Mantis 2008

P1800-2009/Draft 5

Motivation

SV-AC Mantis proposal 2005 creates a solution to enable glitch-free deferred assertions in contexts where immediate assertions are currently required. Implied assertions in the unique/priority if/case statements are not explicitly declared, and may have implementation-dependent glitch dangers. Actually, these are not explicitly called out as assertions in the current standard. This proposal requires that these if and case statement checks be treated similarly to deferred assertions, the subject of Mantis 2005.

There is a minor backwards-incompabtility being introduced here: the default behavior for these unique/priority violation checks, previously equivalent to immediate assertions, is being redefined to act as a deferred (#0) assertion, rather than only acting this way if an explicit #0 is present. We believe this is a reasonable decision for the following reasons:
 We are not familiar with any case in which a designer has considered these glitch evaluations useful. In the vast majority of cases, the user is surprised by the glitch behavior, which causes valuable validation effort to be spent chasing down false negatives.

 Typically, a designer is not thinking about assertion evaluation semantics when writing a case statement, so will not think to add the explicit #0. But they almost always want the non-glitch behavior.

 Some tool vendors have already (due to customer pressure) had to fix these unique/priority evaluations to act similarly to deferred assertions, since as stated above, users find the glitch failures to not be useful and to waste time.

There will be no mechanism to explicitly replicate the previous behavior. Immediate assertions can be used to model the old style zero-delay glitch violation check in the reactive region set.

Modify Clause 12.4 as follows:
12.4.2 unique-if, unique0-if, and priority-if

The keywords unique, unique0, and priority can be used before an if to perform certain violation checks.
If the keywords unique or priority are used, it shall be a warning for no condition to match a violation report shall be issued if no condition matches unless there is an explicit else. For example:

unique if ((a==0) || (a==1)) $display("0 or 1");

else if (a == 2) $display("2");

else if (a == 4) $display("4"); // values 3,5,6,7 cause a warning violation report
priority if (a[2:1]==0) $display("0 or 1");

else if (a[2] == 0) $display("2 or 3");

else $display("4 to 7"); //covers all other possible values, so no warning violation report
If the keyword unique0 is used, there shall not be a warning be no violation if no condition is matched. For example:

unique0 if ((a==0) || (a==1)) $display("0 or 1");

else if (a == 2) $display("2");

else if (a == 4) $display("4"); // values 3,5,6,7 do not cause a warning cause no violation report
Unique-if and unique0-if assert that there is no overlap in a series of if–else–if conditions, i.e., they are mutually exclusive and hence it is safe for the expressions to be evaluated in parallel.

In unique-if and unique0-if, the conditions may be evaluated and compared in any order. The implementation shall continue the evaluations and comparisons after finding a true condition. A unique-if or unique0-if is violated if more than one condition is found true. The implementation shall issue a warning violation report and execute the statement associated with the true condition that appears first in the if statement, but not the statements associated with other true conditions.

After finding a uniqueness violation, the implementation is not required to continue evaluating and comparing additional conditions. The implementation is not required to try more than one order of evaluations and comparisons of conditions. The presence of side-effects in conditions may cause non-deterministic results.

For unique-if and unique0-if, an implementation shall also issue a warning if it determines that no condition is true, or it is possible that no condition is true, and the final if does not have a corresponding else. For unique0-if, an implementation shall not issue a warning if it determines that no condition is true.

For unique-if, an implementation shall also issue a violation report if it determines that no condition is true, or it is possible that no condition is true, and the final if does not have a corresponding else. For unique0-if, an implementation shall not issue a violation report if it determines that no condition is true.
A priority-if indicates that a series of if–else–if conditions shall be evaluated in the order listed. In the preceding example, if the variable a had a value of 0, it would satisfy both the first and second conditions, requiring priority logic.

The unique, unique0, and priority keywords apply to the entire series of if–else–if conditions. In the preceding examples, it would have been illegal to insert any of these keywords after any of the occurrences of else. To nest another if statement within such a series of conditions, a begin–end block should be used.

