
Generate construct in sequences and properties

Objectives:

Generate

Allow nested sequence and let declarations in sequence declarations, and property, sequence and let
declarations inside property declarations.

Allow generate construct inside sequence and property declarations, but only over nested sequence and
property declarations.

The use of keywords generate - endgenerate is mandatory.

A separate set of BNF non-terminal nodes is created, defining the construct allowed inside such generate
blocks.

7.6 Declaring sequences

REPLACE

A sequence can be declared in
 — A module
 — An interface
 — A program
 — A clocking block
 — A package
 — A compilation-unit scope

WITH

A sequence can be declared in
 — A module
 — An interface
 — A program
 — A clocking block
 — A package
 — A compilation-unit scope
 — Another sequence
 — A property

REPLACE

Variables used in a sequence that are not formal arguments to the sequence are resolved according to the
scoping rules from the scope in which the sequence is declared.

WITH

Variables used in a sequence that are not formal arguments to the sequence are resolved according to the
scoping rules from the scope in which the sequence is declared. This also means that if a sequence or a
property contains a declaration of a local variable, the variable is directly visible throughout its body and thus
also in any sequence declared within. That variable can thus be read or assigned. The variable flow rules are
verified once the declared sequences are instantiated.

INSERT before 17.6.1

The following example shows a local declaration of a sequence in another sequence:

sequence rule_1;
 sequence s_local;
 a ##1 b ##1 c;
 endsequence
@(posedge sysclk)
 trans ##1 start_trans ##1 s_local ##1 end_trans;
endsequence

This is equivalent to the following sequence:

sequence rule_1;
@(posedge sysclk)
 trans ##1 start_trans ##1 a ##1 b ##1 c ##1 end_trans;
endsequence

It is illegal to reference sequence declarations within another sequence or property from the outside of the
enclosing sequence or property.

For example, the following reference to s_local is illegal:

sequence rule_2;
 trans #sequence #1 bad_start ##1 rule_1.s_local;
endsequence

In Table Syntax 17-4, and A.2.10

REPLACE

sequence declaration ::=
sequence sequence_identifier [([tf_port_list])] ;
 {assertion_variable_declaration} sequence_expr ;
endsequence [: sequence identifier]

WITH

sequence declaration ::=
 sequence sequence_identifier [([tf_port_list])] ;
 {sequence_or_generate_item}
 sequence_expr ;
 endsequence [: sequence_identifier]

sequence_or_generate_item
 sequence_item
 | sequence_generate_region

sequence_item ::=
 assertion_variable_declaration
 | sequence_declaration
 | let_declaration

sequence_generate_region ::=
 generate { sequence_generate_item } endgenerate

sequence generate item ::=
 sequence_loop_generate_construct
 | sequence_conditional_generate_construct
 | sequence_item

sequence_loop_generate_construct ::=
 for (genvar_initialization ; genvar_expression ; genvar_iteration)
 sequence_generate_block

sequence_conditional_generate_construct ::=
 sequence_if_generate_construct
 | sequence_case_generate_construct

sequence_if_generate_construct ::=
 if (constant_expression) sequence_generate_block_or_null [else
sequence_generate_block_or_null]

sequence_case_generate_construct ::=
 case (constant_expression) sequence_case_generate_item { case_generate_item } endcase

sequence_case_generate_item ::=
 constant_expression { , constant_expression } : sequence_generate_block_or_null
 | default [:] sequence_generate_block_or_null

sequence_generate_block_or_null ::= sequence_generate_block | ;

sequence_generate_block ::=
 sequence_generate_item
 | [generate_block_identifier :] begin [: generate_block_identifier]
 { sequence_generate_item }
 end [: generate_block_identifier]

INSERT

17.6.2 Generate constructs in sequence declaration

Generate constructs provide the ability for actual arguments to affect the sequence implementation, thus
making sequences more flexible and generic. Since generate schemes are evaluated during the model
elaboration all their control expressions should be known at the elaboration time.

