
PROPOSAL: Clarify LRM description of streaming operators

Relates to: svdb-1707, svdb-1384
Applies to: IEEE P1800/D3a, 2007

This is the clean copy of clause 11.4.15 as modified by proposal 1707-jb3, with
additional edits as required by 1384. Text in blue is provisionally inferred from
Mantis 1384.

Version 2, 5-July-2007:
Minor editorial changes

Version 3, 13-July-2007:
Fixed oversights, and changes discussed at SV-EC meeting of 9 July 2007

11.4.15 Streaming operators (pack/unpack)

The bit-stream casting described in 6.24.3 is most useful when the conversion operation can be easily
expressed using only a type cast and the specific ordering of the bit stream is not important. Sometimes,
however, a stream that matches a particular machine organization is required. The streaming operators
perform packing of bit-stream types (see 6.24.3) into a sequence of bits in a user-specified order. When
used in the left-hand side, the streaming operators perform the reverse operation, i.e., unpack a stream of
bits into one or more variables.

If the data being packed contains any 4-state types, the result of a pack operation is a 4-state stream;
otherwise, the result of a pack is a 2-state stream. In the remainder of this clause (11.4.15) the word bit,
without other qualification, denotes either a 2-state or a 4-state bit as required by this paragraph.

The syntax of the bit-stream concatenation is as follows:

streaming_concatenation ::= { stream_operator [slice_size] stream_concatenation } // from A.8.1

stream_operator ::= >> | <<

slice_size ::= simple_type | constant_expression

stream_concatenation ::= { stream_expression { , stream_expression } }

stream_expression ::= expression [with [array_range_expression]]

array_range_expression ::=
expression
| expression : expression
| expression +: expression
| expression -: expression

primary ::= // from A.8.4
...
| streaming_concatenation

Syntax 11-10—Streaming concatenation syntax (excerpt from Annex A)

A streaming_concatenation (as specified in the syntax above) shall be used either as the target of an
assignment, or as the source of an assignment, or as the operand of a bit-stream cast, or as a

stream_expression in another streaming_concatenation. Use of streaming_concatenation as the target of
an assignment, and the associated unpack operation, is described in sub-clause 11.4.15.3 below.

It shall be an error to use a streaming_concatenation as an operand in an expression without first casting
it to a bit-stream type. When a streaming_concatenation is used as the source of an assignment, the target
of that assignment shall be either a data object of bit-stream type or a streaming_concatenation.

If the target is a data object of bit-stream type, the stream created by the source streaming_concatenation
shall be implicitly cast to the type of the target. If this target represents a fixed-size variable and the
stream is larger than the variable, an error will be generated. If the target variable is larger than the
stream, the stream is left-aligned and zero-filled on the right. If the target represents a dynamically sized
variable, such as a queue or dynamic array, the variable is resized to accommodate the entire stream. If,
after resizing, the variable is larger than the stream, the stream is left-aligned and zero-filled on the right.

The pack operation performed by a streaming_concatenation is here described in two steps for
convenience, but the intermediate result between the two steps is never visible and therefore tools are free
to implement it in any way that yields the same overall result. First, all integral data in the
stream_expressions are concatenated into a single stream of bits, similarly to bit-stream casting (as
described in clause 6.24.3) but with fewer restrictions. Second, the resulting stream may be re-ordered in
a manner specified by the stream_operator and slice_size. These two steps are described in more detail in
sub-clauses 11.4.15.1 and 11.4.15.2 below.

11.4.15.1 Concatenation of stream_expressions

Each stream_expression within the stream_concatenation, starting with the leftmost and proceeding from
left to right through the comma-separated list of stream_expressions, is converted to a bit-stream and
appended to a packed array (stream) of bits, the generic stream, by recursively applying the following
procedure:

if the expression is a streaming_concatenation or it is of any bit-stream type
it shall be cast to a packed array of bit using a bit-stream cast, including casting 2-state to 4-state
if necessary, and that packed array shall then be appended to the right-hand end of the generic
stream;

else if the expression is an unpacked array (i.e. a queue, dynamic array, associative array or fixed-
size unpacked array)

this procedure shall be applied in turn to each element of the array. An associative array is
processed in index-sorted order. Other unpacked arrays are processed in the order in which they
would be traversed by a foreach loop (see 12.7.3) having exactly one index variable;

else if the expression is of a struct type
this procedure shall be applied in turn to each element of the struct, in declaration order;

else if the expression is of an untagged union type
this procedure shall be applied to the first-declared member of the union;

else if the expression is a null class handle
the expression shall be skipped (not streamed), and a warning may be issued;

else if the expression is a non-null class handle
this procedure shall be applied in turn to each data member of the referenced object, and not the
handle itself. Class members shall be streamed in declaration order. Extended class members
shall be streamed after the members of their superclass. It shall be an error if the object has any
local or protected data members that would not otherwise be accessible from the scope in which
the streaming_concatenation occurs. The result of streaming an object hierarchy that contains
cycles shall be undefined, and an error may be issued;

else

the expression shall be skipped (not streamed), and an error shall be issued.

