
CASE STATEMENT ENHANCEMENT PROPOSAL IDEA

THE PROBLEM

Related to unique and priority assertion processing is the problem of making a default
assignment before entering unique (or priority) case and then only doing update
assignments.

Don & Heath are well aware of the simple 2-to-4 decoder example that we use when
teaching synthesis with full_case, priority case or unique case

always_comb begin
 y = '0;
 unique case ({en,a})
 3'b100: y[a]='1;
 3'b101: y[a]='1;
 3'b110: y[a]='1;
 3'b111: y[a]='1;
 endcase
end

In this example, if you remove the unique keyword, this simulates and synthesizes to a
very efficient 2-to-4 decoder, but with the unique keyword, this still simulates like a 2-to-
4 decoder and issues a run-time warning whenever en=0 and the always_comb block is
executed. It also optimizes away the en-input to give the wrong logic when synthesized.

If the default (y = '0;) assignment could be moved to just inside of the case statement
and always executed before testing the other case items, the problem would be solved.

I had looked into putting the "default" statement before the other case items and
requiring the default to be executed always before the case items, but this coding style
was already legal in Verilog and I believe Steve Sharp mentioned that some users had
coded that way expecting default actions to be taken only if another case items did not
execute (dang!)

I have tried to think of a solution that does not require another keyword and that would
still make coding sense, and I think I have a possible solution. There is also precedent
for the solution inside of UDPs.

PROPOSAL

Allow the keyword initial to be used inside of a case statement, immediately after
the case expression. If used, the initial statement, which could include begin-end code,
shall be required to be listed first after the case expression. Placing the initial keyword
after any case item shall be a syntax error.

The initial statement would always be executed any time the case statement is
executed, then testing of subsequent case items would proceed as normal with only one
additional case-item or default match permitted.

The syntax (not semantics) is similar to the initial statement that is allowed inside of a
UDP, so the syntax would not be particularly strange.

Possible restrictions?
• Perhaps no LHS delays or RHS blocking delays should be permitted(??)
• No @(edge) or wait statements should be permitted(??)
• Nonblocking assignments SHOULD be permitted
• Nonblocking assignments with RHS delays SHOULD be permitted

Adding initial to a case statement effectively kills any priority assertion testing (because
code WILL be executed every time the case statement is executed - similar to adding a
default-case). Unique testing shall still look for overlap between all case items after the
initial statement. Unique shall not fail if both the initial statement and one other case
item or default can execute.

Re-examining the above example using the case-initial statement:. Note that there is no
warning if enable is 0 (unlike example above) and pre-synthesis & post-synthesis
results will be the same (no synthesis mis-match).

always_comb begin
 unique case ({en,a})
 initial: y ='0; // clear all y outputs -
 3'b100: y[a]='1; // set just one y-output
 3'b101: y[a]='1; // if enable is true
 3'b110: y[a]='1;
 3'b111: y[a]='1;
 endcase
end

Another decoder example - before and after initial

// Infers latches because only one output is set
// and default is never executed
always_comb begin
 unique case ({en,a})
 3'b100: y[a]='1; // set just one y-output
 3'b101: y[a]='1; // if enable is true
 3'b110: y[a]='1;
 3'b111: y[a]='1;
 default: y ='0; // skip if enable is true
 endcase
end

// NO latches because all outputs are cleared each time
// the case statement is executed before one output is set
always_comb begin
 unique case ({en,a})
 initial: y ='0; // clear all y outputs -
 3'b100: y[a]='1; // set just one y-output
 3'b101: y[a]='1; // if enable is true
 3'b110: y[a]='1;
 3'b111: y[a]='1;
 endcase
end

The follow-on question is, should this capability be added to if-else-if statements??

Cliff tends to say "no" because it is not as clean to make an initial output assignment
after the first if-expression and expect it to execute even if the first if-expression is false.
Case statements postpone if-testing until the first case item is compared to that which
was placed in the case expression (cleaner for this purpose).

