OVERVIEW:

Formal arguments to properties and sequences arentty defined for some but not all possible
types. The objective of this proposal is to expinadist of types so that everything that is alldwe
be passed as an argument can be passed as arypeeat.

The standard currently defines only operand types {7.4.1). Arguments that are not covered by
the current type definitions include “property” etgience”, and “events”

New Types are proposed as follows:
0 sequence: sequence instances are passed as typecseq
0 property: property instances are passed as tygefy

0 event: this is used for passing arguments (4.8)afeused for clocking purposes

Examples have been improved.

The following describes the detailed changes thitbe required in the standard. All changes are
RELATIVE to the revisions of Mantis 928. Also, thhange of Mantis 1532 is assumed: “Remove
@sequence_instance from event_control to takeafa®quences with arguments”

REPLACE

A.2.10 Assertion declarations
property_actual_arg ::=
sequence_actual_arg
| property_instance

property_formal_type ::=
data_type_or_implicit

sequence_formal_type ::=
data_type_or_implicit

sequence_actual_arg ::=
event_expression

WITH

A.2.10 Assertion declarations
property_actual_arg ::=
sequence_actual_arg
| property_instance

property_formal_type ::=

sequence_formal_type
| property

sequence_formal_type ::=
data_type_or_implicit
| sequence
| event

sequence_actual_arg ::=
event_expression

REPLACE Syntax 17-2 and Syntax 17-4 from section 17.5 and 17.6, respectively

sequence_formal_type ::=
data_type_or_implicit

WITH

sequence_formal_type ::=
data_type_or_implicit
| sequence
| event

REPLACE

17.6.1 Typed formal arguments in sequence declarations

Formal arguments of sequences can optionally keltypo declare a type for a formal argument of a
sequence, it is required to prefix the argumerth @itype. A formal argument that is not prefixed by
a type shall be untyped. A type name can referdonama separated list of arguments. Untyped
arguments must therefore be listed before any tgpgdments.

Exporting values of local variables through typedrial arguments is not supported.

The supported data types for sequence formal amysraee the types that are allowed for operands
in assertion expressions (seé4.]). The assignment rules for assigning actual argtiexpressions
to formal arguments, at the time of sequence itistizon, are the same as the general rules foigdoin
assignment of a typed variable with a typed exjpreqgseeClause 3.

For example, two equivalent ways of passing argtsrere shown below. The first has untyped
arguments, and the second has typed arguments:

sequence rule6_with_no_type(X, y);
##1 x ##[2:10] y;
endsequence

sequence rule6_with_type(bit x, bit vy
##1 x ##[2:10] v;
endsequence

Another example, in which a local variable is usedample a formal argument, shows how to get
the effect of “pass by value”. Pass by value isaustently supported as a mode of argument
passing.

sequence foo(bit a, bit b);
bit loc_a;

(1'bl, loc_a =a) ##0

(t ==loc_a) [*0:$] ##1 b;
endsequence

WITH

17.6.1 Typed formal arguments in sequence declarations

Formal arguments of sequences can optionally beltypo declare a type for a formal argument of a
sequence, it is required to prefix the argumerth witype. A formal argument that is not prefixgd b
a type will be untyped When a type is specified, that type is enfotmpdemantic check# type

name can refer to a comma separated list of argsnidntyped arguments must therefore be listed
before any typed arguments.

Exporting values of local variables through typedrial arguments is not supported.

The supported data types for sequence formal amgraee the types that are allowed for operands
in assertion expressions (seé4.]). Sequence instances may be typed usingélogience type.

The assignment rules for assigning actual argumamiessions to formal arguments, at the time of
seguence instantiation, are the same as the geaksfor doing assignment of a typed variable
with a typed expression (s€dause 4.