Consider the following example.

sequence follows(a, b, n);
 generate
 if (n > 0) begin : seq
 sequence a_to_b;
 a ##1 !a[*(n-1)] ##1 b;
 endsequence
 end : seq
 else if (n == 0) begin : seq
 sequence a_to_b;
 a && b;
 endsequence
 end : seq
 else begin : seq
 sequence a_to_b;
 b ##1 !a[*(n-1)] ##1 a;
 endsequence
 end : seq
 endgenerate
 seq.a_to_b; //instantiate the generated sequence
endsequence

This sequence states that b should be asserted in n cycles after a has been asserted for the last time. If n is
negative then b precedes the next occurrence of a by n cycles. E.g., follows(read, write, 3) will be
expanded into read ##1 !read[*2] ##1 write, follows(read, write, -3) will be expanded into
write ##1 !read[*2] ##1 read, and follows(read, write, 0) into read && write.

In the following example, the generate construct builds a concatenation (##1) of subsequences, each of which
is of length 1 over a bit from a vector passed as argument to the top sequence definition. Compile-time
message is used to indicate if the vector is just a scalar (see Compile-time user messages. Note to the editor
please insert cross reference)

sequence s(vect);
 generate
 if ($bits(vect) == 1) begin : err $comp_error("not a vector"); end
 for (genvar i = 0; i < $bits(vect); i++) begin : Loop
 if (i==0) begin : Cond
 sequence t; vect[0]; endsequence
 end : Cond
 else begin : Cond
 sequence t; vect[i] ##1 Loop[i-1].Cond.t; endsequence
 end : Cond
 end : Loop
 endgenerate
 Loop[$bits(vect)-1].Cond.t;
endsequence

17.8 Manipulating data in a sequence

REPLACE

To access a local variable of a subsequence, a local variable must be declared and passed to the instantiated
subsequence through an argument. The example below illustrates this usage.

sequence sub_seq2(lv);
 (a ##1 !a, lv = data_in) ##1 !b[*0:$] ##1 b && (data_out == lv);
endsequence
sequence seq2;
 int v1;

 c ##1 sub_seq2(v1) ##1 (do1 == v1); // v1 is now bound to lv
endsequence

WITH

To access a local variable of a subsequence, a local variable must be declared and passed to the instantiated
subsequence through an argument. The example below illustrates this usage.

sequence sub_seq2(lv);
 (a ##1 !a, lv = data_in) ##1 !b[*0:$] ##1 b && (data_out == lv);
endsequence
sequence seq2;
 int v1;
 c ##1 sub_seq2(v1) ##1 (do1 == v1); // v1 is now bound to lv
endsequence

If sub_seq2 is declared as a local sequence declaration within seq2 then the local variable v1 is visible
inside sub_seq2 and need not be passed as an argument, as shown in the following example:

sequence seq2;
 int v1;
 sequence sub_seq2;
 (a ##1 !a, v1 = data_in) ##1 !b[*0:$] ##1 b && (data_out == v1);
 endsequence
 c ##1 sub_seq2(v1) ##1 (do1 == v1);
endsequence

17.11 Declaring properties

REPLACE

A property can be declared in any of the following:
 — A module
 — An interface
 — A program
 — A clocking block
 — A package
 — A compilation-unit scope

WITH

A property can be declared in any of the following:
 — A module
 — An interface
 — A program
 — A clocking block
 — A package
 — A compilation-unit scope
 — Another property

In 17.11.3

REPLACE

A named property can be instantiated by referencing its name. A hierarchical name can be used, consistent
with the SystemVerilog naming conventions. Like sequence declarations, variables used within a property
that are not formal arguments to the property are resolved hierarchically from the scope in which the
property is declared.

WITH

A named property can be instantiated by referencing its name. A hierarchical name can be used, consistent
with the SystemVerilog naming conventions. Like sequence declarations, variables used within a property
that are not formal arguments to the property are resolved hierarchically from the scope in which the
property is declared.
If a property is declared within another property, then the local variables declared in the enclosing property
are visible in the locally declared property and thus need not be passed as arguments.

It is illegal to refer to locally declared properties of a property from the outside of the enclosing property.

