
All references are based on P1800-2008 draft 4

In 25.3

CHANGE:

A wildcard import allows all identifiers declared within a package to be imported

provided the identifier is

not otherwise defined in the importing scope:

 import ComplexPkg::*;

A wildcard import makes each identifier within the package a candidate for

import. Each such identifier is

imported only when it is referenced in the importing scope and it is neither

declared nor explicitly imported

into the scope. Similarly, a wildcard import of an identifier is overridden by a

subsequent declaration of the

same identifier in the same scope. If the same identifier is wildcard imported into

a scope from two different packages, the identifier shall be undefined within that

scope, and an error results if the identifier is used.

TO:

A wildcard import is of the following form:

import ComplexPkg::*;

For the purpose of describing how names resolve to wildcard imported declarations we
define what is a locally visible and potentially locally visible name.

Locally visible names are the names of locally visible declarations. It shall

be an error if there is more than one locally visible declaration of

the same name.

A name is locally visible at some point, P, in a scope, S, if one of the

following holds:

1. the name denotes a scope within S

2. the name is declared within S before point P

 3. the name is visible from an import select occurring within S before

point P

 A name is potentially locally visible at some point, P, in a scope, S, if :

 there exist a wildcard import of a package before point P within scope
S and the package contains a declaration of that name.

Additionally a potentially locally visible symbol from a wild card

import may become locally visible if

no locally visible symbol is found and the resolution of an

identifier causes the potentially locally visible name

to become locally visible.

The following paragraph describes how identifiers can be resolved to

wildcard imported declarations.

A wildcard import makes all identifiers declared within a package potential locally visible
symbols in the importing scope, S.

A potentially locally visible symbol may become locally visible during name resolution of
an identifier appearing

in a scope S, in accordance to the following rules:

If the identifier is not a function or task call,

the following search algorithm is repeated for each scope S in the nested lexical
scopes until a declaration is found which matches the identifier name or there is no
more upper lexical scopes. The compilation unit scope being the final scope searched.

A.1 - the locally visible declarations in current scope S are first searched for a match, if a
match is found the identifier is bound to that declaration

A.2- else if no locally visible symbol match, then the potentially locally visible symbols in
the scope S, lexically preceding the identifier name are searched for a match. If a
match is found, the symbol from the package is imported in scope S and becomes a
locally visible declaration in scope S, that declaration is bound to the identifier.

A.3- else current scope S is set to its upper scope

If there are no more lexical scopes, and the identifier cannot be bound, an undeclared
symbol error shall be issued.

If the identifier is a function or task call, the rules are slightly different and follow upwards
hierarchical name resolution (section 22.7).

 B.1- First the entire scope S (all the declarations of locally visible names up to the end

of the scope) is searched for a matching declaration, if a match, the identifier is resolved
to that declaration,

 B.2- else if no match is found, the potentially locally visible symbols from wildcard
imports in current scope S, lexically preceding the identifier name are searched for a
match,

if a match is found, the potential visible symbol becomes locally visible, is imported
in current scope S and bound to that identifier,

 B.3- else if no match is found, current scope S is set to upper scope and
steps B.1, B.2, B.3 are repeated including when S is the compilation unit scope.

B.4. else if no match, steps b and c of the upwards name resolution are executed (the
function and task name are searched up the instance hierarchy).

 If the same name is potentially locally visible from more than one wildcard imported
package in scope S, and those wildcard imports are lexically preceding an identifier of
that name, neither symbols from the packages is made locally visible and the identifier is
not resolved to any of the wildcard imported symbols.

If a wildcard imported symbol is made locally visible in a scope S, any later locally visible
declaration of the same name in scope S shall be illegal.

Example 1:

package p;

 int x;

endpackage

module top;

 import p::*; // line 1

 if (1) begin : b

 initial x = 1; // line 2

 int x; // line 3

 initial x = 1; // line 4

 end

 int x; // line 5

endmodule

The reference in line 2 causes the potentially locally visible x from wildcard import p::*

(p::x) to become locally visible in scope top and line 2 initializes p::x. Line 4

initializes top.b.x. Line 5 is illegal since it is a local declaration in scope top which

conflicts with the name x imported from p which had already become a locally visible

declaration.