In the description above, the phrase skipped (not streamed) means that the expression in question is not
appended to the stream, and operation of the procedure then proceeds with the next item in turn.
Implementations are not required to continue the procedure after issuing an error.

11.4.15.2 Re-ordering of the generic stream

The stream resulting from the operation described in sub-clause 11.4.15.1 is then re-ordered by slicing it
into blocks and then re-ordering those blocks.

The slice_size determines the size of each block, measured in bits. If a slice_size is not specified, the
default is 1. If specified, it may be a constant integral expression, or a simple type. If a type is used, the
block size shall be the number of bits in that type. If a constant integral expression is used, it shall be an
error for the value of the expression to be zero or negative.

The stream_operator << or >> determines the order in which blocks of data are streamed: >> causes
blocks of data to be streamed in left-to-right order, while << causes blocks of data to be streamed in right-
to-left order. Left-to-right streaming using >> shall cause the slice_size to be ignored, and no re-ordering
performed. Right-to-left streaming using << shall reverse the order of blocks in the stream, preserving
the order of bits within each block. For right-to-left streaming using <<, the stream is sliced into blocks
with the specified number of bits, starting with the right-most bit. If as a result of slicing the last (left-
most) block has fewer bits than the block size, the last block has the size of the remaining bits; there is no
padding or truncation.

For example:
int j = { "A", "B", "C", "D" };

{ >> {j}} // generates stream "A" "B" "C" "D"

{ << byte {j}} // generates stream "D" "C" "B" "A" (little endian)

{ << 16 {j}} // generates stream "C" "D" "A" "B"

{ << { 8'b0011_0101 }} // generates stream 'b1010_1100 (bit reverse)

{ << 4 { 6'b11_0101 }} // generates stream 'b0101_11

{ >> 4 { 6'b11_0101 }} // generates stream 'b1101_01 (same)

{ << 2 { { << { 4'b1101 }} }} // generates stream 'b1110

11.4.15.3 Streaming concatenation as an assignment target (unpack)

When a streaming_concatenation appears as the target of an assignment, the streaming operators perform
the reverse operation; i.e. to unpack a stream of bits into one or more variables. The source expression
shall be of bit-stream type, or the result of another streaming_concatenation. If the source expression
contains more bits than are needed, the appropriate number of bits shall be consumed from its left (most
significant) end. However, if more bits are needed than are provided by the source expression, an error
shall be generated.

Unpacking a 4-state stream into a 2-state target is done by casting to a 2-state type, and vice versa. Null
handles are skipped by both the pack and unpack operations; therefore, the unpack operation shall not
create class objects. If a particular object hierarchy is to be reconstructed from a stream, the object
hierarchy into which the stream is to be unpacked must be created before the streaming operator is
applied. Streaming into a target object of class type does not modify any internal properties of the object
(such as, for example, its random number generator seed, or its constraint mode).

For example:
logic [10:0] up [3:0];

logic [11:1] p1, p2, p3, p4;

bit [96:1] y = {>>{ a, b, c }}; // OK: pack a, b, c

int j = {>>{ a, b, c }}; // error: j is 32 bits < 96 bits

bit [99:0] d = {>>{ a, b, c }}; // OK: b is padded with 4 bits

{>>{ a, b, c }} = 23'b1; // error: too few bits in stream

{>>{ a, b, c }} = 96'b1; // OK: unpack a = 0, b = 0, c = 1

{>>{ a, b, c }} = 100'b1; // OK: unpack as above (4 bits unread)

{ >> {p1, p2, p3, p4}} = up; // OK: unpack p1 = up[3], p2 = up[2],

 // p3 = up[1], p4 = up[0]

11.4.15.4 Streaming dynamically sized data

Remaining text as per P1800/D3a sub-clause 11.4.15.1

Jonathan Bromley, 13 July 2007

