FROM

6.5 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups

differ in the way that they are assigned and hold values. They also represent different hardware structures.

...

Variables can be written by one or more procedural statements, including procedural continuous assignments.

The last write determines the value. Variables can be written by one continuous assignment or one

port. It shall be an error to have multiple continuous assignments or a mixture of procedural and continuous

assignments writing to any term in the expansion of a written longest static prefix of a variable (see 11.5.3

for the definition of the expansion of a longest static prefix). The force statement overrides the procedural

assign statement, which in turn overrides the normal assignments.
Variables can be packed or unpacked aggregates of other types (see 7.4 for packed and unpacked types).

Multiple assignments made to independent elements of a variable are examined individually. An assignment

where the left-hand side contains a slice is treated as a single assignment to the entire slice. It shall be an

error to have a packed structure or array type written with a mixture of procedural and continuous assignments.

Thus, an unpacked structure or array can have one element assigned procedurally and another element

assigned continuously. And, elements of a packed structure or array can be assigned with multiple

continuous assignments, provided that each bit is covered by no more than a single continuous assignment.

For example, assume the following structure declaration:

struct {

bit [7:0] A;

bit [7:0] B;

byte C;

} abc;

The following statements are legal assignments to struct abc:

assign abc.C = sel ? 8'hBE : 8'hEF;

not (abc.A[0],abc.B[0]),

(abc.A[1],abc.B[1]),

(abc.A[2],abc.B[2]),

(abc.A[3],abc.B[3]);

always @(posedge clk) abc.B <= abc.B + 1;

The following additional statements are illegal assignments to struct abc:

// Multiple continuous assignments to abc.C

assign abc.C = sel ? 8'hDE : 8'hED;

// Mixing continuous and procedural assignments to abc.A

always @(posedge clk) abc.A[7:4] <= !abc.B[7:4];

For the purposes of the preceding rule, a declared variable initialization or a procedural continuous assignment

is considered a procedural assignment. A force statement is neither a continuous nor a procedural

assignment. A release statement shall not change the variable until there is another procedural assignment

or shall schedule a reevaluation of the continuous assignment driving it. A single force or release statement

shall not be applied to a whole or part of a variable that is being assigned by a mixture of continuous

and procedural assignments.
TO

6.5 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups

differ in the way that they are assigned and hold values. They also represent different hardware structures.
...

Variables can be written by one or more procedural statements, including procedural continuous assignments.

The last write determines the value. Alternately, vVariables can be written by one continuous assignment or one

port.
It shall be an error to have multiple continuous assignments or a mixture of procedural and continuous

assignments writing to any term in the expansion of a written longest static prefix of a variable (see 11.5.3

for the definition of the expansion of a longest static prefix). The force statement overrides the procedural

assign statement, which in turn overrides the normal assignments.

Variables can be packed or unpacked aggregates of other types (see 7.4 for packed and unpacked types). Multiple assignments made to independent elements of a variable are examined individually. Independent elements include different members of a struct, or different elements of an array. Each bit in a packed type is also an independent element. Thus, in an aggregate of packed types, each bit in the aggregate is an independent element.
It shall be an error to have a packed structure or array type written with a mixture of procedural and continuous assignments. Thus, an unpacked structure or array can have one element assigned procedurally, and another element assigned continuously. And, elements of a packed structure or array can be assigned with multiple continuous assignments, provided that each bit element is covered by no more than a single continuous assignment.
The precise rule is that it shall be an error to have multiple continuous assignments or a mixture of procedural and continuous assignments writing to any term in the expansion of a written longest static prefix of a variable (see 11.5.3 for the definition of the expansion of a longest static prefix).
For example, assume the following structure declaration:

struct {

bit [7:0] A;

bit [7:0] B;

byte C;

} abc;

The following statements are legal assignments to struct abc:

assign abc.C = sel ? 8'hBE : 8'hEF;

not (abc.A[0],abc.B[0]),

(abc.A[1],abc.B[1]),

(abc.A[2],abc.B[2]),

(abc.A[3],abc.B[3]);

always @(posedge clk) abc.B <= abc.B + 1;

The following additional statements are illegal assignments to struct abc:

// Multiple continuous assignments to abc.C

assign abc.C = sel ? 8'hDE : 8'hED;

// Mixing continuous and procedural assignments to abc.A[3]

always @(posedge clk) abc.A[7:4][7:3]<= !abc.B[7:4][7:3];

For the purposes of the preceding rule, a declared variable initialization or a procedural continuous assignment

is considered a procedural assignment. The force statement overrides the procedural assign statement, which in turn overrides the normal assignments. A force statement is neither a continuous nor a procedural
assignment. A release statement shall not change the variable until there is another procedural assignment

or shall schedule a reevaluation of the continuous assignment driving it. A single force or release statement

shall not be applied to a whole or part of a variable that is being assigned by a mixture of continuous

and procedural assignments.