In Table Syntax 17-14, and A.2.10

REPLACE

property_declaration ::=
 property property_identifier [([tf_port_list])] ;
 { assertion_variable_declaration }
 property_spec ;
 endproperty [: property_identifier]

WITH

property_declaration ::=
 property property_identifier [([tf_port_list])] ;
 {property_or_generate_item}
 property_spec ;
 endproperty [: property_identifier]

property_or_generate_item ::=
 property_item
 | property_generate_region

property_item ::=
 sequence_item
 | property_declaration

property_generate_region ::=
 generate { property_generate_item } endgenerate

property generate item ::=
 property_loop_generate_construct
 | property_conditional_generate_construct
 | property_declaration
 | sequence_item

property_loop_generate_construct ::=
 for (genvar_initialization ; genvar_expression ; genvar_iteration)
 property_generate_block

property_conditional_generate_construct ::=
 property_if_generate_construct
 | property_case_generate_construct

property_if_generate_construct ::=
 if (constant_expression) property_generate_block_or_null [else
property_generate_block_or_null]

property_case_generate_construct ::=
 case (constant_expression) property_case_generate_item { case_generate_item } endcase

property_case_generate_item ::=
 constant_expression { , constant_expression } : property_generate_block_or_null
 | default [:] property_generate_block_or_null

property_generate_block_or_null ::= property_generate_block | ;

property_generate_block ::=
 property_generate_item
 | [generate_block_identifier :] begin [: generate_block_identifier]
 { property_generate_item }
 end [: generate_block_identifier]

INSERT

17.11.4 Generate constructs in property declaration

Note to editor: Shift the numeration of the following subsections accordingly.

Generate constructs provide the ability for actual arguments to affect the property implementation, thus
making properties more flexible and generic. Since generate schemes are evaluated during the model
elaboration all their control expressions should be known at the elaboration time.

Consider the following example.
sequence s(x , n);
 x[*n];
endsequence

// Assumed n > 0
property p(a, b, m, n);
 generate
 if (m >= 0) begin : prop
 property a_b;
 a |-> b[*m : n];
 endproperty
 end : prop

 else begin : prop
 property a_b;
 b |-> s(a, m).ended ##0 a[*0 : n];
 endproperty
 end : prop
 endgenerate
 prop.a_b; // instantiate generated property
endproperty

This property states that when a happens, b should be asserted in the the time window [m:n]. If m is negative
then b should be asserted starting from –mth cycle before the occurrence of a until the nth cycle after it.

Generate constructs may be used together with the type query functions (Note to editor: Put a reference here),
as shown in the following example:

property weak_until(p, q);
 generate
 if ($isintegral(q)) begin : prop
 property p;
 !q [*1: $] |-> p;
 endproperty
 end : prop
 else begin : prop
 property p;
 q or (p and (1 ’b1 |=> weak_until(p, q)));
 endproperty
 end : prop
 endgenerate
 prop.p; // instantiate generated property
endproperty

When the second argument of the property weak_until is boolean, the property may be specified directly,
while in the general case the recursive form is required. Direct form is usually more efficient for the
simulation, and the case when q is boolean is common in practice. Using generate constructs thus allows a
more efficient implementation for special cases, while the implementation details are transparent to the end
user.

NOTES:

1. As the syntax indicates, it is required to explicitly specify generate block within the property.
Omitting could lead to a less intuitive code.

2. A sequence shall have exactly one sequence_expr upon its generate block instantiation. This
sequence_expr shall be the last sequence_item.

3. A property shall have exactly one property_spec upon its generate block instantiation. This
property_spec shall be the last property_item.

NOTE Change numbering for Recursive properties from 17.11.4 to 17.11.5 and shift numbering

In Recursive properties

REPLACE

For example:

property prop_always(p);

 p and (1'b1 |=> prop_always(p));
endproperty

is a recursive property that says that the formal argument property p must hold at every cycle. This example
is useful if the ongoing requirement that property p hold applies after a complicated triggering condition
encoded in sequence s:

property p1(s,p);
 s |=> prop_always(p);
endproperty

WITH

For example:

property prop_always(p);
 p and (1'b1 |=> prop_always(p));
endproperty

is a recursive property that says that the formal argument property p must hold at every cycle. This example
is useful if the ongoing requirement that property p hold applies after a complicated triggering condition
encoded in sequence s:

property p1(s,p);
 s |=> prop_always(p);
endproperty

If prop_always is not to be used anywhere outside of p1 then it is more appropriate to declared
prop_always as a local property of p1, as shown in the following example:

property p1(s,p);
 property prop_always;
 p and (1'b1 |=> p);
 endproperty
 s |=> prop_always(p);
endproperty

Note that p in property_always is bound to the formal argument of p1 because the property
prop_always is declared within the body of p1.

