
Section 19.9

Severity System Tasks

Description
Currently System Verilog does not provide any standard way to specify severity information while printing
user-defined general error messages. The Assertion severity system tasks could be used for that purpose,
but they are currently only permitted in SVA action blocks. It would be valuable for users if these tasks
were allowed anywhere $display is allowed. This will provide an easy and standard way to print info,
warning, and error messages from general Verilog code.

Suggested Resolution
In Clause 19.9, change:

19.9 Assertion severity Severity tasks

In Table Syntax-19-9, change:

assert_severity_message_task ::=
fatal_message_task
| nonfatal_message_task

Table Syntax-19-9, change the table description:

Syntax 19-9—Assertion sSeverity system task syntax (not in Annex A)

In the body of Clause 19.9, change:

SystemVerilog assertions have has a severity level associated with any assertion failures detected. By default,
the severity of an assertion failure is “error”. The severity levels can be specified by including one of the
following severity system tasks in the assertion fail statement:

— $fatal shall generate a run-time fatal assertion error, which terminates the simulation with an error code.
The first argument passed to $fatal shall be consistent with the corresponding argument to the Verilog $finish
system task, which sets the level of diagnostic information reported by the tool. Calling $fatal results in an
implicit call to $finish.

— $error shall be a run-time error.

— $warning shall be a run-time warning, which can be suppressed in a tool-specific manner.

— $info shall indicate that the failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message, indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— The file name and line number of the assertion statement

— The hierarchical name of the assertion if it is labeled or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also report the simulation run time at which the severity system task is
called.

Each of the severity tasks can include optional user-defined information to be reported. The user-defined
message shall use the same syntax as the Verilog $display system task and can include any number of
arguments.

SystemVerilog provides special text messaging system tasks that can be used to flag various exception
conditions. The tasks are defined as follows:

— $fatal shall generate a run-time fatal error, which terminates the simulation with an error code. The first
argument passed to $fatal shall be consistent with the corresponding argument to the $finish system
task (see 19.2), which sets the level of diagnostic information reported by the tool. Calling $fatal results in
an implicit call to $finish.

— $error shall indicate a run-time error.

— $warning shall indicate a run-time warning.

— $info shall indicate that the message carries no specific severity.

Each of the severity system tasks can include optional user-defined information to be reported. The user-
defined message shall use the same syntax as the $display system task (see 20.2.1) and thus can include
any number of arguments.

All of the severity system tasks shall print a tool-specific message, indicating the severity of the exception
condition, and specific information about the condition, which shall include the following information:

— The file name and line number of the severity system task call.

— The hierarchical name of the scope in which the severity system task call is made.

— For simulation tools, the simulation run time at which the severity system task is called.

In Clause 19.1, change:

Assertion severity tasks (19.9)

To

Assertion sSeverity tasks (19.9)

In Clause 16.3, change:

Because the assertion is a statement that something must be true, the failure of an assertion shall have a
severity associated with it. By default, the severity of an assertion failure is error. Other severity levels can be
specified by including one of the following severity system tasks in the action block: fail statement:
The information about assertion failure can be printed using one of the following severity system tasks in the
action block.

— $fatal is a run-time fatal.
— $error is a run-time error.
— $warning is a run-time warning.
— $info indicates that the assertion failure carries no specific severity.

The syntax for these severity system tasks is shown in 19.9.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless
$assertfailoff is used to suppress the failure. a toolspecific option, such as a command-line option, is
enabled to suppress the failure.

In Clause 16.3, delete:

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure and
specific information about the specific failure, which shall include the following information:

— The file name and line number of the assertion statement.

— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as $display.

If more than one of these system tasks is included in the else clause action block, then each shall be
executed as specified.

In clause 16.3, change:

The display of messages of warning and information types can be controlled by a tool-specific option, such as
a command-line option.

The severity system tasks can be used in assertion pass or fail statements. These tasks shall print the same
tool-specific message when used either in a pass or a fail statement. For example:

assert_foo : assert(foo) $info("passed"); else $error(“failed");

In Clause 16.14.1, change:

The action_block shall not include any concurrent assert, assume, or cover statement. The action_block,
however, can contain immediate assertion statements.

The conventions regarding default severity (error) and the use of severity system tasks in concurrent assertion
action blocks shall be the same as those specified for immediate assertions in 16.3.

The pass and fail statements of an assert statement are executed in the Reactive region. The regions of
execution are explained in the scheduling semantics in Clause 9.