Example 2:

package p;

 int x;

endpackage

package p2;

 int x;

endpackage

module top;

 import p::*; // line 1

 if (1) begin : b

 initial x = 1; // line 2

 import p2::*; // line 3

 end

endmodule

Line 2 causes the import of p::x in scope "top" because the wildcard import p::* is in

the outer scope "top" and precedes the occurrence of x. The declaration x from package

p becomes locally visible in scope "top".

 Example 3:

package p;

 function int f();

 return 1;

 endfunction

endpackage

module top;

 int x;

 if (1) begin : b

 initial x = f(); // line 2

 import p::*; // line 3

 end

 function int f();

 return 1;

 endfunction

endmodule

"f()" on line 2 binds to top.f and not to p::f since the import is after the function call

reference.

Example 4:

package p;

 function int f();

 return 1;

 endfunction

endpackage

package p2;

 function int f();

 return 1;

 endfunction

endpackage

module top;

 import p::*;

 int x;

 if (1) begin : b

 initial x = f(); // line 1

 end

 import p2::*;

endmodule

Since "f" is not found in scope b, the rules require inspection of all wildcard imports in

the parent scope. There are two wildcard imports, but only the wildcard import p::* that is

lexically preceding the occurrence of f() is considered. In this case "f" binds to p::f.

In 3.10.1:

CHANGE:

a) All files on a given compilation command line make a single compilation unit

(in which case the declarations within those files are accessible anywhere else
within the constructs defined within those files).

TO:

a) All files on a given compilation command line make a single compilation unit

(in which case the declarations within those files are accessible following normal

visibility rules throughout the entire set of files anywhere else within the

constructs defined within those files).

CHANGE:

When an identifier is referenced within a scope:

— First, the nested scope is searched (see 22.7) (including nested module

declarations), including any identifiers made available through package

import declarations.

— Next, the compilation-unit scope is searched (including any identifiers

made available through package import declarations).

— Finally, the instance hierarchy is searched (see 22.6).

TO:

When an identifier is referenced within a scope:

— First, the nested scope is searched (see 22.7) (including nested module

declarations), including any identifiers made available through package

import declarations.

— Next, the portion of the compilation-unit scope defined prior to the

reference is searched (including any identifiers made available through

package import declarations).

— Finally, if the identifier follows hierarchical name resolution rules, the

instance hierarchy is searched (see 22.6 and 22.7).

CHANGE:

For example:

bit b;

task foo;

int b;

b = 5 + $unit::b; // $unit::b is the one outside

endtask

TO:

For example:

bit b;

task foo t;

int b;

b = 5 + $unit::b; // $unit::b is the one outside

endtask

Other than for task and function names (see 22.7.1), references shall only be made

to names already defined in the compilation unit. The use of an explicit $unit::

prefix only provides for name disambiguation and does not add the ability to refer

to later compilation unit items.

For example:

task t;

 int x;

x = 5 + b; // illegal – “b” is defined

later

x = 5 + $unit::b; // illegal – $unit adds no

special forward referencing

endtask

bit b;

Add the following to the end of Clause 13:

13.7 Task and Function names

Task and function names are resolved following slightly different rules than other

references. Even when used as a simple name, a task or function name follows a

modified form of the upwards hierarchical name resolution rules. This means that

“forward” references to a task or function defined later in the same or an

enclosing scope can be resolved. See Section 22.7.1 for the rules that govern task

and function name resolution.

Add the following to the end of Section 22.7:

22.7.1 Task and Function name resolution

Task and function names are resolved following slightly different rules than other

references. Task and function name resolution follows the rules for upwards

hierarchical name resolution as described in 22.7, step (a). Then, before

proceeding with step (b), an implementation shall look in the complete

compilation unit of the reference. If a task or function with a matching name is

found there, the name resolves to that task or function. Only then does the

resolution proceed with step (b) and iterate as normal. The special matching

within the compilation unit shall only take place the first time through the

iteration through steps (a)-(c); a task or function name shall never match a task or

function in a compilation unit other than the compilation unit enclosing the

reference.

Example:

task t;

 int x;

x = f(1); // valid reference to

function f in $unit scope

endtask

function int f(int y);

 return y+1;

endfunction

Example:

package p;

 function void f();

 $display("p::f");

 endfunction

endpackage

module top;

 import p::*;

 if (1) begin : b // generate block

 initial f(); // reference to “f”

 function void f();

 $display("top.b.f");

 endfunction

 end

endmodule

The resolution of the name f follows the hierarchical rules and therefore is

resolved to the function top.b.f. The output of the example would be the

output of the string “top.b.f”.

