Mantis 1465
Clarify module port declaration rules
In Section 22.2.2.1

CHANGE

Each port_identifier in a port_expression in the list of ports for the module declaration shall also be declared in the body of the module as one of the following port declarations: input, output, or inout (bidirectional). This is in addition to any other data type declaration for a particular port.
TO

Each port_identifier in a port_expression in the list of ports for the module declaration shall also be declared in the body of the module as one of the following port declarations: input, output, or inout (bidirectional), ref, or as an interface port (See Clause 24). This is in addition to any net or variable declaration for a particular port_identifier. other data type declaration for a particular port.
In Section 22.2.2.3

CHANGE

For the first port, if neither a type nor a direction is specified, then it shall be assumed to be a member of a port list, and any port direction or type declarations must be declared after the port list. If the first port kind or data type is specified, but no direction is specified, then the port direction shall default to inout. If the first port direction is specified, but no port kind or data type is specified, then the port shall default to a net of net type wire. This default net type can be changed using the ‘default_nettype compiler directive.

// Any declarations must follow the port list because first port does not

// have either a direction or type specified; Port directions default to inout

module mh4(x, y);

wire x;

tri0 y;

...

endmodule
For subsequent ports in the port list, if the direction and the port kind and data type are omitted, then the direction and any port kind and data type are inherited from the previous port. If the direction is omitted, but a port kind or data type is present, then the direction is inherited from the previous port. If the direction is present, but the port kind and data type are omitted, then the port shall default to a net of net type wire. This default net type can be changed using the ‘default_nettype compiler directive.

// second port inherits its direction and data type from previous port

module mh3 (input byte a, b);

...

endmodule
For input and inout ports, if the port kind is omitted, then the port shall default to a net of net type wire. This default net type can be changed using the `default_nettype compiler directive.

// the inout port defaults to a net of net type wire

module mh2 (inout integer a);

...

endmodule
For output ports, if the port kind is omitted, the default port kind depends on how the data type is specified. If the port is declared without the data_type syntax, then the port kind defaults to a net of the default net type. If the data type is declared with the data_type syntax, the port kind defaults to variable.

TO (INCLUDES FORMATTING CHANGE, FROM REGULAR TEXT TO DASHED ITEM LISTS)
For the first port,: 

· If the direction, port kind, and data type are all omitted, then the port shall be assumed to be a member of a non-ANSI style list_of_ports, and port direction and type declarations shall be declared after the port list. 

· If the direction and port kind are present, but the data type is omitted, then the data type shall default to logic.
· If the port kind and/or data type is specified, but no direction is specified, then the port direction shall default to inout. 

· If only the direction is specified, then the port shall default to a net of default net type. The default net type can be changed using the ‘default_nettype compiler directive.

// Declarations must follow the port list because first port does not

// have either a direction or type specified
module mh4(x, y);

input wire x;

output tri0 y;

...

endmodule
For subsequent ports in the port list: 

· If the direction, port kind and data type are all omitted, then they are inherited from the previous port. 

· If the direction is omitted, but a port kind or data type is present, then the direction is inherited from the previous port. 

· If the direction is present, but the port kind and data type are omitted, then the port shall default to a net of default net type.
· If the direction and port kind are present, but the data type is omitted, then the data type shall default to logic.
· If the direction and data type are present, but the port kind is omitted, then the port kind shall be determined as specified below.
// second port inherits its direction and data type from previous port

module mh3 (input byte a, b);

...

endmodule
If the port kind is omitted: 

· For input and inout ports, the port shall default to a net of default net type.
· For output ports, the default port kind depends on how the data type is specified:
· If the port is declared without the data_type syntax, the port kind defaults to a net of default net type. 
· If the port is declared with the data_type syntax, the port kind defaults to variable.
// the inout port defaults to a net of net type wire

module mh2 (inout integer a);

...

endmodule

In Section 23.3
CHANGE

23.3 The program construct

A typical program contains type and data declarations, subroutines, connections to the design, and one or more procedural code streams. The connection between design and testbench uses the same interconnect mechanism used to specify port connections, including interfaces. 
TO

23.3 The program construct

A typical program contains type and data declarations, subroutines, connections to the design, and one or more procedural code streams. The connection between design and testbench uses the same interconnect mechanism used to specify port connections, including interfaces. Program port declaration syntax and semantics are the same as those of modules (see 22.2.2). 

In Section 24.4

CHANGE

24.4 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to connect to a port with the same nets and variables. To share an external net or variable, one that makes a connection from outside of the interface as well as forming a common connection to all module ports that instantiate the interface, an interface port declaration is required. The difference between nets or variables in the interface port list and other nets or variables within the interface is that only those in the port list can be connected externally by name or position when the interface is instantiated.

TO

24.4 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to connect to a port with the same nets and variables. To share an external net or variable, one that makes a connection from outside of the interface as well as forming a common connection to all module ports that instantiate the interface, an interface port declaration is required. The difference between nets or variables in the interface port list and other nets or variables within the interface is that only those in the port list can be connected externally by name or position when the interface is instantiated. Interface port declaration syntax and semantics are the same as those of modules (see 22.2.2).
