
All references are based on P1800-2008 draft 4

In 25.3

CHANGE:

A wildcard import allows all identifiers declared within a package to be imported

provided the identifier is not otherwise defined in the importing scope:

 import ComplexPkg::*;

A wildcard import makes each identifier within the package a candidate for

import. Each such identifier is imported only when it is referenced in the

importing scope and it is neither declared nor explicitly imported into the scope.

Similarly, a wildcard import of an identifier is overridden by a subsequent

declaration of the same identifier in the same scope. If the same identifier is

wildcard imported into a scope from two different packages, the identifier shall be

undefined within that scope, and an error results if the identifier is used.

TO:

A wildcard import allows all identifiers declared within a package to be imported

provided the identifier is not otherwise defined in the importing scope. A wildcard import

is of the following form:

import ComplexPkg::*;

For the purpose of describing how identifiers resolve to wildcard imported declarations

we define what are a locally visible and potentially locally visible identifiers.

An identifier is potentially locally visible at some point within a scope if there is a

wildcard import of a package before that point within the current scope and the package

contains a declaration of that identifier.

An identifier is locally visible at some point within a scope if that identifier:

1. denotes a nested scope within the current scope, or

2. is declared as an identifier prior to that point within the current scope

3. is visible from an explicit import prior to that point within the current scope

A potentially locally visible identifier from a wildcard import may become locally visible

if the resolution of a reference to an identifier causes finds no other matching locally

visible identifiers.

For a reference to an identifier other than function or task call, the locally visible

identifiers defined at the point of the reference in the current scope shall be searched. If

the reference is a function or task call, all of the locally visible identifiers to the end of

the current scope shall be searched. If a match is found the reference shall be bound to

that locally visible identifier.

If no locally visible identifiers match, then the potentially locally visible identifiers

defined prior to the point of the reference in the current scope shall be searched. If a

match is found, that identifier from the package shall be imported into the current scope,

becoming a locally visible identifier within the current scope, and the reference shall be

bound to that identifier.

If the reference is not bound within the current scope, the next outer lexical scope shall be

searched; first from the locally visible identifiers in that scope and then the potentially

locally visible identifiers defined prior to the point of the reference. If a match is found

among the potentially locally visible identifiers, that identifier from the package shall be

imported into the outer scope, becoming a locally visible identifier within the outer

scope.

If a wildcard imported symbol is made locally visible in a scope, any later locally visible

declaration of the same name in that scope shall be illegal.

The search algorithm shall be repeated for each outer lexical scope until an identifier is

found that matches the reference or there are no more outer lexical scopes, the

compilation unit scope being the final scope searched. For a reference to an identifier

other than function or task call, it shall be illegal if no identifier can be found that

matches the reference. If the reference is a function or task call, the search continues

using upwards hierarchical identifier resolution (See 22.7.1).

It shall be illegal if the wildcard import of more than one package within the same scope

defines the same potentially locally visible identifier and a search for a reference matches

that identifier.

Example 1:

package p;

 int x;

endpackage

module top;

 import p::*; // line 1

 if (1) begin : b

 initial x = 1; // line 2

 int x; // line 3

 initial x = 1; // line 4

 end

 int x; // line 5

endmodule

The reference in line 2 causes the potentially locally visible x from wildcard import p::* (p::x) to

become locally visible in scope top and line 2 initializes p::x. Line 4 initializes top.b.x. Line 5

is illegal since it is a local declaration in scope top which conflicts with the name x imported from

p which had already become a locally visible declaration.

Example 2:

package p;

 int x;

endpackage

package p2;

 int x;

endpackage

module top;

 import p::*; // line 1

 if (1) begin : b

 initial x = 1; // line 2

 import p2::*; // line 3

 end

endmodule

Line 2 causes the import of p::x in scope "top" because the wildcard import p::* is in the outer

scope "top" and precedes the occurrence of x. The declaration x from package p becomes locally

visible in scope "top".

