
Add the following section

11.6.1 Processes spawned by functions using fork..join_none

Functions in SystemVerilog shall execute with no delay. Thus, the process calling a function shall return

immediately (in the same simulation time). However, functions may spawn arbitrary background processes

by executing fork..join_none blocks provided that the process calling the function originates in an initial

block. The fork..join_none blocks may contain any statements that are legal in tasks. Calling a function that

executes a fork..join_none block shall be illegal in any context in which a side effect is disallowed or any

context other than procedural code originating in an initial block. Examples of such illegal contexts are

continuous assignments, nonblocking assignments, always_comb blocks, static variable declaration

initializers, elaboration-time calls, and concurrent assertions. Implementations shall issue an error either at

compile time or run time when they have determined the illegal condition.

Examples of a legal and illegal usage of fork..join_none in function are shown below.

class IntClass;

 int a;

endclass

IntClass address, stack;

function automatic bit watch_for_zero(IntClass p);

 fork

 forever @ p.a begin

 if(p.a == 0) $display(“Unexpected zero”);

 end

 join_none

 return(p.a == 0);

endfunction

function bit start_check();

 return(watch_for_zero(address) | watch_for_zero(stack));

endfunction

bit y = watch_for_zero(stack); // illegal

initial if(start_checks()) $display (“OK”); // legal

initial fork
 if(start_checks()) $display(“OK too”); // legal

 join_none

