel scheduling

N sets of action executions S; .. Sy, are scheduled in parallel if the following two conditions hold:

— All initial action executions in all N sets are synchronized (i.e., all have the exact same set of sched-
uling dependencies).

— 51 .. Sy are all scheduled independently with respect to one another (i.e., there are no scheduling
dependencies across any two sets 5; and S;).

For examples of parallel scheduling, see 12.3.4.2.
6.3.4 Concurrent scheduling

N sets of action executions S .. S, are scheduled concurrently if S; .. S, are all scheduled independently with
respect to one another (i.e., there are no scheduling dependencies across any two sets S and ).
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7. Data types

7.1 General

In this document, “scalar” means a single data item of type bit, int, bool, enum, string, float32, float64, or
chandle, unless otherwise specified. A struct (see 7.8) or collection (see 7.9) is not a scalar. A typedef (see
7.11) of a scalar data type is also a scalar data type.

The term “aggregate” refers both to collections and to structs. The term “aggregate” does not include
actions, components, flow objects, or resource objects. Aggregates may be nested. A typedef of an
aggregate data type is also an aggregate data type.

A “plain-data type” is a scalar or an aggregate of scalars. Nested aggregates are also plain-data types. A
typedef of a plain-data type is also a plain-data type.

Fields of all scalar types except chandle, float32, and float64 are randomizable. Array and list collections
of randomizable types are also randomizable, but the map and set collection types are not randomizable.

A field of randomizable type may be declared as random by preceding its declaration with the rand
keyword. It shall be an error to declare a field of non-randomizable type as rand.

7.1.1 Syntax

The syntax for data types and data declarations is shown in Syntax 8.

data_type ::=
scalar_data_type
| collection_type
| reference_type
| type_identifier
scalar_data type ::=
chandle type
| integer_type
| string_type
| bool type
| enum_type
| float_type
data_declaration ::= data_type data_instantiation { , data_instantiation } ;
data_instantiation ::= identifier [ array _dim ] [ = constant_expression ]
array_dim ::= [ constant_expression |
attr_field ::=[ access_modifier ] [ rand | static const ] data_declaration
access_modifier ::= public | protected | private

Syntax 8—Data types and data declarations

Scalar data types are described in 7.2 through 7.7, structure data types are described in 7.8, and collection
data types are described in 7.9. Reference types are described in 7.10. Access protection and access
modifiers are described in 19.4.
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7.2 Integer types

PSS supports two 2-state integer data types. These fundamental integer data types are summarized in
Table 4, along with their default widths and value domains.

Table 4—Integer data types

Data type Default width Default domain | Signed/Unsigned

int 32 bits 233 Signed

bit 1 bit 0..1 Unsigned

4-state values are not supported. If 4-state values are passed into the PSS model via the foreign procedural
interface (see 21.4), any X or Z values are converted to O.

7.2.1 Syntax

The syntax for integer types is shown in Syntax 9.

integer_type ::= integer atom_type
[ [ constant_expression [ :0]] ]
[ in [ domain_open_range list] ]
integer _atom_type ::=
int
| bit
domain_open_range list ::= domain_open_range value {, domain_open_range value }
domain_open_range value ::=
constant_expression [ .. constant expression |
| constant_expression ..

| .. constant_expression

Syntax 9—Integer type declaration

The following also apply:
a) Integer values of bit type are unsigned. Integer values of int type are signed.
b)  The default value of the bit and int types is O.

c)  Widths should be specified with a single expression with a constant positive integer value (e.g.,
bit[4]). A specification of [N] is equivalent to [N-1:07]. A type specified using dual bounds
shall use O as the lower bound and a constant non-negative integer value as the upper bound. Speci-
fying a width using dual bounds is considered deprecated in PSS 2.0, and may be removed in a
future version.

d) A value domain may be specified for the type. The domain specification consists of a list of one or
more values and/or value ranges.

e) The width and value domain specifications are independent. A variable of the declared type can hold
values within the intersection of the possible values determined by the specified width (or the
default width, if not specified) and the explicit value domain specification, if present.

Copyright © 2023 Accellera. All rights reserved.
56



Portable Test and Stimulus Standard 2.1 — October 2023

7.2.2 Examples

PSS integer data type examples are shown in-line in this section.

Declare a signed variable that is 32 bits wide.
int a;

Declare a signed variable that is 5 bits wide.
int [4:0] a;

Declare an unsigned variable that is 5 bits wide and has the valid values 0. . 31.
bit [5] in [0..31] b;

Declare an unsigned variable that is 5 bits wide and has the valid values 1, 2, and 4.
bit [5] in [1,2,4] c;

Declare an unsigned variable that is 5 bits wide and has the valid values 0. . 10.
bit [5] in [--10] b; // 0 <= b <= 10

Declare an unsigned variable that is 5 bits wide and has the valid values 10. . 31.

bit [5] in [10..] b; // 10 <= b <= 31

7.3 Floating-point types

PSS supports two floating-point computation data types, as summarized by Table 5 below.

Table 5—Floating-point computation data types

Data type | Width Format

float32 32 bits | IEEE 754 binary32

float64 64 bits | IEEE 754 binary64

7.3.1 Syntax

The syntax for floating-point computation data types is shown in Syntax 10 below.
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scalar data type ::=

| float_type
float type ::=
float32
| float64

Syntax 10—Floating-point type declaration

Variables of floating-point type may not be declared rand, and may not be randomized using the
randomize statement.

PSS also defines packed-struct storage types as part of the core library (see 23.9.1). These types support
various non-IEEE floating-point number formats.

Arithmetic operations may be performed on the computation data types. Arithmetic operations may not be
performed directly on storage data types. Data held in a variable of floating-point storage type must first be
converted into a computation type.

7.3.2 Cross-platform results

Floating-point computation has platform dependencies, with different processors and algorithms
legitimately producing slightly different results. These differences may be apparent, for example, when
comparing the result of computations performed on the solve platform with those performed on the target

platform. The PSS LRM makes no attempt to force the result of floating-point computations to be identical
across platforms.

7.4 Booleans

The PSS language supports a built-in Boolean type, with the type name bool. The bool type has two
enumerated values true (=1) and false (=0). When not initialized, the default value of a bool type is false.

7.5 Enumeration types

An enumeration type is a distinct user-defined type whose value is restricted to a specified set of integral
named constants. Enumeration data types also can be easily referenced or displayed using the enumeration
constant names as opposed to their numeric values.

7.5.1 Syntax

The syntax for declaration of enumeration types is shown in Syntax 11.
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enum_declaration ::= enum enum_identifier [ : data_type ] { [ enum_item { , enum_item } ]}
enum_identifier ::= identifier
enum_item ::= identifier [ = constant_expression |

enum_type_identifier ::= type_identifier

enum_type ::=enum_type_identifier [ in [ domain_open_range list ] ]

Syntax 11—enum declaration

An enumeration type declaration (enum_declaration) consists of the keyword enum followed by the name
of the type (enum_identifier), an optional base type name (data_type), and a list in curly braces of constant
names (enum items) with optional constant integer value assignments.

The optional data_type denotes the base type. It must be the name of an integer type, which shall determine
the set of possible values to be assigned to enum_items, for example: int, or bit[16], or int[3]. In effect, it
shall determine the width and the signedness of the items. The base type shall not have a value domain (for
example, ‘intin [1..10]’ cannot be used as a base type).

The following also apply:

a)

b)

¢)

d)

g

h)

i),

k)

enum_items are considered static constant members of the enumeration type in which they are
declared.

The first enum_item in the list, if not explicitly assigned a value, is by default assigned the value O.
Each following enum_item, if not explicitly assigned a value, is assigned a value of the previous
enum_item + 1.

If a base type (data_type) is specified, enum_item values are limited to the set of valid values of the
base type. It shall be an error to explicitly assign a value which does not belong to the base type (for
example, if the base type is unsigned, it shall be an error to assign a negative value). It shall also be
an error to declare an enum_item without an explicit value if the previous enum_item has been
assigned the greatest possible value of the base type (for example, if the base type is bit[2], declar-
ing an item without an explicit value is illegal if the previous item has the value 3).

enum_item values need not be contiguous, nor need they be in ascending arithmetic order. An
enum_item may be assigned a negative value (unless the base type is unsigned).

Each enum_item must have a distinct integer value. No two enum_items may have the same value.
Enumeration types may be extended with the extend statement. See 19.2, particularly 19.2.4.

enum_item identifiers must be unique in the scope of the enumeration type across its initial defini-
tion and extensions, if any. However, they need not be unique across different enumeration types
declared in the same namespace.

enum_items can be referenced using their qualified name in the form “enum-type-
name: :enum-item-name”.

In expression contexts where the expected type is an enumeration type, enum_items of that type can
be referenced without qualification (see 8.4.3 for the definition of the expected type in expression
contexts).

An enum_declaration may contain an empty set of enum_items, and then have enum_items added in
extensions. It shall be illegal to declare an enumeration variable whose type contains no enum_items
across its initial definition and extensions.

When not initialized, the default value of an enum field shall be the first enum_item in the list. This
is not necessarily the value O nor the enum_item with the minimum value.
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Like numeric types, an enumeration type can be restricted to a range of values specified by a
domain_open_range_list (see 7.2.1 and 7.2.2). The domain specification cannot be specified in the
enum_declaration itself. See examples of use in 7.5.2.

An enum attribute or enum_item may be used to assign values to an attribute of the same enumeration type
or in an equality comparison.

An enum attribute or enum_item of one enumeration type may be cast to another enumeration type using the
cast operator (see 7.12). An enum attribute or enum_item may be cast to integer and Boolean data types
using the cast operator. Similarly, an integer or Boolean value may be explicitly cast to an enumeration type.

7.5.2 Examples

Examples of enum usage are shown in Example 5.

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20, MODE_C=35, MODE_D=40};

component uart _c {
action configure {
rand config_modes_e mode;
constraint {mode != UNKNOWN;}
}
}:

Example 5—enum data type

See an example of extending an enumeration in 19.2.4.

Examples of domain specifications for enumeration types are shown below:

Declare an enum of type config_modes_e with values MODE_A, MODE_B, or MODE_C.
rand config_modes_e in [MODE_A._MODE_C] mode_ac;

Declare an enum of type config_modes_e with values MODE_A or MODE_C.
rand config_modes_e in [MODE_A, MODE_C] mode_ac;

Declare an enum of type config_modes_e with values UNKNOWN, MODE_A, or MODE_B.
rand config_modes_e in [..MODE_B] mode_ub;

Declare an enum of type config_modes_e with values MODE_B, MODE_C, or MODE_D.
rand config_modes_e in [MODE_B..] mode_bd;

Note that an open_range_list of enums may be used in set membership (in) expressions (see 8.5.9) and as a
match_choice expression in match statements (see 12.4.6 and 21.7.10).
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7.6 Strings

The PSS language supports a built-in string type with the type name string. When not initialized, the default
value of a string shall be the empty string literal (*"*").

7.6.1 Syntax

string_type ::= string [ in [ string_literal { , string_literal } ] ]
Syntax 12—string declaration

Comma-separated domain specifications are allowed for string data types (see 7.2.1).
7.6.2 Examples

The value of a random string-type field can be constrained with equality constraints and can be compared
using equality operators, as shown in Example 6.

struct string_s {
rand bit a;
rand string S;

constraint {

if (a==1) {
s == "FO0";
} else {
s == "BAR";
}

}
}

Example 6—String data type

Declare string with values ""Hel 10", ""Hal 10", or "'"Ni Hao".
rand string in ["Hello", "Hallo"™, "Ni Hao"] hello_s;

Note that an open_range_list, composed solely of individual string literals, may also be used in set
membership (in) expressions (see 8.5.9) and as a match_choice expression in match statements (see 12.4.6
and 21.7.10). Ranges of string literals (e.g., "'a'" . . ""b"") are not permitted.

7.7 Chandles

The chandle type (pronounced “see-handle”) represents an opaque handle to a foreign language pointer as
shown in Syntax 13. A chandle is used with the foreign procedural interface (see 21.4) to store foreign
language pointers in the PSS model and pass them to foreign language functions. See Annex D for more
information about the foreign procedural interface.

A chandle has the following restrictions:
—  The rand qualifier may not be applied to it.
—  The only logical operators it may be used with are == and =.
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—  The only literal value with which it may be compared is O, which is equivalent to a null handle in the
foreign language.

When not initialized, the default value of a chandle shall be O.

7.7.1 Syntax

chandle_type ::=chandle

Syntax 13—chandle declaration

7.7.2 Example

Example 7 shows a struct containing a chandle field that is initialized by the return of a foreign language
function.

function chandle do_init();

struct info_s {
chandle ptr;

exec pre_solve {
ptr = do_init(Q);
}
}

Example 7—chandle data type
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7.8 Structs
A struct type is an aggregate of data items, as shown in Syntax 14.

7.8.1 Syntax

struct_declaration ::= struct_kind struct_identifier [ template param decl list ]
[ struct_super_spec ] { { struct_body item } }

struct_kind ::=
struct
| object kind
object kind ::=
buffer
| stream
| state
| resource
struct_super_spec ::= : type_identifier
struct_body item ::=
constraint_declaration
| attr field
| typedef declaration
| exec_block stmt
| attr_group
| compile_assert_stmt
| covergroup declaration
| covergroup instantiation
| struct_body compile if

| stmt_terminator

Syntax 14—struct declaration

A struct is a plain-data type (see 7.1). That is, a struct may contain scalar data items and aggregates thereof.
A struct declaration may specify a struct_super_spec, a previously defined struct type from which the new
type inherits its members, by using a colon (%), as in C++. In addition, structs may

— include constraints (see 16.1) and covergroups (see 18.1 and 18.2);
— include exec blocks of any kind other than init_down, init_up, and body (see 21.1).

Data items in a struct shall be of plain-data types (whether randomizable or not). Declarations of
randomizable data items may optionally include the rand keyword to indicate that the element shall be
randomized when the overall struct is randomized (see Example 8). 16.4.1 describes struct randomization
in detail.
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7.8.2 Examples

A struct example is shown in Example 8.

struct axi4_trans_req {
rand bit[31:0] axi_addr;
rand bit[31:0] axi_write_data;
bit is_write;
rand bit[3:0] prot;
rand bit[1:0] sema4;

Example 8—Struct with rand qualifiers

7.9 Collections

Collection types are built-in data types. PSS supports fixed-size array and variable-size list, map, and set
collections of plain-data types (see 7.1). Each kind of collection has its own keyword, and its declaration
specifies the data type of the collection elements (and for maps, also the data type of the key).