12.4.2.1 Violation reports generated by unique-if, unique0-if, and priority-if constructs
The descriptions in 12.4.2 mention several cases in which a violation report shall be generated by unique-if, unique0-if, or priority-if statements. These violation checks shall be immune to false violation reports due to zero-delay glitches in the active region set (See 4.4.1)
A unique, unique0, or priority violation check is evaluated at the time the statement is executed, but violation reporting is deferred until the Observed region of the current time step (See 4.4).
Once a violation is detected, a pending violation report is scheduled in the Observed region of the current time step. It is scheduled on a violation report queue associated with the currently executing process. A violation report flush point is said to be reached if any of the following conditions are met:

· The procedure, having been suspended earlier due to reaching an event control or wait statement, resumes execution.

· The procedure was declared by an always_comb or always_latch statement, and its execution is resumed due to a transition on one of its dependent signals.
If a violation report flush point is reached in a process, its violation report queue is cleared. Any pending violation reports are discarded.
In the Observed region of each simulation time step, each pending violation report shall mature, or be confirmed for reporting. Once a report matures, it shall no longer be flushed. A tool-specific violation report mechanism is then used to report each violation, and the pending violation report is cleared from the appropriate process violation report queue.
The following is an example of a unique-if that is immune to zero-delay glitches in the active region set:

always_comb begin
 not_a = !a;
end

always_comb begin : a1
 u1: unique if (a)
 z = a | b;
 else if (not_a)
 z = a | c;
end

In this example, unique-if u1 is checking for overlap in the two conditional expressions. When a and not_a are in a state of 0 and 1 respectively and a transitions to 1, this unique-if could be executed while a and not_a are both true, so the violation check for uniqueness will fail. Since this check is in the active region set, the failure is not immediately reported. After the update to not_a, process a1 will be rescheduled, which results in a flush of the original violation report. The violation check will now pass, and no violation will be reported.
Another example shows how looping constructs are likewise immune to zero-delay glitches in the active region set:

always_comb begin
 for (int j = 0; j < 3; j++)
 not_a[j] = !a[j];
end
always_comb begin : a1

 for (int j = 0; j < 3; j++)
 unique if (a[j])
 z[j] = a[j] | b[j];
 else if (not_a[j])
 z[j] = a[j] | c[j];

end
This example is identical to the previous example but adds loop statements. Each loop iteration independently checks for a uniqueness violation in the exact same manner as the previous example. Any iteration in the loop can report a uniqueness violation. If the process a1 is rescheduled, all violations in the loop are flushed and the entire loop is re-evaluated.

12.4.2.2 If statement violation reports and multiple processes
As described in the above subclauses (see 12.4.2 and 12.4.2.1), violation reports are inherently associated with the process in which they are executed. This means that a violation check within a task or function may be executed several times due to the task or function being called by several different processes, and each of these different process executions is independent. The example below illustrates this situation.

module fsm(...);

function bit foo(bit a, bit not_a, …)

 ...

 a1: unique if (a)
 …
 else if (not_a)
 …
endfunction

...

always_comb begin : b1
 some_stuff = foo(c, d, …);

 ...

end

always_comb begin : b2
 other_stuff = foo(e, f, …);

 ...

end

endmodule

In this case, there are two different processes which may call process a1: b1 and b2. Suppose simulation executes the following scenario in the first passage through the Active region of each time step. Note that this example refers to 3 distinct points in simulation time and how glitch resolution is handled for each specific time step:

In time step 1, b1 executes with c=1 and d=1, and b2 executes with e=1 and f=1.

In this first time step, since a1 fails independently for processes b1 and b2, its failure is reported twice.

In time step 2, b1 executes with c=1 and d=1, then again with c=1 and d=0.

In this second time step, the failure of a1 in process b1 is flushed when the process is re-triggered, and since the final execution passes, no failure is reported.