 Example 3:

package p;

 function int f();

 return 1;

 endfunction

endpackage

module top;

 int x;

 if (1) begin : b

 initial x = f(); // line 2

 import p::*; // line 3

 end

 function int f();

 return 1;

 endfunction

endmodule

"f()" on line 2 binds to top.f and not to p::f since the import is after the function call reference.

Example 4:

package p;

 function int f();

 return 1;

 endfunction

endpackage

package p2;

 function int f();

 return 1;

 endfunction

endpackage

module top;

 import p::*;

 int x;

 if (1) begin : b

 initial x = f(); // line 1

 end

 import p2::*;

endmodule

Since "f" is not found in scope b, the rules require inspection of all wildcard imports in the

parent scope. There are two wildcard imports, but only the wildcard import p::* that is lexically
preceding the occurrence of f() is considered. In this case "f" binds to p::f.

In 3.10.1:

CHANGE:

a) All files on a given compilation command line make a single compilation unit

(in which case the declarations within those files are accessible anywhere else

within the constructs defined within those files).

TO:

a) All files on a given compilation command line make a single compilation unit

(in which case the declarations within those files are accessible following normal

visibility rules throughout the entire set of files anywhere else within the

constructs defined within those files).

CHANGE:

When an identifier is referenced within a scope:

— First, the nested scope is searched (see 22.7) (including nested module

declarations), including any identifiers made available through package

import declarations.

— Next, the compilation-unit scope is searched (including any identifiers

made available through package import declarations).

— Finally, the instance hierarchy is searched (see 22.6).

TO:

When an identifier is referenced within a scope:

— First, the nested scope is searched (see 22.7) (including nested module

declarations), including any identifiers made available through package

import declarations.

— Next, the portion of the compilation-unit scope defined prior to the

reference is searched (including any identifiers made available through

package import declarations).

— Finally, if the identifier follows hierarchical name resolution rules, the

instance hierarchy is searched (see 22.7 and 22.8).

CHANGE:

For example:
bit b;
task foo;

int b;
b = 5 + $unit::b; // $unit::b is the one outside

endtask

TO:

For example:
bit b;
task foo t;

int b;
b = 5 + $unit::b; // $unit::b is the one outside

endtask

Other than for task and function names (see 22.7.1), references shall only be made

to names already defined in the compilation unit. The use of an explicit $unit::

prefix only provides for name disambiguation and does not add the ability to refer

to later compilation unit items.

For example:
task t;
 int x;

x = 5 + b; // illegal – “b” is defined

later

x = 5 + $unit::b; // illegal – $unit adds no

special forward referencing
endtask
bit b;

Add the following to the end of Clause 13:

13.7 Task and Function names

Task and function names are resolved following slightly different rules than other

references. Even when used as a simple name, a task or function name follows a

modified form of the upwards hierarchical name resolution rules. This means that

“forward” references to a task or function defined later in the same or an

enclosing scope can be resolved. See Section 22.7.1 for the rules that govern task

and function name resolution.

Add the following to the end of Section 22.7:

22.7.1 Task and Function name resolution

Task and function names are resolved following slightly different rules than other

references. Task and function name resolution follows the rules for upwards

hierarchical name resolution as described in 22.7, step (a). Then, before

proceeding with step (b), an implementation shall look in the complete

compilation unit of the reference. If a task or function with a matching name is

found there, the name resolves to that task or function. Only then does the

resolution proceed with step (b) and iterate as normal. The special matching

within the compilation unit shall only take place the first time through the

iteration through steps (a)-(c); a task or function name shall never match a task or

function in a compilation unit other than the compilation unit enclosing the

reference.

Example:

task t;
 int x;

x = f(1); // valid reference to

function f in $unit scope
endtask
function int f(int y);
 return y+1;
endfunction

Example:

package p;

 function void f();
 $display("p::f");
 endfunction
endpackage

module top;
 import p::*;

 if (1) begin : b // generate block
 initial f(); // reference to “f”
 function void f();
 $display("top.b.f");
 endfunction
 end
endmodule

The resolution of the name f follows the hierarchical rules and therefore is

resolved to the function top.b.f. The output of the example would be the

output of the string “top.b.f”.