PSS also has limited support for fixed-sized arrays of action handles, components, and flow and resource
object references, as described in 7.9.2. These are not considered plain-data types. All other collections are

plain-data types.

7.9.1 Syntax

collection_type ::=
array < data_type , array_size expression >
| list < data_type >
| map < data type , data type >
| set < data_type >
array size expression ::= constant expression
Syntax 15—Collection data types

In an array, each element is initialized to the default initial value of the element type, unless the array
declaration contains an initialization assignment. A list, map or set is initialized as an empty collection
unless the declaration contains an initialization assignment. A collection that is empty is as if it was assigned
an empty aggregate literal ({}). See 4.8 for more information on literal syntax and semantics used to
initialize collection types.

Collections store both scalar and aggregate elements by value. This means that an element’s value is
captured when it is added or assigned to a collection. Modifying the value of an element in a collection does
not modify the element originally added to the collection. In the example below, V1, a struct with two
integer values, is assigned as the first element of my__list. Modifying a in that element does not modify
V1. (See 7.9.3 for more details on list operators and methods.)
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struct my_sl1 {
int a, b;

}

struct my_s2 {
list<my_s1> my_ list;

exec pre_solve {
my sl vl = {.a=1,_b=2};
my_list.push_back(vl);
my_list[0].a = 10; // my_list == {{.a=10, .b=2}}, vl == {.a=1, .b=2}
¥
¥

Example 9—Modifying collection contents

Collection variables can be operated on with built-in operators using standard operator symbols (e.g., [], =,
==, etc.) or with built-in methods using a method name and an argument list in parentheses.

Operators and methods that modify the contents of a collection shall not be used in activities, constraints, or
covergroups. These are allowed only in exec blocks (see 21.1) and native functions (see 21.3). Operators

and methods that do not modify collection contents may be used in activities, constraints, and covergroups.

Arrays and lists of randomizable types are randomizable. Maps and sets are non-randomizable. It is legal to
have a rand struct field that contains non-randomizable collection types.

Collection types may be nested to describe more complex collections.

struct my_s {
list<map<string, int>> m_list_of_maps;
map<string, list<int>> m_map_of_lists;

}

Example 10—Nested collection types

7.9.2 Arrays

PSS supports fixed-sized arrays of plain-data types. Arrays may be declared with two different syntaxes, the
classical syntax where arrays are declared by adding square brackets with the array size
([ constant_expression ]) after the array name, referred to as the square array syntax, and the syntax that is
aligned to the other collection types, using angle brackets, referred to as the template array syntax.

int my_int_arrl[20]; // Square array declaration syntax
array<int,20> my_int_arr2; // Template array declaration syntax

Example 11—Array declarations

The same operators and methods may be applied to arrays declared using both syntaxes. However, the
template array syntax may be used where a data_type is required, enabling such capabilities as use as a
function return type, nested array types, and more.
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An array with N elements, is ordered, with the first element accessed using O as an index value with the []
operator, and the last element accessed using N-1 as an index value.

The square array syntax can also be used to declare fixed-size arrays of action handles, components, and
flow and resource object references. Individual elements of such arrays may be accessed using the []
operator. However, other operators and methods do not apply to these arrays, unless otherwise specified.
Action handle arrays are described in 12.3.1.1 and 12.3.2, component arrays are described in 9.4, and object
reference arrays are described in 13.4 and 14.2. Note that the elements of action handle arrays and object
reference arrays have reference semantics (see 7.10).

7.9.2.1 Array operators

The following operators are defined for arrays:
Index operator []

Used to access a specific element of an array, given an index into the array. The index shall be an integral
value. See 8.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the array-type expression on the RHS and assigns it to the array on the LHS. See 8.3 for
more information on the assignment operator.

Equality operator ==

Evaluates to true if all elements with corresponding indexes are equal. Two arrays of different element types
or different sizes are incomparable. See 8.5.3 for more information on the equality operator.

Inequality operator !=

Evaluates to true if not all elements with corresponding indexes are equal. Two arrays of different element
types or different sizes are incomparable. See 8.5.3 for more information on the inequality operator.

Set membership operator in

The set membership operator can be applied to an array to check whether a specific element is currently
within the array. It evaluates to true if the element specified on the left of the operator exists in the array
collection on the right of the operator. The type of the element shall be the same as the array’s element data
type. See 8.5.9 for more information on the set membership operator.

foreach statement

The foreach statement can be applied to an array to iterate over the array elements within an activity, a
constraint or native exec code. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the
foreach statements in these contexts.
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7.9.2.2 Array methods
The following methods are defined for arrays:
function int size();

Returns the number of elements in the array. Since arrays have fixed sizes, the returned value is considered a
constant expression. This function can also be used with arrays of action handles, components, and flow
and resource object references.

function <data_type> sum();
Returns the sum of all elements currently stored in the array. This function can only be used on arrays of a
numeric data type (int, bit, or floating-point type). The method can be used in a constraint to constrain an

array of random int or bit elements to have a sum of a certain value.

The return type of this function is dependent on the type of the data element:

Table 6—Return type of sum() function

Data type Return type
int, bit int
float32, float64 float64

Other (e.g., string, struct) | Not applicable

function list<data_type> to_list();

Returns a list containing the elements of the array. The list’s element data type is the same as the data type
of the array elements. The list elements are ordered in the same order as the array.

function set<data_type> to_set();

Returns a set containing the elements of the array. Each element value will appear once. The set’s element
data type is the same as the data type of the array elements. The set is unordered.

7.9.2.3 Examples

Examples of fixed-size array declarations are shown in Example 12.

int fixed_sized_arr [16]; // array of 16 signed integers
array<bit[7:0],256> byte_arr; // array of 256 bytes
array<route, 8> east_routes; // array of 8 route structs

Example 12—Fixed-size arrays

In Example 12, individual elements of the east_routes array are accessed using the index operator [],
i.e., east_routes[0], east_routes[1].....
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The following example shows use of array operators and methods. In this example, action type A is traversed
six times, once for each element in Foo_arr, and once more since Foo_arr[0] is greater than 3.

component pss_top {
array<bit[15:0],5> foo_arr;
set <bit[15:0]> foo_set;

exec init_up {

foo_arr = {1, 2, 3, 4, 4}; // Array initialization assignment
foo_arr[0] = 5; // Use of [] to select an array element
foo_set = foo_arr.to_set(); // Use of to_set() method

}

action A{ rand bit[15:0] x; }

action B{}

action C{}

action traverse_array_a {

// foo_arr has 5 elements and foo_set has 4
rand int in [1..] vy;
constraint y < comp.foo_arr.size(); // Use of size() method in constraint

activity {
foreach (elem: comp.foo_arr) // "foreach" used on an array
do A with { x == elem; };

it (comp.foo_arr[0] > 3)

do A;

else if (4 in comp.foo_arr) // Use of "in" operator
do B;

else if (comp.foo_arr.size() < 4) // Use of size() method
do C;

Example 13—Array operators and methods

7.9.2.4 Array properties

Arrays provide the properties Size and sum, which may be used in expressions. These properties are
deprecated and have matching methods that should be used instead. They are used as follows:
int data[4];

... data.size ... // same as data.size()
... data.sum ... // same as data.sum()
7.9.3 Lists

The list collection type is used to declare a variable-sized ordered list of elements. Using an index, an
element in the list can be assigned or used in an expression. A list with N elements, is ordered, with the first
element accessed using O as an index value with the [] operator, and the last element accessed using N-1 as
an index value.
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A list is initialized as an empty collection unless the declaration contains an initialization assignment. A list
that is empty is as if it was assigned an empty aggregate literal ({}). List elements can be added or removed
in exec blocks; therefore the size of a list is not fixed like an array.

A list declaration consists of the keyword list, followed by the data type of the list elements between angle
brackets, followed by the name(s) of the list(s).

struct my_s {
list<int> my_list;

}

Example 14—Declaring a list in a struct

7.9.3.1 List operators

The following operators are defined for lists:
Index operator []

Used to access a specific element of a list, given an index into the list. The index shall be an integral value.
See 8.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the list-type expression on the RHS and assigns it to the list on the LHS. See 8.3 for more
information on the assignment operator.

Equality operator ==

Evaluates to true if the two lists are the same size and all elements with corresponding indexes are equal.
Two lists of different element types are incomparable. See 8.5.3 for more information on the equality
operator.

Inequality operator 1=

Evaluates to true if the two lists are not the same size or not all elements with corresponding indexes are
equal. Two lists of different element types are incomparable. See 8.5.3 for more information on the
inequality operator.

Set membership operator in

The set membership operator can be applied to a list to check whether a specific element is currently in the
list. It evaluates to true if the element specified on the left of the operator exists in the list collection on the
right of the operator. The type of the element shall be the same as the list’s element data type. See 8.5.9 for
more information on the set membership operator.

foreach statement

The foreach statement can be applied to a list to iterate over the list elements within an activity, a constraint
or native exec code. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the foreach
statements in these contexts.
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7.9.3.2 List methods

The following methods are defined for lists:
function int size();

Returns the number of elements in the list.
function void clear();

Removes all elements from the list.
function data_type delete(int index);

Removes an element at the specified index of type integer and returns the element value. The return value
data type is the same as the data type of the list elements. If the index is out of bounds, the operation is
illegal.

function void insert(int index, data_type element);

Adds an element to the list at the specified index of type integer. If the index is equal to the size of the list,
insert is equivalent to push_back(). If the index is less than the size of the list, then elements at and beyond
the index are moved by one. If the index is greater than the size of the list, the operation is illegal. The
inserted element’s data type shall be the same as the data type of the list elements.

function data_type pop_front();

Removes the first element of the list and returns the element value. This is equivalent to delete(0).
function void push_front(data_type element);

Inserts an element at the beginning of the list. This is equivalent to insert(0, element).

function data_type pop_back();

Removes the last element of the list and returns the element value. This is equivalent to delete(size()-1).
function void push_back(data_type element);

Appends an element to the end of the list. This is equivalent to insert(size(), element).

function set<data_type> to_set();

Returns a set containing the elements of the list. Each element value will appear once. The Set’s element
data type is the same as the data type of the list elements. The set is unordered.

function void shuffle();

Randomly reorders the elements in the list.
7.9.3.3 Examples
The following example shows use of list operators and methods. In this example, an action of type B will be

traversed six times. There are six elements in Foo_list3, foo list2[0] is 1 and 4 is in
comp.foo_listl. Action A and action C are never traversed.
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component pss_top {
list<bit[15:0]> foo_listl, foo_list2;

exec init_up {
foo_listl = {1, 2, 3, 4}; // List initialization with aggregate literal
foo_list2_push_back(1); // List initialization with push_back
foo_list2._push_back(4);

}

action A{}
action B{}
action C{}

action traverse_list_a {
list <bit[15:0]> foo_list3;
bit[15:0] deleted;

exec pre_solve {

foo_list3 = pss_top.foo_listl; // foo_list3 = {1, 2, 3, 4}
foo_list3.push_front(0); // foo list3 = {0, 1, 2, 3, 4}
foo_list3.push_back(5); // foo_list3 = {0, 1, 2, 3, 4, 5}
foo_list3.insert(0, 1); // foo_list3 = {1, 0, 1, 2, 3, 4, 5}
foo_list3[0] = 6; // foo_list3 = {6, 0, 1, 2, 3, 4, 5}
deleted = foo_list3.delete(0); // foo_list3 = {0, 1, 2, 3, 4, 5}
}
activity {
if (comp.foo_listl == comp.foo_list2) // Use of == operator on list
do A;
else foreach (e: foo_list3) // Use of "foreach”™ on list
it (comp.foo_list2[0] > 3) // Use of [] operator on list
do A;
else if (4 in comp.foo_listl) // Use of "in" operator on list
do B;
else
do C;
}
exec post_solve {
foo_list3.clear(); // foo_list3 = {}

}
}

}

Example 15—List operators and methods

7.9.3.4 List randomization

When the context containing the list attribute is randomized, the elements of the list are randomized.
Random-size lists are not supported. Consequently, it is illegal to place a constraint on the Size () method
of a list outside an iterative constraint on the same list. The list size is considered to be an invariant inside an
iterative constraint. Consequently, the Size() method may be referenced in constraints within an iterative
constraint. Example 16 shows declaration of a list with bit-type elements and illustrates valid and invalid
constraints on the size () method.
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struct S {
rand list<bit[8]> Ist;

exec pre_solve { // Initialize the list
repeat (100) {
Ist.push_back(0);
}
}

constraint {
Ist._size() in [4..100]; // Error: illegal constraint on size()
foreach (Ist[i]) {
Ist[i] == i+lIst.size(); // OK: size() is an invariant in foreach
}
}
}

Example 16—List randomization

7.9.4 Maps

The map collection type is used to declare a variable-sized associative array that associates a key with an
element (or value). The keys serve as indexes into the map collection. Using a key, an element in the map
can be assigned or used in an expression. A map is unordered.

A map is initialized as an empty collection unless the declaration contains an initialization assignment. A
map that is empty is as if it was assigned an empty aggregate literal ({}). Map elements can be added or
removed within exec blocks.

A map declaration consists of the keyword map, followed by the data type of the map keys and the data
type of map elements, between angle brackets, followed by the name(s) of the map(s). Both keys and
element values may be of any plain-data type. Maps are non-randomizable.

struct my_s {
map<int, string> my_map;

}

Example 17—Declaring a map in a struct

7.9.4.1 Map operators

The following operators are defined for maps:
Index operator []

Used to access a specific element of a map, given a key of the specified data type. When used on the LHS in
an assignment, the index operator sets the element value associated with the specified key. If the key already
exists, the current value associated with the key is replaced with the value of the expression on the RHS. If
the key does not exist, then a new key is added to the map collection and the value of the expression on the
RHS is assigned to the new key’s associated map entry. Use of a key that does not exist in the map to
reference an element in the map is illegal. See 8.6.2 for more information on the index operator.
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Assignment operator =

Creates a copy of the map-type expression on the RHS and assigns it to the map on the LHS. If the same key
appears more than once in the expression on the RHS, the last value specified is used. See 8.3 for more
information on the assignment operator.