In time step 3, b1 executes with c=1 and d=1, then b2 executes with e=1 and f=0.

In this third time step, the failure in process b1 does not see a flush point, so that failure is reported. In process b2, the violation check passes, so no failure is reported from that process.

Modify Clause 12.5 as follows:
12.5.3 unique-case, unique0-case, and priority-case
The case, casez, and casex keywords can be qualified by priority, unique or unique0 keywords, to perform certain violation checks. These are collectively referred to as a priority-case, unique-case or unique0-case. A priority-case shall act on the first match only. Unique-case and unique0-case assert that there are no overlapping case_items and hence that it is safe for the case_items to be evaluated in parallel.

In unique-case and unique0-case, the case_expression shall be evaluated exactly once and before any of the case_item_expressions. The case_item_expressions may be evaluated in any order and compared in any order. The implementation shall continue the evaluations and comparisons after finding a matching case_item. Unique-case and unique0-case are violated if more than one case_item is found to match the case_expression. The implementation shall issue a warning violation report and execute the statement associated with the matching case_item that appears first in the case statement, but not the statements associated with other matching case_items.
After finding a uniqueness violation, the implementation is not required to continue evaluating and comparing additional case_items. It is not a violation of uniqueness for a single case_item to contain more than one case_item_expressions that matches the case_expression. If a case_item_expressions matches the case_expression, the implementation is not required to evaluate additional case_item_expressions in the same case_item. The implementation is not required to try more than one order of evaluations and comparisons of case_item_expressions. The presence of side-effects in case_item_expressions may cause non-deterministic results.
If the case is qualified as priority or unique, the simulator implementation shall issue a warning message violation report if no case_item matches. If the case is qualified as unique0, the implementation shall not issue a violation report if no case_item matches These warnings can be issued at either compile time or run time, as soon as it is possible to determine the illegal condition. A violation report may be issued at compile time if it is possible then to determine the violation. If it is not possible to determine the violation at compile time, a violation report shall be issued during run time. If the case is qualified as unique0, the implementation shall not issue a violation report if no case_item matches.
NOTE—By specifying unique, unique0, or priority, it is not necessary to code a default case to trap unexpected case values.

Consider the following examples:

bit [2:0] a;

unique case(a) // values 3,5,6,7 cause a warning violation report
0,1: $display("0 or 1");

2: $display("2");

4: $display("4");

endcase

priority casez(a) // values 4,5,6,7 cause a warning violation report
3’b00?: $display("0 or 1");

3’b0??: $display("2 or 3");

endcase

unique0 case(a) // values 3,5,6,7 do not cause a warning violation report
0,1: $display("0 or 1");

2: $display("2");

4: $display("4");

endcase

12.5.3.1 Violation reports generated by unique-case, unique0-case, and priority-case constructs
The descriptions in 12.5.3 mention several cases in which a violation report shall be generated by unique-case, unique0-case, or priority-case statements. These violation checks shall be immune to false violation reports due to zero-delay glitches in the active region set (See 4.4.1).

The mechanics of handling zero-delay glitches shall be identical to those used when processing zero-delay glitches for unique-if, unique0-if, and priority-if constructs (See 12.4.2.1).

The following is an example of a unique-case that is immune to zero-delay glitches in the active region set:
always_comb begin
 not_a = !a;
end

always_comb begin : a1
 unique case (1’b1)
 a : z = b;
 not_a : z = c;
 endcase
end

In this example the unique-case is checking for overlap in the two case_item selects. When a and not_a are in state 0 and 1 respectively and a transitions to 1, this unique-case could be executed while a and not_a are both true, so the violation check for uniqueness will fail. But since this violation check is in the active region set the failure is not reported immediately. After the update to not_a, process a1 will be rescheduled, which results in a flush of the original violation report. The violation check will now pass, and no violation will be reported.

12.5.3.2 Case statement violation reports and multiple processes
Case violation reports shall behave in the same manner as if violation reports when dealing with multiple processes. (See 12.4.2.2).