For example, twaimilar ways of passing arguments are shown below. Thehfirs untyped
arguments, and the secdmakequivalenttyped argumentsThe first example does not specify any
types, so the types of the actual arguments inatadtare used for semantic checks. Similarly, in
the second example, “w” has no specified type edytpe of the actual argument instantiated is used
for semantic checks. Arguments “x” and “y” will beincated to typéit, and argument “z” will be
truncated or extended as necessary to make ipebiyt e.

sequence rule6_with_no_type(w, X, Y, z);
w ##1 x ##[2:10] y ##1 z == 8'hFF;

endsequence

sequence rule6_with_type_ 1(w, bit x,v, byte 2);
w ##1 x ##[2:10] y ##1 z == 8'hFF;

endsequence

Any integer type can be used to pass delay andtiepezalues. For example, two equivalent ways
of passing delay and repetition arguments are shahaw:

sequencealelay_arg_exampleshortint delayl, delay2, min, max
X ##delayl y[*min:max] ##delay2 z;
endsequence

“definemy_delay 2
cover property (delay_arg_example ("my_delay, ‘my_delay-1, 3, $)

which is equivalent to

cover property (x ##2 y[*3:$] ##1 ¥
Parentheses are implicit for passing complex esres as arguments. Actual arguments that
consist of complex expressions are checked at ¢®mnpie for compatibility with the types of the
corresponding formal arguments.
When an argument typeeévent , semantic checks ensure that the argument isahdegnt
expression and that it is used for clocking purpo$he event_expression argument replaces the
entire content of the event argument in @ (eveéty. legal event_expression is allowed. The
following shows an example of passing events:

sequenceevent_arg_exampleeventclock)

@(clock) x ##1 y;

endsequence

cover property vent_arg_examgleosedgeclk));

is equivalent to:

cover property (@(posedge clk) x ##1 v));

If the intent is to pass only a signal that is aotentire event_expression, then the argument lnaust
passed as a signal type, not event. For example,

sequenceevent_arg_examplereg clock)
@(posedge clock) x ##1 v;
endsequence

cover property vent_arg_examplek));

is equivalent to:
cover property (@(posedge clk) x ##1 v));

Another example, in which a local variable is usedample a formal argument, shows how to get
the effect of “pass by value”. Pass by value isauotently supported as a mode of argument
passing.

sequence foo(bit a, bit b);
bit loc_a;

(1'bl, loc_a = a) ##0

(t==loc_a) [*1:$] ##1 b;
endsequence

REPLACE Syntax 17-14 from section 17.11

property_formal_type ::=
data_type_or_implicit

WITH

property_formal_type ::=
data—tyje—or—implicit

sequence_formal_type
| property

REPLACE
17.11.1 Typed formal arguments in property declarations

Formal arguments of properties can optionally Ipedy To declare a type for a formal argument of a
property, it is required to prefix the argumenthndt type. A formal argument that is not prefixed by
a type shall be untyped. A type name can refer torama separated list of arguments. Untyped
arguments must therefore be listed before any tgpgdments.

The supported data types for property formal arguisnere the types that are allowed for operands
in assertion expressions (seé4.)). The assignment rules for assigning actual argtsrie formal
arguments, at the time of property instantiation,the same as the general rules for doing
assignment of a typed variable

with another typed expression (s&ause .

For example, below are two equivalent ways of pasarguments. The first has untyped arguments,
and the second has typed arguments:

property rule6_with_no_type(x, y);
##1 x |-> ##[2:10] v;

endproperty

property rule6_with_type(bit x, bit vy
##1 x |-> ##[2:10] y;
endproperty

WITH

17.11.1 Typed formal arguments in property declarations

Formal arguments of properties can optionally Ipedy To declare a type for a formal argument of a
property, it is required to prefix the argumenthndt type. A formal argument that is not prefixed by
a type shall be untyped. A typesrecan refer to a comma separated list of argumebistyped
arguments must therefore be listed before any tgpgdments.

The supportedatatypes for propertyormal arguments include all the types that amenadtl for
sequences plus the addition of the oper t y type. Specifically, all types that are allowed as
operands in assertion expressions (see 17.4.8)laned as formal argumentSequence instances
may be typed using tleequence type. Property instances may be typed usingttuper ty

type.

The assignment rules for assigning actual argunteritémal arguments, at the time of property
instantiation, are the same as the general rutegofog assignment of a typed variable with another
typed expression (s€dause ¥

For examples of using formal arguments, refer tbice 17.6.1.