Equality operator ==

Evaluates to true if the two maps are the same size, have the same set of keys, and all elements with
corresponding keys are equal. Two maps of different key or element types are incomparable. See 8.5.3 for
more information on the equality operator.

Inequality operator !=

Evaluates to true if the two maps are not the same size, do not have the same set of keys, or not all elements
with corresponding keys are equal. Two maps of different key or element types are incomparable. See 8.5.3
for more information on the inequality operator.

foreach statement

The foreach statement can be applied to a map to iterate over the map elements within an activity, a
constraint or native exec code. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the
foreach statements in these contexts.

The set membership operator (in) cannot be applied directly to a map. However, it may be applied to the set
of keys or the list of values produced by the keys() and values() methods, respectively, described below.

7.9.4.2 Map methods

The following methods are defined for maps:
function int size();

Returns the number of elements in the map.
function void clear();

Removes all elements from the map.
function data_type delete(data_type key);

Removes the element associated with the specified key from the map and returns the element value. The
return value data type is the same as the data type of the map elements. The key argument shall have the
same type as specified in the map declaration. If the specified key does not exist in the map, the operation is
illegal.

function void insert(data_type key, data_type value);

Adds the specified key/value pair to the map. If the key currently exists in the map, then the current value is
replaced with the new value. The arguments shall have the same types as specified in the map declaration.

function set<data_type> keys();

Returns a set containing the map keys. The set’s element data type is the same as the data type of the map
keys. Since each key is unique and no order is defined on the keys, the method returns a set collection.
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function list<data_type> values();

Returns a list containing the map element values. The list’s element data type is the same as the data type of
the map elements. Since element values may not be unique, the method returns a list collection. However,
the order of the list elements is unspecified.

7.9.4.3 Example
The following example shows use of map operators and methods. In this example, an action of type B will

be traversed four times: Foo _mapl is not equal to foo _map2, Foo _map3 has four elements,
foo_map2[a'] is 1 which is not greater than 3, and *'b"" exists in Foo_map1l.
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component pss_top {
list<bit[15:0]> foo_listl;

exec init_up {
foo_mapl = {"a":1,"b":2,"c":3,"d":4};

foo_map2["a'] 1;
foo_map2["b*] 4;
foo_listl = foo_mapl.values();

}

action A{}
action B{}
action C{}

action traverse_map_a {
rand int lower_size;
map <string, bit[15:0]> foo_map3;
set <string> foo_setl;

exec pre_solve {
foo_map3.insert('z",0); // foo_map3
foo_map3.insert('d"”,5); // foo_map3

foo_map3.delete(**d”); // foo_map3
foo_setl = foo_map3.keys();

else foreach (foo_map3.valuesQI[i])

if (comp.foo_map2["a"] > 3)
do A;

map<string, bit[15:0]> foo_mapl, foo_map2;

foreach (foo_map2[i]) foo_listl.push_back(foo_map2[i]);

foo_map3 = pss_top.foo_mapl; // foo_|

¥
constraint lower_size < comp.foo_map3.
activity {
if (comp.foo_mapl == comp.foo_map2)
do A;

else if ("b" in comp.foo_mapl.keys()) // Check whether a key

// Map initialization
// with key/value literal

map3 = {"a":1,"b":2,"c":3,"d":4}
= {"a":1,"b":2,"c":3,"d":4,"z":0}
= {"a":1,"b":2,"c":3,"d":5,"z":0}
= {"a":1,"b":2,"c":3,"z":0}

size() + comp.foo_listl.size();
// Use of == operator on maps
// Use of "foreach”™ on a map

// converted to a list of values
// Usage of operator[] on a map

// is iIn the map

do B;
else

do C;

}

}
}
Example 18—Map operators and methods
7.9.5 Sets

The set collection type is used to declare a variable-sized unordered set of unique elements of plain-data
type. Sets can be created, modified, and queried using the operators and methods described below.

A set is initialized as an empty collection unless the declaration contains an initialization assignment. A set
that is empty is as if it was assigned an empty aggregate literal ({}). Set elements can be added or removed
within exec blocks; therefore the size of a list is not fixed like an array.
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A set declaration consists of the keyword set, followed by the data type of the set elements between angle
brackets, followed by the name(s) of the set(s). Sets are non-randomizable.

struct my_s {
set<int> my_set;

}

Example 19—Declaring a set in a struct

7.9.5.1 Set operators

The following operators are defined for sets:
Assignment operator =

Creates a copy of the set-type expression on the RHS and assigns it to the set on the LHS. The same value
may appear more than once in the expression on the RHS, but it will appear only once in the set. See 8.3 for
more information on the assignment operator.

Equality operator ==

Evaluates to true if the two Sets have exactly the same elements. Note that sets are unordered. Two sets of
different element types are incomparable. See 8.5.3 for more information on the equality operator.

Inequality operator !=

Evaluates to true if the two sets do not have exactly the same elements. Two sets of different element types
are incomparable. See 8.5.3 for more information on the inequality operator.

Set membership operator in

The set membership operator can be applied to a set to check whether a specific element is currently within
the set. It evaluates to true if the element specified on the left of the operator exists in the set collection on
the right of the operator. The type of the element shall be the same as the set’s element data type. See 8.5.9
for more information on the set membership operator.

foreach statement

The foreach statement can be applied to a set to iterate over the set elements within an activity, a constraint
or native exec code. When applied to a set, the foreach statement shall specify an iterator variable and shall
not specify an index variable. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the
foreach statements in these contexts.

7.9.5.2 Set methods

The following methods are defined for sets:
function int size();

Returns the number of elements in the set.
function void clear();

Removes all elements from the set.
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function void delete(data_type element);

Removes the specified element from the set. The element argument data type shall be the same as the data
type of the set elements. If the element does not exist in the Set, the operation is illegal.

function void insert(data_type element);

Adds the specified element to the set. The inserted element’s data type shall be the same as the data type of
the set elements. If the element already exists in the set, the method shall have no effect.

function list<data_type> to_list();

Returns a list containing the elements of the set in an arbitrary order. The list’s element data type is the same
as the data type of the set elements.

7.9.5.3 Examples
The following example shows use of set operators and methods. In this example, A is traversed two times

and B is traversed three times: Foo_setl is not equal to Foo_set2, there are five elements in
foo_set3, two of the FOo_set3 elements are in foo_set2, and "'b"" is in foo_setl.
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componen
set <s
list<s

exec 1

fore

}

action
action
action

action
rand
set

fo
fo
fo

t pss_top {
tring> foo_setl, foo_set2;
tring> foo_listl;

nit_up {

set2.insert(a");

set2_insert("'b"™);

listl = foo_setl._to_list();

ach (e:foo_set2) foo_listl.push_back(e);

AL}
B{}

C{rand string character;}

traverse_set_a {
int lower_size;
<string> foo_set3;

list<string> foo_list2;

exec pre_solve {

0_set3 = pss_top.foo_setl;
o_set3.insert("z");
o_set3.insert("e");

foo_set3.delete('d™);
foo_list2 = foo_set3.to_list();
}
constraint lower_size < foo_set3.size() + comp.
activity {
if (comp.foo_setl == comp.foo_set?2) // Use
do A;
else foreach (e:foo_set3) // Use
if (e in comp.foo_set2) // Use
do A;
else if ("b" in comp.foo_setl) // Use
do B;
else
replicate (J:foo_list2.size())
do C with {character == foo_list2[j]:};
}
}

foo_setl = {"a","b","c","d"}; // Set initialization with aggregate literal
foo_
foo_:
foo_

foo_listl.size();

== operator on sets

"foreach”™ on set
[1 operator on set

"in" operator on set

7.10 Referen

PSS supports a limited form of reference types for actions, components, and flow/resource objects, but does
not support references to plain-data types. References in PSS are similar in their semantics to class variables
in such languages as Java and SystemVerilog. Variables of reference types can be assigned and compared
(see more in 8.3

Example 20—Set operators and methods

ce types

and 8.5.3).
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7.10.1 Syntax

reference type ::= ref entity_type_identifier
entity_type_identifier ::=
action_type_identifier
| component_type_identifier
| flow_object type

| resource_object_type

null_ref ::= null

Syntax 16—ref declaration

The following also apply:

a)

b)

d)

The ref modifier can be used in the declaration of local variables, fields of components, function
parameters, and function return values. The ref modifier shall not be used in the declaration of fields
in the scope of actions, flow/resource objects, and structs. Nor shall it be used to declare static con-
stants or the key or element type in collections.

Fields and instance functions can be accessed through a reference expression in the same way as
through an instance path, using the dot (“.”) operator.

An expression of reference type may evaluate to the special value null, indicating that it does not
reference any entity. It shall be an error to access members of an entity through a null reference. See
also 8.3 and 8.5.3.

When not initialized, the default value of a reference variable is null.

Note that PSS supports special reference fields that are automatically resolved as part of the solving process.
They are:

The context component reference comp (see 9.5)
Action handles to sub-actions within compound actions (see 12.3.1.1)

The previous state reference prev (see 13.3.1)
Input and output reference fields of actions (see 13.4)

Resource claim reference fields (see 14.2)
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7.10.2 Examples

Example 21 demonstrates the use of a reference as a local variable and as a return type of a function. In the
body of action call_fo0, a reference to A is stored in a local variable, and then used to call function
Too(). In addition, a reference to A is returned from function choose_A(), and it is used in turn to call
Too() on the chosen instance of A.

component A {
function void foo();

}:

component B {
A a_arr[5];

function ref A choose A(int code) {
return a_arr[code % 5];

}
action call_foo {
exec body {
ref A aref = comp.a_arr[3];
aref.foo();

comp.choose_A(123) .foo();
e
¥

Example 21—Use of reference as local variable and function return value

In Example 22, a reference field is declared under component my_comp. After the construction of the
component instance tree, the attribute Sibling_size of c2 is equal to 10, having been assigned in the
init_down block through the sibling reference field. However, the attribute sibling_size of cl is
still equal to its default value 0, because for c1, reference field sibl ing was not initialized, and therefore
cl._siblingis equal to null.

component my_comp {
ref my_comp sibling;
int size, sibling_size;

exec init_down {
it (sibling '= null) {
sibling_size = sibling.size;
}
¥
}:

component pss_top {
my_comp cl, c2;
exec init_down {
cl.size = 10;
c2.sibling = c1;
}
};

Example 22—Use of reference field and null value
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7.11 User-defined data types

The typedef statement declares a user-defined type name in terms of an existing data type, as shown in
Syntax 17.

7.11.1 Syntax

typedef declaration ::= typedef data type identifier ;

Syntax 17—User-defined type declaration

7.11.2 Examples

A typedef example is shown in Example 23.

typedef bit[31:0] uint32_t;
Example 23—typedef

7.12 Data type conversion

Expressions of types int, bit, bool, enum, or floating-point type can be changed to another type in this list
by using a cast operator. In addition, an expression of a reference type can be changed to a compatible
reference type.

7.12.1 Syntax

Syntax 18 defines the cast operator.

cast_expression ::= ( casting_type ) expression
casting_type ::=
integer type
| bool type
| enum_type
| float_type
| reference_type

| type_identifier

Syntax 18—cast operation

In a cast_expression, the expression to be cast shall be preceded by the casting data type enclosed in
parentheses. The cast shall return the value of the expression represented as the casting_type. A
type_identifier specified as a casting_type shall refer to a numeric, Boolean, enumeration, or reference type.

The following also apply:

a) A numeric, Boolean, or enumeration value can only be cast to another numeric, Boolean or enumer-
ation type. A reference value can only be cast to a compatible reference type.
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Any non-zero value cast to a bool type shall evaluate to true. A zero value cast to a bool type shall
evaluate to false. When casting a bool type to another type, false evaluates to O and true evaluates to
1.

When casting a value to a bit type, the casting_type shall include the width specification of the
resulting bit vector. The expression shall be converted to a bit vector of sufficient width to hold the
value of the expression, and then truncated or left-zero-padded as necessary to match the
casting_type.

When casting a value to a user-defined enum type, the value shall correspond to the result of an
implicit cast to the resulting underlying numeric type. When used in a constraint, the domain of a
field of enum type consists of the values of the enum type.

All integer expressions (int and bit types) are type compatible, so an explicit cast is not required
from one to another.

All floating-point expressions (float32 and float64 types) are type compatible, so an explicit cast is
not required from one to another.

Floating-point expressions are type-compatible with integer expressions, so an explicit cast is not
required from one to another. Conversion from floating-point to integer is performed by truncating
the fractional part of the floating-point expression.

A reference value cast to a (direct or indirect) supertype reference or to its own reference type
(upcast) shall evaluate to the same reference. An explicit cast is not required in this case; an upcast is
implicit.

A reference value cast to a (direct or indirect) subtype reference (downcast) shall evaluate to the
same reference if the dynamic value of the reference belongs to the casting type, and shall evaluate
to null otherwise.
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7.12.2 Examples

Example 24 shows the overlap of possible enum values (from 7.12.1 (d)) when used in constraints.

import std_pkg::*;

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};
enum foo_e {A=10, B, C};
function bit[32] get_cfg_mode() {return 30;}
// a new cfg_mode that has not been added to the enum type yet

action my_a {
config_modes_e top_cfg;
rand config_modes_e cfg;
rand foo_e foo;

constraint cfg == (config_modes_e)11;
// contradiction - no possible value
constraint cfg == (config_modes_e)foo;

// cfg==MODE_A, the only value in the
// numeric domain of both cfg and foo
exec pre_solve {
config_modes_e cfg_mode = (config_modes_e)get_cfg_mode();
match (cfg_mode) {
[MODE_A,
MODE_B] : top_cfg = cfg_mode;
[UNKNOWN] : print(*'Unknown configuration mode\n');
default : print("Invalid configuration mode = %d\n",
(int)cfg_mode);

Example 24—Overlap of possible enum values

Example 25 shows the casting of al from the align_e enum type to a 4-bit vector to pass into the
alloc_addr imported function.

package external_fn_pkg {

enum align_e {byte aligned=1, short_aligned=2, word_aligned=4};
function bit[31:0] alloc_addr(bit[31:0] size, bit[3:0] align);
buffer mem_seg_s {

rand bit[31:0] size;

bit[31:0] addr;

align_e al;

exec post_solve {

addr = alloc_addr(size, (bit[3:0])al);

}

¥

}

Example 25—Casting of variable to a bit vector
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Example 26 shows reference type casting on the comp field of an action.

component C {
action A {}
3
component sub_C: C {
int a = 17;
3
extend action C::A {
int b;
exec post_solve {
it ((ref sub_C)comp != null) {
b = ((ref sub_C)comp).a;
3
}
by

Example 26—Casting of reference type
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8. Operators and expressions

This section describes the operators and operands available in PSS and how to use them to form expressions.
An expression is a construct that can be evaluated to determine a specific value. Expressions may be
primary expressions, consisting of a single term, or compound expressions, combining operators with sub-

expressions as their operands.

The various types of primary expressions are specified in 8.6.

8.1 Syntax

expression ::=
primary
| unary operator primary
| expression binary operator expression
| conditional expression

| in_expression

unary operator ::==-|!|~|&|||"
binary operator ::=*|/| % |+ |-|<<|>>|==|!=|<|<=|>|>=|||| && ||| | & | **
assign op n==|+=|-=| <<= | >>=||=| &=
primary ::=
number

| aggregate literal

| bool literal

| string_literal

| null ref

| paren_expr

| cast_expression

| ref path

| compile has expr

paren_expr ::= ( expression )

cast_expression ::= ( casting_type ) expression

Syntax 19—Expressions and operators

8.2 Constant expressions

Some constructs require an expression to be a constant expression. The operands of a constant expression
consist of numeric and string literals, aggregate literals with constant values, named constants (e.g., static
const, template parameters), bit-selects and part-selects of named constants, enum items, and calls of pure
functions with constant arguments.
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8.3 Assignment operators
The assignment operators defined by the PSS language are listed in the table below.

Table 7—Assignment operators and data types

Operator token Operator name Operand data types
= Binary assignment operator Any plain-data type or reference type
+= -= Binary arithmetic assignment operators | Numeric
&= I= Binary bitwise assignment operators Integer
>>= <<= Binary shift assignment operators Integer

The assignment (=) operator is used in the context of attribute initializers and procedural statements.

The arithmetic assignment (+=, —=), shift assignment (<<=, >>=), and bitwise assignment (]=, &=)
operators are used in the context of procedural statements. These compound assignment operators are
equivalent to assigning to the left-hand operand the result of applying the leading operator to the left-hand
and right-hand operands. For example, a <<= b isequivalenttoa = a << b.

While these operators may not be used as a part of an expression, they are documented here for consistency.

The type of the right-hand side of an assignment shall be assignment-compatible with the type of the left-
hand side. In an aggregate assignment, assignment is performed element by element. In an assignment of a
fixed-size array, the left-hand and right-hand sides of the assignment shall have the same size.

In assignment of struct types, the right-hand side shall be of the same type as the left-hand side or a derived
type thereof. When the left-hand side of an assignment is of struct type and the right-hand side is of a type
that inherits from the type of the left-hand side, the elements present in the left-hand type are assigned
element-by-element while elements only present in the right-hand type are ignored.

In assignment of reference types, the right-hand side shall be one of the following:
— A reference expression of the same type as the left-hand side or a derived type of it
— An instance path to a component of the same type as the left-hand side or a derived type of it
—  The value null

Following the assignment of a reference, the left-hand side variable shall point to (be an alias to) the same
entity (component, action, flow/resource object) referred to by the right-hand side (or have the value null in
case the right-hand side evaluates to null).

Copyright © 2023 Accellera. All rights reserved.
86



Portable Test and Stimulus Standard 2.1 — October 2023

8.4 Expression operators

The expression operators defined by the PSS language are listed in the table below.

Table 8—Expression operators and data types

Operator token Operator name Operand data types Result data type

?: Conditional operator Any plain-data type or Same as operands
reference type
(condition is Boolean)
- Unary arithmetic negation operator Numeric Same as operand
~ Unary bitwise negation operator Integer Same as operand
1 Unary Boolean negation operator Boolean Boolean
& | Unary bitwise reduction operators Integer 1-bit
+ - * /f ** Binary arithmetic operators Numeric Numeric
% Binary modulus operator Integer Integer
& | ~ Binary bitwise operators Integer Integer
>> << Binary shift operators Integer Integer
&& |1 Binary Boolean logical operators Boolean Boolean
< <= > >= Binary relational operators Numeric Boolean
= 1= Binary logical equality operators Any plain-data type or Boolean
reference type
cast Data type conversion operator Numeric, Boolean, Casting type
enum
in Binary set membership operator Any plain-data type Boolean
[expression] Index operator Array, list, map Same as element of
collection
[expression] Bit-select operators Integer Integer
[expression: Part-select operator Integer Integer
expression]

8.4.1 Operator precedence and associativity

Operator precedence and associativity are listed in Table 9. The highest precedence is listed first.

Table 9—Operator precedence and associativity

Operator Associativity Precedence
O o Left 1 (Highest)
cast Right
- ~ & | ”~ (unary)
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Table 9—Operator precedence and associativity (Continued)

Fx Left 3
* /% Left 4
+ - (binary) Left 5
<< >> Left 6
< <= > >= 1in Left 7
= I= Left 8
& (binary) Left 9
~ (binary) Left 10
| (binary) Left 11
&& Left 12
1] Left 13
?: (conditional operator) Right 14 (Lowest)

Operators shown in the same row in the table shall have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is
higher than that of the binary + and — operators.

All operators shall associate left to right with the exception of the conditional (?2) and cast operators, which
shall associate right to left. Associativity refers to the order in which the operators having the same
precedence are evaluated. Thus, in the following example, B is added to A, and then C is subtracted from the
result of A+B.

A+B-2C

When operators differ in precedence, the operators with higher precedence shall associate first. In the
following example, B is divided by C (division has higher precedence than addition), and then the result is
added to A.

A+B/C

Parentheses can be used to change the operator precedence, as shown below.

(A+B)”/7C // not the same as A+ B /7 C
8.4.2 Using aggregate literals in expressions

Aggregate literals (i.e., value list, map, and structure literals, see 4.8) can be used as expression operands.
For example, aggregate literals can be used to initialize the contents of aggregate types as part of a variable
declaration, in constraint contexts, as foreign language function parameters, and as template-type value
parameters. An aggregate literal may not be the target of an assignment.

When the operands of an assignment or equality operator are a structure aggregate literal and a struct-type
variable, any elements not specified by the literal are given the default values of the data type of the element.
When the operands of an assignment or equality operator are a value list literal and an array, the number of
elements in the aggregate literal must be the same as the number of elements in the array.
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In Example 27, a struct type is declared that has four integer fields. A non-random instance of that struct is
created where all field values are explicitly specified. A constraint compares the fields of this struct with an
aggregate literal in which only the first two struct fields are specified explicitly. Because a struct is a fixed-
size data structure, the fields that are not explicitly specified in the aggregate literal are given default values—
in this case 0. Consequently, the constraint holds.

struct s {
int a, b, c, d;
}:
struct t {
s s1 = {.a=1,.b=2,.c=0, .d=0};
constraint sl == {.b=2,.a=1};
}

Example 27—Using a structure literal with an equality operator

When an aggregate literal is used in the context of a variable-sized data type, the aggregate literal specifies
both size and content.

In Example 28, a set variable is compared with an aggregate literal using a constraint. The size of the set
variable is three, since there are three unique values in the initializing literal, while the size of the aggregate
literal in the constraint is two. Consequently, the constraint does not hold.

struct t {

set<int> s = {1, 2, 0, 0};

constraint s == {1, 2}; // False: s has 3 elements, but the literal has 2
}

Example 28—Using an aggregate literal with a set

Values in aggregate literals may be non-constant expressions. Example 29 shows use of a repeat-loop index
variable and a function call in a value list literal.

function int get_val(int idx);
import solve function get_val;
struct S {

list<array<int,2>> pair_I;

exec pre_solve {
repeat(i : 4) {
array<int,2> pair = {i, get_val(i)};
pair_I_push_back(pair);
}
}
}

Example 29—Using non-constant expressions in aggregate literals
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8.4.3 Type inference rules

The expected type of an expression shall be inferred according to the rules below. The expected type is used
in the resolution of unqualified enum_item names (see 7.5) and in the interpretation of aggregate literals (see

8.4.2).

The type of the expression on the left-hand side of an assignment determines the expected type of
the expression on the right-hand side. This includes initialization assignments.

The type of the formal parameter of a function determines the expected type of the respective actual
parameter expression (see 21.2). This is true also for covergroup instantiations (see 18.2).

The return type of a function determines the expected type of the expression in its return statement
(see 21.7.5).

An expression of a known type on the left-hand side of an equality operator (==, 1=) determines the
expected type of the right-hand side (see 8.5.3).

The expected type of a conditional_expression (?:) determines the expected type of the second and
third operands of the expression (see 8.5.8).

The type of the expression on the left-hand side of a set membership (in) operator determines the
expected type of the expressions in the open_range_list, or the elements of the collection_expres-
sion, on the right-hand side (see 8.5.9).

An explicit data type of a coverpoint determines the expected type of the coverpoint expression (see
18.3).

The type (explicit or implicit) of a coverpoint determines the expected type of its bin values (see
18.3.3).

In a cast_expression, the specified target type (casting_type) determines the expected type of the
expression to be cast (see 7.12).

For the purposes of this section, all integer types are considered to be a single type, as all integer expressions
are type compatible, and all floating-point types are considered to be a single type, as all floating-point
expressions are type compatible (see 7.12). See more on the evaluation of numeric expressions in 8.7 and

8.3.

In Example 30, contextual typing is required to interpret structure literals. Based on the type of the left
operand of an equality operator, the structure literal on the right-hand side is interpreted differently in two
different constraints within the same action.
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component my_ip_c {
struct my_struct { rand int a; };
action my _op {
rand my_struct s;
}
}

component pss_top {
my_ip_c my_ip;
struct your_struct { rand int a; };

action test {
rand your_struct s;
constraint s == {.a = 2}; // pss_top::your_struct literal

my_ip_c::my_op op;
constraint op.s == {.a = 3}; // my_ip_c::my_struct literal

activity {
op;
¥
}
}

Example 30—Contextual typing in structure literal interpretation

Example 31 shows two cases of unqualified enum item resolution based on contextual typing—an
assignment and a function call. Note that in calling function print_num(), whose formal parameter is
declared with type int, the identifier ORANGE cannot be resolved, because the expected type is an int. The
enum_item must be qualified in this case.

enum color_e {RED, GREEN, ORANGE};

function void print_color(color_e c);
function void print_num(int n);

component pss_top {
enum fruit_e {APPLE, ORANGE};

exec init_down {

color_e c = ORANGE; // OK — expected type is color_e
print_color(RED); // OK — same as above
print_num((int)ORANGE); // Error — "ORANGE® unresolved -

// no enum type expected here
print_num((int)fruit_e::0RANGE); // OK — qualified reference

Example 31—Contextual typing in enum_item resolution

8.4.4 Operator expression short-circuiting

The logical operators (&&, | |) and the conditional operator (? -) shall use short-circuit evaluation. In other
words, operand expressions that are not required to determine the final value of the operation shall not be
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evaluated. All other operators shall not use short-circuit evaluation. In other words, all of their operand
expressions are always evaluated.

8.5 Operator descriptions

The following sections describe each of the operator categories. The legal operand types for each operator
are listed in Table 8.

8.5.1 Arithmetic operators
The binary arithmetic operators are given in Table 10.

Table 10—Binary arithmetic operators

atb aplusb

a-b a minus b

a*b a multiplied by b (or a times b)

a/b a divided by b

a%b a modulo b

a**p a to the power of b

Integer division shall truncate the fractional part toward zero. The modulus operator (for example, a % b)
gives the remainder when the first operand is divided by the second, and thus zero when b divides a exactly.
The result of a modulus operation shall take the sign of the first operand. Division or modulus by zero shall
be considered illegal.

If either operand of the power operator is of floating-point type, then the result type shall also be of floating-
point type. The result of the power operator is unspecified if the first operand is zero and the second operand

is negative or if the first operand is negative and the second operand is not an integer value.

Table 11—Power operator rules for integers

oplis<-1 oplis -1 oplisO oplisl oplis>1
. " sk op2 is odd —> -1 *%
op2 is positive opl ** op2 op2 is even —> 1 0 1 opl ** op2
op2 is zero 1 1 1 1 1
op2 is negative 0 op2 is odd -> -1 undefined 1 0

op2iseven —> 1

The unary arithmetic negation operator (-) shall take precedence over the binary operators.
8.5.1.1 Arithmetic expressions with unsigned and signed types
bit-type variables are unsigned, while int-type variables are signed.

A value assigned to an unsigned variable shall be treated as an unsigned value. A value assigned to a signed
variable shall be treated as signed. Signed values shall use two’s-complement representation. Conversions
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between signed and unsigned values shall keep the same bit representation. Only the bit interpretation
changes.

8.5.2 Relational operators

Table 12 lists and defines the relational operators. Relational operators may be applied only to numeric
operands.

Table 12—Relational operators

a<b aless than b

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

An expression using these relational operators shall yield the Boolean value true if the specified relation
holds, or the Boolean value false if the specified relation does not hold.

When one or both operands of a relational expression are unsigned, the expression shall be interpreted as a
comparison between unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be
zero-extended to the size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

All the relational operators have the same precedence, and have lower precedence than arithmetic operators.

8.5.3 Equality operators

The equality operators rank lower in precedence than the relational operators. Table 13 defines the equality
operators.

Table 13—Equality operators

a== aequaltob

al=b anotequal tob

Both equality operators have the same precedence. When the operands are numeric, these operators compare
operands bit for bit. As with the relational operators, the result shall be false if the comparison fails and true
if it succeeds.

When one or both operands are unsigned, the expression shall be interpreted as a comparison between
unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the
size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.
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When the operands of an equality operator are of string type, both the sizes and the values of the string
operands are compared.

Aggregate data (Structs and collections) may be compared using equality operators. When the equality
operators are applied to aggregate data, both operands shall be of the same type. Aggregate operands are
compared element-by-element to assess equality.

The following rules apply to comparison of collections:

— It shall be illegal to compare two fixed-size arrays of different sizes. Variable-sized collections of
the same type may be compared, but they shall be considered not equal if they have different sizes.

—  Two fixed-size arrays are considered equal if they have the same elements in the same order.

—  Two lists are considered equal if they have the same size and they have the same elements in the
same order.

— Two maps are considered equal if they have the same size and the same key-value pairs, regardless
of order (maps are unordered).

—  Two sets are considered equal if they have the same size and the same elements, regardless of order
(sets are unordered).

The right-hand side of an equality operator may be an aggregate literal of the same type as the left-hand side.
The left-hand side of an equality operator may not be an aggregate literal. See more details about collections
in 7.9 and about aggregate literals in 4.8 and 8.4.2.

References can be compared with equality operators. The operands may be one of the following:

— Two expressions of the same reference type, or one expression of a reference to a derived type of the
other

—  One expression of a component reference type, and the other an instance path to a component of the
same type, or a derived type of it

— An expression of a reference type and the value null

The expression evaluates to true if both operands refer to the same entity (component, action, flow/resource
object) or if both evaluate to null. Otherwise it evaluates to false. Note that these rules apply to variables
declared with the ref modifier, the built-in comp reference, and other reference fields (see 7.10).

8.5.4 Logical operators

The binary operators logical AND (&&) and logical OR (] |]) are logical connective operators and have a
Boolean result. The precedence of && is greater than that of | |, and both have a lower precedence than the
relational and equality operators.

The unary logical negation operator (1) converts a true operand to false and a false operand to true.

In procedural contexts, the && and | | operators shall use short-circuit evaluation as follows:
—  The first operand expression shall always be evaluated.
—  For &&, if the first operand evaluates to false, then the second operand shall not be evaluated.
— For ]|, if the first operand evaluates to true, then the second operand shall not be evaluated.
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8.5.5 Bitwise operators
The bitwise operators perform bitwise manipulations on the operands. Specifically, the binary bitwise
operators combine a bit in one operand with the corresponding bit in the other operand to calculate one bit

for the result. The following truth tables show the result for each operator and input operands.

Table 14—Bitwise binary AND operator

& 01
0 010
1 0|1

Table 15—Bitwise binary OR operator

0

1

0

1

Table 16—Bitwise binary XOR operator

N

0

1

0

1

1

0

The bitwise unary negation operator (~) negates each bit of a single operand.

Table 17—Bitwise unary negation operator

These operators may be applied only to integer operands.
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8.5.6 Reduction operators

The unary reduction operators perform bitwise operations on a single operand to produce a single-bit result.
The unary AND operator (&) returns 1~ b1 if all the bits of the operand are 1, and returns 1” b0 otherwise.
The unary OR operator (]) returns 1” b1 if any bit of the operand is 1, and returns 1”bO otherwise. The
unary XOR operator (©) returns 1”b1 if an odd number of bits of the operand are 1, and returns 1”b0

otherwise.

These operators may be applied only to integer operands.The table below shows the results of applying the
three reduction operators to four example bit patterns.

Table 18—Results of unary reduction operations

Operand | & | n Comments
4'b0000 0 0 No bits set
4'b1111 1 1 All bits set

o | o | o

4'b0110 0 1 Even number of bits set

4'b1000 0 1 1 0Odd number of bits set

8.5.7 Shift operators

PSS provides two bitwise shift operators: shift-left (<<) and shift-right (>>). The left shift operator shifts
the left operand to the left by the number of bit positions given by the right operand. The vacated bit
positions shall be filled with zeros. The right shift operator shifts the left operand to the right by the number
of bit positions given by the right operand. If the left operand is unsigned or if the left operand has a non-
negative value, the vacated bit positions shall be filled with zeros. If the left operand is signed and has a
negative value, the vacated bit positions shall be filled with ones. The right operand shall be a non-negative
number. These operators may be applied only to integer operands.

8.5.8 Conditional operator
The conditional operator (?:) is right-associative and is composed of three operands separated by two

operators as shown in Syntax 20. The first operand (the cond_predicate) shall be of Boolean type. The
second and third operands shall be of the same type, and may be of any plain-data or reference type.

conditional expression ::= cond predicate ? expression : expression

cond_predicate ::= expression

Syntax 20—Conditional operator

If cond_predicate is true, then the operator evaluates to the first expression without evaluating the second
expression. If false, then the operator evaluates to the second expression without evaluating the first
expression.
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8.5.9 Set membership operator

PSS supports the set membership operator in, as applied to value sets and collection data types. Syntax 21
shows the syntax for the set membership operator.

8.5.9.1 Syntax

in_expression ::=
expression in [ open_range list |
| expression in collection expression
open_range list ::= open_range value { , open_range value }

open_range value ::= expression [ .. expression |

collection_expression ::= expression

Syntax 21—Set membership operator

The set membership operator returns true if the value of the expression on the left-hand side of the in
operator is found in the open_range_list or collection_expression on the right-hand side of the operator, and
false otherwise.

The expression on the left-hand side shall have a self-determined type; in particular, the left-hand side shall
not be an unqualified enum_item (see 7.5) or an aggregate literal (see 4.8). The elements of the right-hand
side of the in operator shall have a type compatible with the expression on the left-hand side.

If the expression on the left-hand side is of a scalar type, the right-hand side may be an open_range_list or a
collection_expression. If the expression on the left-hand side is of a collection type, the right-hand side shall
be a collection_expression.

An open_range_list on the right-hand side of the in operator shall be a comma-separated list of scalar value
expressions or ranges. When specifying a range, the expressions shall be of a numeric or enumeration type.
If the left-hand bound of the range is greater than the right-hand bound of the range, the range is considered
empty. Values can be repeated; therefore, values and value ranges can overlap. The evaluation order of the
expressions and ranges within the open_range_list is nondeterministic.

A collection_expression on the right-hand side of the in operator shall evaluate to an array, list, or set type
that contains elements whose type is compatible with the type of the expression on the left-hand side. For
example, the collection_expression may be a value list_literal or a hierarchical reference to a set. The
collection_expression may also be an array of action handles, components, or flow and resource object
references. In this case, the expression on the left-hand side shall be a corresponding ref type.

8.5.9.2 Examples

Example 32 constrains the addr attribute field to the range 0X0000 to OXFFFF.

constraint addr_c {
addr in [0x0000. .0xFFFF];
}

Example 32—Value range constraint
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In the example below, V is constrained to be in the combined value set of vallues and the values specified
directly in the open_range_list 1, 2. In other words, the value of v will be in [1,2,3,4,5]. The variable
values of type list may not be referenced in an open_range_list.

struct s {
list<int> values = {3, 4, 5};
rand int v;
constraint v in [1,2] || v in values;

Example 33—Set membership in collection

In the example below, V is constrained to be in the range 1, 2, and between a and b. The range a. . b may
overlap with the values 1 and 2.

struct s {
rand int v, a, b;
constraint a < b;
constraint v in [1,2,a..b];

Example 34—Set membership in variable range

8.6 Primary expressions
There are several types of primary expressions (or Simple operands).

The simplest type of primary expression is a reference (simple or hierarchical) to a variable, constant, or
template parameter.

In order to select a single bit of an integer variable or integer named constant (e.g., Static const or template
parameter), a bit-select shall be used. In order to select a bit range of a integer variable or integer named

constant, a part-select shall be used.

A collection variable of plain-data type can be referenced as a primary expression. In order to select an
element within a collection, an index operator shall be used.

A struct variable can be referenced as a primary expression.
A function call is a primary expression.

There are additional types of primary expressions. Formally, an expression is a primary expression if it is a
primary as defined in B.17 and unparenthesized.

8.6.1 Bit-selects and part-selects

Bit-selects select a particular bit from a named integer variable or constant using the syntax
identifier [ expression |

The index may be any integer expression and may be non-constant.

Part-selects select a fixed range of contiguous bits using the syntax
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identifier [ constant_expression : constant_expression |

The value of the first constant_expression shall be greater than or equal to the value of the second
constant_expression.

Bit-selects and part-selects may be used as operands of other operators and as targets of assignments. It shall
be illegal for a bit-select or a part-select to access an out-of-bounds bit index.

8.6.2 Selecting an element from a collection (indexing)

The index operator [] is applied to an array, list, or map collection to select a single element. In the case of
an array or a list, the index shall be an integer expression whose value is between 0 and the size of the
array/list - 1. In the case of a map, the index shall be of the same type as that of the key in the map
declaration.

An indexed collection may be used as an operand of other operators and as a target of assignments.

In the case of an array or a list, it shall be illegal to access an out-of-bounds index. In the case of a map, it
shall be illegal to read an element whose key does not appear in the map. An assignment to a map element
whose key does not currently appear in the map shall add that key and value pair to the map.

8.7 Bit sizes for numeric expressions

The size, in bits, of a numeric expression is determined by the operands involved in the expression and the
context in which the expression appears. Casting can be used to set the size context of an intermediate value
(see 7.12).

8.7.1 Rules for expression bit sizes

A self-determined expression is one where the size of the expression is solely determined by the expression
itself. A context-determined expression is one where the size of the expression is determined both by the
expression itself and by the fact that it is part of another expression. For example, the size of the right-hand
expression of an assignment depends on itself and the size of the left-hand side.

Table 19 shows how the form of an expression determines the sizes of the results of the expression. In
Table 19, 1, j, and K represent operands of an expression, and L (1) represents the size of the operand

represented by 1.

Table 19—Bit sizes resulting from self-determined expressions

Expression Bit size Comments
Unsized constant number At least 32
Sized constant number As specified
i op j,whereopis: max(L(1),L(j))
+ - * / % & | N
op i,whereopis: + - ~ L@)
op i,whereopis: & | ~ 1
i op j,whereopis: >> << *F L() J is self-determined
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Table 19—Bit sizes resulting from self-determined expressions (Continued)

Expression Bit size Comments
i?jJ:-k max(L(j),L(k)) i must be Boolean
cast, where casting_type is an integer type L(casting_type)

8.8 Evaluation rules for numeric expressions

8.8.1 Rules for expression signedness

The following apply when determining the signedness of an expression:

a)
b)
¢)

d)

2

h)

3

Expression signedness depends only on the operands. In an assignment, the signedness does not
depend on the left-hand side.

Unsized unbased decimal and octal numbers are signed. Unsized unbased hexadecimal numbers are
unsighed.

Based numbers are unsigned, except when they are designated as signed with the * S notation (e.g.,
47sd12).

Bit-select results are unsigned, regardless of the operands.

Part-select results are unsigned, regardless of the operands, even if the part-select specifies the entire
width.

Floating-point numbers are signed when converted to integers.

The signedness and size of a self-determined operand are determined by the operand itself, indepen-
dent of the remainder of the expression.

If any context-determined operand of an expression is of floating-point type, the result is of floating-
point type.

If any context-determined operand of an expression is unsigned, the result is unsigned regardless of
the operators.

If all context-determined operands of an expression are signed, the result is signed regardless of the
operators, unless specified otherwise.

8.8.2 Steps for evaluating a numeric expression

The following are the steps for evaluating a numeric expression:

a)
b)

¢)

d)

Determine the expression size based on the expression size rules (see 8.7.1).
Determine the signedness of the expression using the rules described above.

Propagate the signedness and size of the expression to the context-determined operands of the
expression. In general, context-determined operands of an operator shall have the same signedness
and size as the result of the operator. However, there is one exception:

1) Ifthe result type of the operator is floating-point and if it has a context-determined operand that
is not floating-point, that operand shall be treated as if it were self-determined and then
converted to floating-point just before the operator is applied.

When propagation reaches a simple operand (see 8.6), that operand shall be converted to the
propagated signedness and size. If the operand must be size-extended, it shall be sign-extended if the
propagated type is signed and zero-extended if the propagated type is unsigned.

Copyright © 2023 Accellera. All rights reserved.
100



Portable Test and Stimulus Standard 2.1 — October 2023

8.8.3 Steps for evaluating an assignment

The following are the steps for evaluating an assignment when the operands are of numeric type:

a) Determine the size of the right-hand side of the assignment using the size determination rules
described in 8.7.1.

b) If required, extend the size of the right-hand side, using sign extension if the type of the right-hand
side is signed and zero-extension if the type of the right-hand side is unsigned.
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9. Components

Components serve as a mechanism to encapsulate and reuse elements of functionality in a portable stimulus
model. Typically, a model is broken down into parts that correspond to roles played by different actors
during test execution. Components often align with certain structural elements of the system and execution
environment, such as hardware engines, software packages, or testbench agents.

Components are structural entities, defined per type and instantiated under other components (see
Syntax 22). Component instances constitute a hierarchy (tree structure), beginning with the top or root
component, called pss_top by default, which is implicitly instantiated. Each component instance has a
unique hierarchical path name, and may also contain data attributes, but not constraints. Components may
also encapsulate function declarations (see 21.2.1) and imported class instances (see 21.4.2). In addition,
components may be derived from other components via inheritance, or a component may be extended to add
elements to the component type (see Clause 19).

9.1 Syntax

component_declaration ::= [ pure ] component component_identifier [ template_param_decl list ]
[ component_super_spec ] { { component_body item } }

component_super_spec ::= : type_identifier
component_body _item ::=

override declaration

| component_data_declaration

| component_pool_declaration

| action_declaration

| abstract_action_declaration

| object bind stmt

| exec_block

| struct_declaration

| enum_declaration

| covergroup declaration

| function_decl

| import_class_decl

| procedural function

| import_function

| target_template function

| export_action

| typedef declaration

| import_stmt

| extend_stmt

| compile_assert stmt

| attr_group

| component_body compile if

| stmt_terminator

Syntax 22—component declaration
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9.2 Examples

For an example of how to declare a component, see Example 35.

component uart_c { ... };

Example 35—Component

9.3 Components as namespaces

Component types serve as namespaces for their nested types, e.g., action and struct types defined under
them. The fully-qualified name of nested types is of the form *package-namespace: :component-
type: inested-type~. References to nested types in a component shall follow the name resolution
rules defined in 20.3.

For an example of how to use a component as a namespace, see Example 36.

component usb_c {
action write {...}
}
component uart_c {
action write {...}
s
component pss_top {
uart_c si;
usb c s2;
action entry {
uart_c::write wr; //refers to the write action in uart_c

Example 36—Namespace

In Example 37 below, a component C1 is declared in a package. That component is instantiated in
component pss_top, and an action within component C1 is traversed in action pss_top: entry. In
the traversal of action Pz C1: - A, the qualified name elements are the following:

— package-namespace: P
— component-type: C1
— class-type: A
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package P {
component C1 {
action A {}
¥
¥

component pss_top {
P::C1 c1;

action entry {
activity {
do P::Cl::A;
}

Example 37—Component declared in package

9.4 Component instantiation

Components are instantiated under other components as their fields, much like data fields of structs, and
may be arrays thereof.

9.4.1 Semantics

a)  Component fields are non-random; therefore, the rand modifier shall not be used. Component data
fields represent configuration data that is accessed by actions declared in the component. To avoid
infinite component instantiation recursion, a component type and all template specializations thereof
shall not be instantiated under its own sub-tree.

b) In any model, the component instance tree has a predefined root component, called pss_top by
default, but this may be user-defined. There can only be one root component in any valid scenario.

c) Other components are instantiated (directly or indirectly) under the root component. See also
Example 38.

d) Plain-data fields may be initialized using a constant expression in their declaration. Data fields may
also be initialized via an exec init_down or init_up block (see 21.1.2), which overrides the value set
by an initialization assignment. The component tree is elaborated to instantiate each component and
then the exec init_down and init_up blocks are evaluated hierarchically. See also Example 219 and
Example 220 in 21.1.3.

e) Component data fields are considered immutable once construction of the component tree is com-
plete. Actions can read the value of these fields, but cannot modify their value. Component data
fields are accessed from actions relative to the comp field, which is a handle to the component con-
text in which the action is executing. See also Example 221 (and 21.1).

f) It shall be illegal to access static component members using the comp handle.

g) It shall be illegal to reference non-static context component members from struct types declared
within the component.

h)  Any non-static component member may be referred to with a full hierarchical path starting with the
root component.
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9.4.2 Examples

Example 38 depicts a component tree definition. In total, there is one instance of multimedia_ss c
(instantiated in pSS_top), four instances of codec_c (from the array declared in multimedia_ss_c),
and eight instances of Vid_pipe_c (two in each element of the codec_c array).

component vid_pipe c { --. };

component codec_c {
vid_pipe_c pipeA, pipeB;
action decode { ... };

}:

component multimedia_ss c {
codec_c codecs[4];

}:

component pss_top {
multimedia_ss_c multimedia_ss;

¥

Example 38—Component instantiation

Example 39 shows some legal and illegal accesses to component functions and attributes.
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component my_comp_c {
int f;
struct S {
rand int g;
exec post_solve {
g = F; // ILLEGAL: S may not refer to instance-specific field of
// my _comp_c. NOTE: "g = my _comp_c::f;" would be legal if
// T were "static const int f*©
}:
}:
function void print_f() {
print ("%d", );
}
action A_a {
rand S s;
exec post_solve {
comp.print_f(); // comp handle required to access “print_f~

component pss_top {

my_comp_c compl, comp2, comp3;
exec init {

compl.f = 6; comp2.f = 7; comp3.f = 8;
};
action entry_a {

activity {

do my_comp_c::A a;

}

}

}

Example 39—Component attribute and function access

9.5 Component references

Each action instance is associated with a specific component instance of its containing component type, the
component-type scope where the action is defined. The component instance is the “actor” or “agent” that
performs the action. Only actions defined in the scope of instantiated components can legally participate in a
scenario.

The component instance with which an action is associated is referenced via the built-in field comp. The
value of the comp field can be used for comparisons of references (see 8.5.3). Unlike user-defined reference
variables, the comp field is assigned automatically as part of the solving process (see 16.4.5) and may not be
assigned by the user. The static type of the comp field is the ref type of the action’s context component.
Consequently, attributes and sub-components of the containing component may be referenced via the comp
field using relative paths.

9.5.1 Semantics

A compound action can only instantiate sub-actions that are defined in its containing component or defined
in component types that are instantiated in its containing component's instance sub-tree. In other words,
compound actions cannot instantiate actions that are defined in components outside their context component
hierarchy. This maximizes the reusability of components in other contexts.
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9.5.2 Examples

Example 40 illustrates the need to define a sub-action in a containing component or its sub-tree. In action
graphics::gr_a, the traversal of bus_c::write is illegal since the component bus_c is not
instantiated in the action's containing component (graphics).

component bus_c {
import bar_pkg::*;
action write{input bar_s b;...} // bar_s is a stream

}

component graphics {
import bar_pkg::*;
action foo {output bar_s b;...}
action gr_a {
activity {
parallel {
do bus_c::write; // illegal
do foo;
}
}
}
}

component pss_top {
import bar_pkg::*;
bus_c a0;
graphics g;
pool bar_s bar_p;
bind bar_p *;

}

Example 40—Illlegal traversal of an action outside of the containing component hierarchy

Example 41 demonstrates the use of the comp reference. The constraint within the decode action forces
the value of the action’s mode bit to be O for the codecs[0] instance, while the value of mode is
randomly selected for the other instances. The sub-action type program is available on both sub-
component instances, pipeA and pipeB, but in this case is assigned specifically to pipeA using the comp
reference.

See also 16.1.3.
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component vid_pipe c { --. };
component codec_c {
vid_pipe_c pipeA, pipeB;
bit model_enable;
action decode {
rand bit mode;
constraint set_mode {

comp.model_enable==0 -> mode == O;
}
activity {
do vid_pipe_c::program with { comp == this.comp.pipeA; };
}
}:
}:

component multimedia_ss c {
codec_c codecs[2];
exec init_up {
codecs[0] -model_enable =
codecs[1] -model_enable

11
]

}
}:

Example 41—Using the comp attribute in constraints

9.6 Pure components

Pure components are restricted types of components that provide PSS implementations with opportunities
for significant optimization of storage and initialization. Pure components are used to encapsulate
realization-level functionality and cannot contain scenario model features. Register structures are one
possible application for pure components (see 23.10).

The following rules apply to pure components, that is, component types declared with the pure modifier:

a) Inthe scope of a pure component, it shall be an error to declare action types, pool instances, pool-

binding directives, non-static data attributes, instances of non-pure component types, or exec
blocks.

b) A pure component may be instantiated under a non-pure component. However, a non-pure COM-
ponent may not be instantiated under a pure component.

c) A pure component may not be derived from a non-pure component. However, both a pure compo-
nent and a non-pure component may be derived from a pure component.
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An example of the use of pure components is shown in Example 42.

pure component my_register {
function bit[32] read();
function void write(bit[32] val);
};

pure component my_register_group {
my_register regs[10];
};

component my_ip {
my_register_group reg_groups[100]; // sparsely-used large structure

¥

Example 42—Pure components
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10. Actions

Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose
definitions can be reused in many different contexts. Along with their intrinsic properties, actions also
encapsulate the rules for their interaction with other actions and the ways to combine them in legal
scenarios. Atomic actions may be composed into higher-level actions, and, ultimately, to top-level test
actions, using activities (see Clause 12). The activity of a compound action specifies the intended schedule
of its sub-actions, their object binding, and any constraints. Activities are a partial specification of a
scenario: determining their abstract intent and leaving other details open.

Actions prescribe their possible interactions with other actions indirectly, by using flow (see Clause 13) and
resource (see Clause 14) objects. Flow object references specify the action’s inputs and outputs and
resource object references specify the action’s resource claims.

By declaring a reference to an object, an action determines its relation to other actions that reference the very
same object without presupposing anything specific about them. For example, one action may reference a
data flow object of some type as its input, which another action references as its output. By referencing the
same object, the two actions necessarily agree on its properties without having to know about each other.
Each action may constrain the attributes of the object. In any consistent scenario, all constraints shall hold;
thus, the requirements of both actions are satisfied, as well as any constraints declared in the object itself.

Actions may be atomic, in which case their implementation is supplied via one or more exec body blocks
(see 21.1.2), or they may be compound, in which case they contain one or more activity statements (see
Clause 12) that instantiate and schedule other actions. A single action can have multiple implementations in
different packages, so the actual implementation of the action is determined by which package is used.

An action is declared using the action keyword and an action_identifier, as shown in Syntax 23.
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10.1 Syntax

action_declaration ::= action action_identifier [ template param_decl list ] [ action_super_spec |
{ { action_body item } }

abstract_action_declaration ::= abstract action_declaration
action_super_spec ::= : type_identifier
action_body _item ::=
activity declaration

| override declaration

| constraint declaration

| action_field declaration

| symbol_declaration

| covergroup declaration

| exec_block stmt

| activity scheduling_constraint

| attr_group

| compile assert stmt

| covergroup instantiation

| action_body compile_if

| stmt_terminator

Syntax 23—action declaration

An action declaration optionally specifies an action_super_spec, a previously defined action type from
which the new type inherits its members.

The following also apply:

a)

b)

d)

The activity_declaration and body exec_block_stmt (see 21.1.2) action body items are mutually
exclusive. An atomic action may specify body exec_block_stmt items; it shall not specify activity -
declaration items. A compound action, which contains instances of other actions and activity_decla-
ration items, shall not specify body exec_block_stmt items.

An abstract action may be declared as a template that defines a base set of field attributes and
behavior from which other actions may inherit. Non-abstract derived actions may be instantiated
like any other action. Abstract actions shall not be instantiated directly.

An abstract action may be derived from another abstract action, but not from a non-abstract action.

Abstract actions may be extended, but the action remains abstract and may not be instantiated
directly.
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10.2 Examples
10.2.1 Atomic actions

Examples of an atomic action declaration are shown in Example 43.

action write {
output data_buf data;
rand int size;
//implementation details

Example 43—atomic action

10.2.2 Compound actions

Compound actions instantiate other actions within them and use activity statements (see Clause 12) to
define the relative scheduling of these sub-actions.

Examples of compound action usage are shown in Example 44.

action sub_a {...};

action compound_a {
sub_a al, az2;
activity {
al;
az;
}
}

Example 44—compound action
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10.2.3 Abstract actions

Abstract action types are used to capture common features of different actions, including actions of different
components. Abstract actions may not be traversed directly. Rather, they are used through inheritance, as
base types for non-abstract action types. Abstract action types may be declared outside the scope of a
component, unlike non-abstract actions, which may only be declared in a component scope.

An example of abstract action usage is shown in Example 45. In this example, abstract action base is
declared outside a component scope, in package mypkg, and subsequently extended in the same package.
Action derived is declared as a non-abstract subtype of action base.

package mypkg {
abstract action base {
rand int i;
constraint i>5 && i<10;

}

// action base remains abstract
extend action base {
rand int j;
s
by

component pss_top {
import mypkg::*;

action derived : base {
constraint i>6;
constraint j>9;
}
}

Example 45—abstract action
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11. Template types

11.1 General
Template types in PSS provide a way to define generic parameterized types.

In many cases, it is useful to define a generic parameterizable type (struct/flow object/resource object/action/
component) that can be instantiated with different parameter values (e.g., array sizes or data types).
Template types maximize reuse, avoid writing similar code for each parameter value (value or data type)
combination, and allow a single specification to be used in multiple places.

Template types must be explicitly instantiated by the user, and only an explicit instantiation of a template
type represents an actual type.

The following sections describe how to define, use, and extend a template type when using the PSS input.

11.2 Template type declarations

A template type (struct, action, component, etc.) declaration specifies a list of formal type or value
template parameter declarations. The parameters are provided as a comma-separated list enclosed in angle
brackets (<>) following the name of the template type.

A template type may inherit from another template or non-template data type. A non-template type may
inherit from a template type instance. In both cases, the same inheritance rules and restrictions as for the
corresponding non-template type of the same type category are applied (e.g., a template struct may inherit
from a struct, or from a template struct).

The syntax specified in the corresponding struct/action/component sections contains the
template_param_decl_list nonterminal marked as optional. When the parameter declaration list enclosed in
angle brackets is provided on a struct/action/component declaration, it denotes that the struct/action/
component type is a template generic type.

11.2.1 Syntax

struct_declaration ::= struct_kind identifier [ template_param_decl list ]
[ struct_super_spec | { { struct_body _item } }

component_declaration ::= component component_identifier [ template_param_decl_list ]
[ component_super_spec | { { component_body item } }

action_declaration ::= action action_identifier [ template_param_decl_list ]
[ action_super spec ] { { action_body item } }

template param_decl list ::= < template_param_decl { , template_param_decl } >

template_param_decl ::= type param_decl | value_param_decl

Syntax 24—Template type declaration
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11.2.2 Examples

Generic template-type declaration for various type categories are shown in Example 46.

struct my_template_s <type T> {

T t_attr;

}

buffer my buff_s <type T> {
T t_attr;

}

abstract action my_consumer_action <int width, bool is_wide> {
compile assert (width > 0);

}

component eth_controller_c <struct ifg_config_s, bool full_duplex = true> {

}

Example 46—Template type declarations

11.3 Template parameter declarations

A template parameter is declared as either a type or a value parameter. All template parameters have a name
and an optional default value. All parameters subsequent to the first one that is given a default value shall
also be given default values. Therefore, the parameters with defaults shall appear at the end of the parameter
list. Specifying a parameter with a default value followed by a parameter without a default value shall be
reported as an error.

A template parameter can be referenced using its name inside the body and the supertype specification of the
template type and all subsequent generic template type extensions, including the template type instance
extensions. A template parameter may not be referenced from within subtypes that inherit from the template
type that originally defined the parameter.

11.3.1 Template value parameter declarations

Value parameters are given a data type and optionally a default value, as shown below.

11.3.1.1 Syntax

value param_decl ::= data_type identifier [ = constant_expression |
Syntax 25—Template value parameter declaration

The following also apply:

a) A value parameter can be referenced using its name anywhere a constant expression is allowed or
expected inside the body and the supertype specification of the template type.

b)  Valid data types for a value_param_decl are the scalar types, except chandle.
¢) The default value, if provided, may also reference one or more of the previously defined parameters.

d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a
default value shall be enclosed in parentheses.
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11.3.1.2 Examples

An example of declaring an action type that consumes a varying number of resources is shown in
Example 47.

action my_consumer_action <int n_locks = 4> {
compile assert (n_locks in [1..16]);
lock my_resource res[n_locks];

T

Example 47—Template value parameter declaration

Example 48 contains a Boolean greater-than expression that must be enclosed in parentheses and depends
on a previous parameter:

action my_consumer_action <int width, bool 1s_wide = (width > 10) > {
compile assert (width > 0);

}

Example 48—Another template value parameter declaration

11.3.2 Template type parameter declarations

Type parameters are prefixed with either the type keyword or a type-category keyword in order to identify
them as type parameters.

When the type keyword is used, the parameter is fully generic. In other words, it can take on any type.
Specifying category type parameters provides more information to users of a template type on acceptable
usage and allows tools to flag usage errors earlier. A category type parameter enforces that a template
instance parameter value must be of a certain category/class of type (e.g., struct, action, etc.). A category
type parameter can be further restricted such that the specializing type (the parameter value provided on
instantiation) must be related via inheritance to a specified base type.

The syntax for declaring a type parameter is shown below.

11.3.2.1 Syntax

type param_decl ::= generic_type param_decl | category type param decl
generic_type_param_decl ::= type identifier [ = type_identifier |
category type param_decl ::=type category identifier [ type restriction | [ = type identifier ]
type restriction ::= : type identifier
type category ::=
action
| component

| struct_kind

Syntax 26—Template type parameter declaration
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The following also apply:

a) A type parameter can be referenced using its name anywhere inside the body of the template type
where a type is allowed or expected.

b) The default value, if provided, may also reference one or more of the previously defined parameters.
11.3.2.2 Examples

Examples of a generic type and a category type parameter are shown in Example 49.

struct my_container_s <struct T> {
T t_attr;
}

struct my_template_s <type T> {
T t_attr;

}

Example 49—Template generic type and category type parameters

In the example above, the template parameter T of my_container_s must be of struct type, while in the
case of my_template_s, the template parameter T may take on any type.

An example of how to use type restrictions in the case of a type-category parameter is shown in Example 50.

struct base_t {
rand bit[3:0] core;
}

struct my_subl t : base_t {
rand bit[3:0] addi;
}

struct my_sub2_t : base_t {
rand bit[3:0] add2;
}

buffer bl : base_t { }
buffer b2 : base_t { }

abstract action my_action_a <buffer B : base_t> {

}

struct my_container_s <struct T : base_t = my subl t> {
T t_attr;
constraint t_attr.core >= 1;

}

Example 50—Template parameter type restriction

In the example above, the template parameter T of my _container_s must be of type base_t or one of
its struct subtypes (my_subl_t or my_ sub2_t, but not bl or b2). This allows my _container_s to
reasonably assume that T contains an attribute named ‘core’, and communicates this requirement to users
of this type and to the PSS processing tool. The template parameter B of my_action_a must be of one of
the buffer subtypes of base_t (bl or b2).
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The base type of the template type may also be a type parameter. In this way, the inheritance can be
controlled when the template type is instantiated.

In Example 51, the my_container_s template struct inherits from the struct type template type

parameter.

struct
rand

}

struct
rand

}

}

struct
rand

}

my_basel t {
int attrl;

my base2_t {
int attr2;

struct my_container_s <struct T> : T {

top_s {

my_container_s <my_ basel_t> contl;
rand my_container_s <my base2_t> cont2;
constraint contl.attrl

== cont2.attr2;

Example 51—Template parameter used as base type

11.4 Template type instantiation

A template type is instantiated using the name of the template type followed by the parameter value list
(specialization) enclosed in angle brackets (<>). Template parameter values are specified positionally.

The explicit instantiation of a template type represents an actual type. All explicit instantiations provided
with the same set of parameter values are the same actual type.

11.4.1 Syntax

type identifier ::=[ :: ] type_identifer elem { :: type identifer elem }
type_identifier_elem ::= identifier [ template param_ value list ]
template param_value list ::= <[ template_param_value { , template param_value } ] >

template param_value ::= constant_expression | data_type

The following also apply:

Syntax 27—Template type instantiation

a)  Parameter values must be specified for all parameters that were not given a default value.

b) An instance of a template type must always specify the angle brackets (<>), even if no parameter
value overrides are provided for the defaults.

c) The specified parameter values must comply with parameter categories and parameter type restric-
tions specified for each parameter in the original template declaration, or an error shall be generated.

d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a
parameter value must be enclosed in parentheses.
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11.4.2 Examples

struct base_t {
rand bit[3:0] core;
}

struct my_subl_t : base_t {
rand bit[3:0] addi;
}

struct my_sub2_t : base_t {
rand bit[3:0] add2;

}

struct my_container_s <struct T : base_t = my_subl_t> {
T t_attr;
constraint t_attr.core >= 1;

}

struct top_s {
my_container_s<> my_subl_container_attr;
my_container_s<my_sub2_t> my_sub2_container_attr;

}

Example 52—Template type instantiation

In Example 52 above, two attributes of my_container_s type are created. The first uses the default
parameter value. The second specifies the my_sub2_t type as the value for the T parameter.

Type qualification for an action declared in a template component is shown in Example 53 below.

component my_compI_c <int bus_width = 32> {
action my_actionl_a { }
action my_action2_a <int nof_iter = 4> { }

}

component pss_top {
my_compl_c<64> compl;
my_compl_c<32> comp2;

action test {
activity {
do my_compl_c<64>::my_actionl_a;
do my_compl_c<64>::my_action2_a<>;
do my_compl_c::my_actionl_a; // Error - my_compl c must be specialized
do my_compl_c<>::my_actionl_a;
}
}

}

Example 53—Template type qualification
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Example 54 depicts various ways of overriding the default values. In the example below, the
my_struct_t<2> instance overrides the parameter A with 2, and preserves the default values for
parameters B and C. The my_struct_t<2, 8> instance overrides the parameter A with 2, parameter B
with 8, and preserves the default value for C.

struct my s 1 { }
struct my s 2 { }

struct my_struct t <int A=4, int B=7, intC=3>{ }

struct container_t {
my_struct_t<2> a; // instantiated with <2, 7, 3>
my_struct_t<2,8> b; // instantiated with <2, 8, 3>
}

Example 54—Overriding the default values

11.5 Template type user restrictions

A generic template type may not be used in the following contexts:

— As aroot component

— Asaroot action

— As an inferred action to complete a partially specified scenario
Template types are explicitly instantiated by the user, and only an explicit instantiation of a template type
represents an actual type. Only action actual types can be inferred to complete a partially specified scenario.

The root component and the root action must be actual types.

Template types may not be used as parameter types or return types of imported functions.
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12. Activities

When a compound action includes multiple operations, these behaviors are described within the action
using one or more activity statements. An activity specifies the set of actions to be executed and the
scheduling relationship(s) between them. If more than one activity is specified in an action, the execution
semantics are the same as if the activity statements were combined in a schedule statement (see 12.3.5 and
12.6). A reference to an action within an activity is via an action handle, and the resulting action traversal
causes the referenced action to be evaluated and randomized (see 12.3.1).

An activity, on its own, does not introduce any scheduling dependencies for its containing action. However,
flow object or resource scheduling constraints of the sub-actions may introduce scheduling dependencies for
the containing action relative to other actions in the system.

12.1 Activity declarations

Because activities are explicitly specified as part of an action, activities themselves do not have a separate
name. Relative to the sub-actions referred to in the activity, the action that contains the activity is referred to
as the context action.

12.2 Activity constructs

Each node of an activity represents an action, with the activity specifying the temporal, control, and/or data
flow between them. These relationships are described via activity rules, which are explained herein. See also

Syntax 28.
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12.2.1 Syntax

activity declaration ::= activity { { activity_stmt } }
activity _stmt ::=
[ label identifier :] labeled_activity stmt

| activity action_traversal stmt

| activity_data_field

| activity _bind stmt

| action_handle_declaration

| activity constraint_stmt

| activity_scheduling_constraint

| stmt_terminator
labeled_activity stmt ::=

activity _sequence block stmt

| activity parallel stmt

| activity schedule stmt

| activity _repeat stmt

| activity foreach stmt

| activity_select stmt

| activity if else stmt

| activity_match_stmt

| activity replicate stmt

| activity _super stmt

| activity atomic_block stmt

| symbol_call

Syntax 28—activity statement

12.3 Action scheduling statements

By default, statements in an activity specify sequential behaviors, subject to data flow constraints. In
addition, there are several statements that allow additional scheduling semantics to be specified. Statements
within an activity may be nested, so each element within an activity statement is referred to as a sub-activity.

12.3.1 Action traversal statement

An action traversal statement designates the point in the execution of an activity where an action is
randomized and evaluated (see Syntax 29). The action being traversed may be specified via an action handle
referring to an action field or local variable that was previously declared. Alternatively, the action being
traversed may be specified by type, in which case a label, if specified, serves as an action handle. In the
absence of a label, the action instance is anonymous.
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12.3.1.1 Syntax

activity action_traversal stmt ::=
identifier [ [ expression ] ] inline_constraints_or_empty
| [ label_identifier : ] do type identifier inline_constraints_or_empty
inline_constraints_or_empty ::=
with constraint_set

Syntax 29—Action traversal statement

identifier names a unique action handle or variable in the context of the containing action type or activity
scope. If identifier refers to an action handle array (see 12.3.2), then a specific array element may be
specified with the optional array subscript. The alternative forms are specified by the keyword do, followed
by an action-type specifier. Given a label_identifier, the action instance can be referenced using the label. In
the absence of a label _identifier, the action instance is anonymous. Either form of the action traversal
statement my include an optional in-line constraint.

The following also apply:

a)  The action variable is randomized and evaluated at the point in the flow where the statement occurs.
The variable may be of an action type or a data type declared in the context action with the action
modifier. In the latter case, it is randomized, but has no observed execution or duration (see

Example 144).

1) An action handle is considered uninitialized until it is first traversed. The fields within the
action cannot be referenced in an exec block or conditional activity statement until after the
action is first traversed. The steps that occur as part of the action traversal are as follows:

i)  The pre_solve block (if present) is executed.
ii) Random values are selected for rand fields.
iii) The post_solve block (if present) is executed.
iv) The body exec block (if present) is executed.
v) The activity block (if present) is evaluated.

vi) The validity of the constraint system is confirmed, given any changes by the post_solve or
body exec blocks.
2) Upon entry to an activity scope, all action handles traversed in that scope are reset to an unini-
tialized state.

b) The labeled traversal statement is semantically equivalent to a traversal statement with an explicitly
declared action variable. With this form, the label_identifier serves as an action handle, equivalent
to an explicitly declared variable of the specified action type in the enclosing activity scope.

¢) The anonymous action traversal statement is semantically equivalent to the other two forms with the
exception that it does not create an action handle that may be referenced from elsewhere in the stim-
ulus model.

d) A named action handle may only be traversed once in the following scopes and nested scopes

thereof:

1) sequential activity scope (e.g., Sequence or repeat)
2) parallel

3) schedule
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Formally, a traversal statement is equivalent to the sub-activity of the specified action type, with the

optional addition of in-line constraints. The sub-activity is scheduled in accordance with the
scheduling semantics of the containing activity or sub-activity.

f)  Other aspects that impact action-evaluation scheduling, are covered via binding inputs or outputs
(see 13.4), resource claims (see 14.2), or attribute value assignment.

12.3.1.2 Examples

Example 55 shows an example of traversing an action handle. Action A is an atomic action that contains a 4-
bit random field 1. Action B is a compound action encapsulating an activity involving two invocations of
action A. The default constraints for A apply to the evaluation of al. An additional constraint is applied to
a2, specifying that 1 shall be less than 10. Execution of action B results in two sequential evaluations of

action A.

action A {
rand bit[3:0]

}

action B {
A al, a2;

activity {
al;
a2 with {
1 < 10;
};

f1;

Example 55—Action traversal

Example 56 shows an example of anonymous action traversal, including in-line constraints.

action A {
rand bit[3:0]

}

action B {
activity {
do A;

}
}

do A with {f1 < 10;};

f1;

Example 56—Anonymous action traversal

Example 57 shows the use of a label of an action traversal statement to constrain a sub-action instance from

a higher activity context.
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action mem2mem_chain {
activity {
do mem_c::load_buff;
repeat (10) {
select {
xfer: do dma_c::mem2mem_xfer;
cpy: do cpu_c::memcpy;
}
}
}
}

action my_test {
activity {
do mem2mem_chain with { xfer.size > 10; };
}
}

Example 57—Labeled action traversal

Example 58 shows an example of traversing a compound action as well as a random action variable field.
The activity for action C traverses the random action variable field max, then traverses the action-type field
b1. Evaluating this activity results in a random value being selected for max, then the sub-activity of bl

being evaluated, with al.F1 constrained to be less than or equal to max.

action A {
rand bit[3:0] fl;

}

action B {
A al, a2;

activity {
al;
a2 with {
1 < 10;
};
s
by

action C {
action bit[3:0] max;
B bl;

activity {
max;
bl with {
al.fl <= max;

}:

Example 58—Compound action traversal
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12.3.2 Action handle array traversal

Arrays of action handles may be declared within an action. These action handle arrays may be traversed as
a whole or traversed as individual elements.

The semantics of traversing individual action handle array elements are the same as those of traversing
individually-declared action handles.

Example 59 below shows traversing an individual action handle array element and one action handle. The
semantics of both action traversal statements are the same.

component pss_top {
action A { }
action entry {
A a arr[4];
A al, a2, a3, a4;

activity {
a_arr[0];
al;

}

Example 59—Individual action handle array element traversal

When an action handle array is traversed as a whole, each array element is traversed independently
according to the semantics of the containing scope.

Example 60 below shows an action that traverses the elements of the a_arr action handle array in two
ways, depending on the value of a rand action attribute. Both ways of traversing the elements of a_arr
have identical semantics.

component pss_top {
action A { }
action entry {
rand bool traverse_arr;

A a_arr[2];
activity {
if (traverse_arr) {
a_arr;
} else {
a_arr[0];
a_arr[1];
}
}

Example 60—Action handle array traversal

The contexts in which action handle arrays may be traversed, and the resulting semantics, are described in
the table below.
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Table 20—Action handle array traversal contexts and semantics

Context Semantics
parallel All array elements are scheduled for traversal in parallel.
schedule All array elements are scheduled for traversal independently.
select One array element is randomly selected and traversed.
sequence All array elements are scheduled for traversal in sequence from 0 to N-1.

12.3.3 Sequential block
An activity sequence block statement specifies sequential scheduling between sub-activities (see Syntax 30).

12.3.3.1 Syntax

activity sequence_block stmt ::=[ sequence ] { { activity_stmt } }

Syntax 30—Activity sequence block

The following also apply:

a) Statements in a sequential block execute in order so that one sub-activity completes before the next
one starts.

b) Formally, a sequential block specifies sequential scheduling between the sets of action executions
per the evaluation of activity_stmt; .. activity_stmt,,, keeping all scheduling dependencies within the
sets and introducing additional dependencies between them to obtain sequential scheduling (see
6.3.2).

c¢) Sequential scheduling does not rule out other inferred dependencies affecting the nodes in the
sequence block. In particular, there may be cases where additional action executions must be sched-
uled in between sub-activities of subsequent statements.

12.3.3.2 Examples
Assume A and B are action types that have no rules or nested activity (see Example 61).

Action my_test specifies one execution of action A and one of action B with the scheduling dependency
(A) > (B); the corresponding observed behavior is {start A, end A, start B, end B}.

Now assume action B has a state precondition which only action C can establish. C may execute before,
concurrently to, or after A, but it shall execute before B. In this case the scheduling dependency relation
would include (A) -> (B) and (C) -> (B) and multiple behaviors are possible, such as {start C,
start A, end A, end C, start B, end B}.
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Finally, assume also C has a state precondition which only A can establish. Dependencies in this case are
(A) > (B), (A) > (C) and (C) -> (B) (note that the first pair can be reduced) and, consequently, the
only possible behavior is {start A, end A, start C, end C, start B, end B}.

action my_test {
A a;
B b;
activity {
a;
b;
}
}:

Example 61—Sequential block

Example 62 shows all variants of specifying sequential behaviors in an activity. By default, statements in an
activity execute sequentially. The sequence keyword is optional, so placing sub-activities inside braces ({})
is the same as an explicit sequence statement, which includes sub-activities inside braces. The examples
show a total of six sequential actions: A, B, A, B, A, B.

action my_test {
A al, a2, a3;
B bl, b2, b3;
activity {
al;
bl;
{a2; b2;};
sequence{a3; b3;};

Example 62—Variants of specifying sequential execution in activity

12.3.4 parallel

The parallel statement specifies sub-activities that execute concurrently (see Syntax 31).

12.3.4.1 Syntax

activity parallel stmt ::= parallel [ activity join_spec ] { { activity stmt } }

Syntax 31—Parallel statement

The following also apply:

a)

b)

Parallel activities are invoked in a synchronized way and then proceed without further synchroniza-
tion until their completion. Parallel scheduling guarantees that the invocation of an action in one
sub-activity branch does not wait for the completion of any action in another.

Formally, the parallel statement specifies parallel scheduling between the sets of action executions
per the evaluation of activity_stmt, .. activity_stmt,, keeping all scheduling dependencies within the
sets, ruling out scheduling dependencies across the sets, and introducing additional scheduling
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dependencies to initial action executions in each of the sets in order to obtain a synchronized start
(see 6.3.2).

¢) Inthe absence of an activity_join_spec (see 12.3.6), execution of the activity statement following the
parallel block is scheduled to begin after all parallel branches have completed. When an
activity_join_spec is specified, execution of the activity statement following the parallel block is
scheduled based on the join specification.

12.3.4.2 Examples
Assume A, B, and C are action types that have no rules or nested activity (see Example 63).

The activity in action my_test specifies two dependencies (@) -> (b) and (@) -> (c). Since the
executions of both b and ¢ have the exact same scheduling dependencies, their invocation is synchronized.

Now assume action type C inputs a buffer object and action type B outputs the same buffer object type, and
the input of C is bound to the output of b. According to buffer object exchange rules, the inputting action
shall be scheduled after the outputting action. But this cannot satisfy the requirement of parallel scheduling,
according to which an action in one branch cannot wait for an action in another. Thus, in the presence of a
separate scheduling dependency between b and C, this activity shall be illegal.

action my_test {
A a;
B b;
C c;
activity {
a;
parallel {
b;
C;

Example 63—Parallel statement

In Example 64, the semantics of the parallel construct require the sequences {A,B} and {C,D} to start
execution at the same time. The semantics of the sequential block require that the execution of B follows A
and D follows C. It is illegal to have any scheduling dependencies between sub-activities in a parallel
statement, so neither A nor B may have any scheduling dependencies relative to either C or D.

Even though actions A and D lock the same resource type from the same pool, the pool contains a sufficient
number of resource instances such that there are no scheduling dependencies between the actions. If
pool_R contained only a single instance, there would be a scheduling dependency in that A and D could not
overlap, which would violate the rules of the parallel statement.
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resource R{...}

pool [4] R R_pool;
bind R_pool *;

action A { lock R r; }
action B {}

action C {}

action D { lock R r; }

action my_test {
activity {
parallel {
{do A; do B;}
{do C; do D;}
}
}
}

Example 64—Another parallel statement

12.3.5 schedule

The schedule statement specifies that the PSS processing tool shall select a legal order in which to evaluate
the sub-activities, provided that one exists. See Syntax 32.

12.3.5.1 Syntax

activity schedule stmt ::= schedule [ activity join_spec ] { { activity_stmt } }

Syntax 32—Schedule statement

The following also apply:

a)

b)

All activities inside the schedule block shall execute, but the PSS processing tool is free to execute
them in any order that satisfies their other scheduling requirements.

Formally, the schedule statement specifies that any scheduling of the combined sets of action execu-
tions per the evaluation of activity_stmt; .. activity_stmt,, is permissible, as long as it keeps all sched-
uling dependencies within the sets and introduces (at least) the necessary scheduling dependencies
across the sets in order to comply with the rules of input-output binding of actions and resource
assignments.

In the absence of an activity_join_spec (see 12.3.6), execution of the activity statement following the
schedule block is scheduled to begin after all statements within the block have completed. When an
activity_join_spec is specified, execution of the activity statement following the schedule block is
scheduled based on the join specification.

12.3.5.2 Examples

Consider the code in Example 65, which is similar to Example 63, but uses a schedule block instead of a
parallel block. In this case, the following executions are valid:

a)
b)
¢)

The sequence of action nodes a, b, C.
The sequence of action nodes a, c, b.

The sequence of action node a, followed by b and ¢ run in any order, subject to other scheduling
constraints.
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action my_test {
A a;
B b;
C c;
activity {
a,;
schedule {
b;
C;
}
}
}:

Example 65—Schedule statement

Note that neither b nor ¢ may start execution until after the completion of @, and the start of execution for
either may be subject to additional scheduling constraints. In contrast to b and € executing in parallel, as in
Example 63, there may be scheduling dependencies between b and ¢ in the schedule block. The scheduling
graph for the activity is shown here:

Figure 6—Scheduling graph of activity with schedule block
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For the case where b and ¢ overlap, the runtime behaviors will execute as shown here:

behavior

Time

Figure 7—Runtime behavior of activity with schedule block

In contrast, consider the code in Example 66. In this case, any execution order in which both B comes after A
and D comes after C is valid.

If both A and D wrote to the same state variable, they would have to execute sequentially. This is in addition
to the sequencing of A and B and of C and D. In the case where D writes before A, the sequence would be {C,
D, A, B}. In the case where A writes before D, the runtime behavior would be as shown in Figure 8.

action A {}
action B {}
action C {}
action D {}

action my_test {
activity {
schedule {
{do A; do B;}
{do C; do D;}
}
}
}

Example 66—Scheduling block with sequential sub-blocks
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behavior
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Time

Figure 8—Runtime behavior of scheduling block with sequential sub-blocks
12.3.6 Fine-grained scheduling specifiers

Fine-grained scheduling specifiers modify the termination semantics for parallel and schedule blocks (see
Syntax 31, Syntax 32, and Syntax 33). The semantics of fine-grained scheduling are defined strictly at the
activity scheduling level. The semantics do not assume that any runtime execution information is
incorporated by the PSS processing tool in the scheduling process. Activity scheduling in the presence of a
fine-grained scheduling specifier is still subject to all other scheduling rules.

12.3.6.1 Syntax

activity join spec ::=
activity join_branch

| activity join_select

| activity join_none

| activity join_first
activity join_branch ::= join_branch ( label_identifier {, label_identifier } )
activity join select ::= join_select ( expression )
activity join_none ::= join_none
activity join first ::= join_first ( expression )

Syntax 33—Activity join specification

The following also apply:

a) join_branch accepts a list of labels referring to labeled activity statements. The activity statement
following the fine-grained scheduling block is scheduled after all the listed activity statements have
completed.

1) The label_identifier used in the join_branch specification must be the label of a top-level
branch within the parallel or schedule block to which the join_branch specification is
applied.
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2)  When the label_identifier used in the join_branch specification applies to traversal of an array,
the activity statement following the fine-grained scheduling block is scheduled after all actions
in the array have completed.

b) join_select accepts an expression specifying the number of top-level activity statements within the
fine-grained scheduling block on which to condition execution of the activity statement following
the fine-grained scheduling block. The specific activity statements shall be selected randomly. Exe-
cution of the activity statement following the fine-grained scheduling block is scheduled after the
selected activity statements.

1) The expression shall be of an integer type. The value of the expression must be determinable at
solve time. If the value is 0, the join_select is equivalent to join_none.

2)  When an action array is traversed, each element of the array is considered a separate action that
may be selected independently.

¢) join_none specifies that the activity statement following the fine-grained scheduling block has no
scheduling dependency on activity statements within the block.

d) join_first specifies that the activity statement following the fine-grained scheduling block has a run-
time execution dependency on the first N activity statements within the fine-grained scheduling
block to complete execution. The activity statement following the fine-grained scheduling block has
no scheduling dependency on activity statements within the block, only a runtime dependency.

1) The expression shall be of an integer type. The value of the expression must be determinable at
solve time. If the value is 0, the join_first is equivalent to join_none.

2)  When an action array is traversed, each element of the array is considered a separate action that
may be selected independently.

The application scope of a fine-grained scheduling block is bounded by the sequential block that contains it.
In other words, all activity statements that start within the fine-grained scheduling block must complete
before the statement following the containing sequential block begins. Activities started, but not joined,
within a fine-grained scheduling block are not implicitly waited for by any containing parallel or schedule
blocks. Only the containing sequential block causes a join on activities started within it.

12.3.6.2 Examples

In Example 67, the innermost parallel block (L4) starts two activities (L5 and L6), while only waiting for
one (L5) to complete before continuing. Since L5 traverses the action array b, all elements of b must
complete before continuing. The next level of parallel block (L2) waits for its two branches to complete (L3
and L4), but does not wait for L6 to complete. The outermost parallel block (L1) waits for one of its
branches (L2) to complete before proceeding. This means that both L7 and L6 may be in-flight when L8 is
traversed.
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B b[2];
activity {
L1: parallel join_branch(L2) {
L2: parallel {
L3: do A;
L4: parallel join_branch (L5) {
L5: b;
L6: do C;
}
¥
L7: do D;
}
L8: do F;
3

Example 67—join_branch

The scheduling graph of the activity is shown in Figure 9.
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Figure 9—join_branch scheduling graph
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The runtime behavior is shown in Figure 10.
behavior
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Time
Figure 10—join_branch runtime behavior

Activity scheduling in the presence of a fine-grained scheduling block is still subject to all other scheduling
rules. For example, if both L6 and L8 in the example above contend for the same single resource, they must
be scheduled sequentially in order to avoid a resource conflict.

For the following four examples, assume that each of the three actions in the activity locks a resource from
the same pool.

In Example 68, the parallel block causes traversal of branches L1 and L2 to be scheduled in parallel. The
join_branch specifier causes traversal of action C to be scheduled with a sequential dependency on the
activity statement labeled L2. Traversal of action C may not begin until the activity statement labeled L2 has
completed. To avoid adding additional scheduling dependencies, the resource pool would need a minimum
of two resource instances. Actions A and B would each lock a resource instance, and C, since it is guaranteed
not to start until A completes, would lock the same resource instance as that assigned to A. Note that this
allocation is handled at solve-time, and is independent of whether B completes before or after A completes.

activity {
L1 : parallel join_branch(L2) {
L2: do A;
L3: do B;

T
L4: do C;

}

Example 68—join_branch with scheduling dependency
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The scheduling graph of the activity is shown in Figure 11.

Figure 11—Scheduling graph of join_branch with scheduling dependency

The runtime behavior is shown in Figure 12.
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Figure 12—Runtime behavior of join_branch with scheduling dependency

In Example 69, the parallel block causes traversal of the branches labeled L2 and L3 to be scheduled in
parallel. The join_select specifier causes traversal of action C to be scheduled with a sequential dependency
on a random selection of either the branch labeled L2 or L3. This means that traversal of C may not begin
until after the selected target activity statement has completed. The tool randomly selects N (in this case, 1)
target branch(es) from the candidate branches on which to make traversal of the following activity statement
dependent.

In this example, the resource pool would need a minimum of two resource instances. Because the tool may
not know which of A or B will complete first, it must choose one and assign the same resource instance to
action C. If the tool selected L2 as the branch on which C depends, the behavior would be identical to the
previous example.
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activity {
L1 : parallel join_select(1l) {
L2: do A;
L3: do B;
}
L4: do C;

}

Example 69—join_select

In Example 70, the join_none specifier causes traversal of action C to be scheduled with no dependencies.
To avoid additional scheduling dependencies, the minimum size of the resource pool must be three, since
each action traversed in the activity must have a unique resource instance.

Actions A and B are scheduled in parallel, and action C is scheduled concurrently with both of them. This
means that C could start at the same time as A and B, but it may not. While the parallel statement 