
IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 59

6. Data Declarations

6.1 Introduction

NOTES:  

There are several forms of data in SystemVerilog: literals (see Clause 3), parameters (see Clause 22 6.3), constants, variables,
nets, and attributes (see Clause 7 4.17). A data object is a named entity that has a data value associated with it, such as a
parameter, a variable, or a net. 

Verilog constants are literals, genvars parameters, localparams and specparams. Verilog also has variables and nets. Variables
must be written by procedural statements, and nets must be written by continuous assignments or ports.

SystemVerilog extends the functionality of variables by allowing them to either be written by procedural statements or driven
by a single continuous assignment, similar to a wire. Since the keyword reg no longer describes the users intent in many
cases, the keyword logic is added as a more accurate description that is equivalent to reg. See 6.9.2 for details on System-
Verilog type equivalence rules. Verilog has already deprecated the use of the term register in favor of variable. 

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The rules for
implicit nets are the same as in Verilog. 

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage allocated on
entry to a scope (such as a task, function or block) and de-allocated on exit). C has the keywords static and auto. System-
Verilog follows Verilog in respect of the static default storage class, with automatic tasks and functions, but allows static
to override a default of automatic for a particular variable in such tasks and functions.

SystemVerilog extends the set of data types that are available for modeling Verilog storage and transmission elements. In
addition to the Verilog data types, new predefined data types and user-defined data types can be used to declare constants,
variables, and nets. 

6.2 Data declaration syntax
   

Syntax 6-1—Data declaration syntax (excerpt from Annex A)

6.3 Constants

Constants are named data variables that never change. There are three kinds of constants, declared with the key-
words localparam, specparam and const, respectively. Verilog provides three constructs for defining com-
pile elaboration-time constants: the parameter, localparam and specparam statements declarations.

data_declaration15 ::= 
[ const ] [ lifetime ] variable_declaration data_type_or_implicit list_of_variable_decl_assignments ; 

| type_declaration 
| package_import_declaration 
| virtual_interface_declaration 

net_declaration14 ::= 
net_type [ drive_strength | charge_strength ] [ vectored | scalared ] 

data_type_or_implicit [ delay3 ] list_of_net_decl_assignments ; 
lifetime ::= static | automatic 

14. A charge strength shall only be used with the trireg trireg keyword. When the vectored vectored or sca-
lared scalared keyword is used, there shall be at least one packed dimension. 

15. In a data_declaration that is not within the procedural context, it shall be illegal to use the automatic automatic
keyword. In a data_declaration, it shall be illegal to omit the explicit data_type before a
list_of_variable_decl_assignments unless the var keyword is used. 

// from A.2.1.3



IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
60 This is an unapproved IEEE Standards Draft, subject to change.

All three can be initialized with a literal.

localparam byte colon1 = ":" ;
specparam delay = 10 ; // specparams are used for specify blocks 
const logic flag = 1 ;

The language Verilog provides four methods for setting the value of parameter constants in a design. Each
parameter must be assigned a default value when declared. The default value of a parameter of an instantiated
module can be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.g. foo #(value, value) u1 (...); ) 

— Explicit in-line parameter redefinition (e.g. foo #(.name(value), .name(value)) u1 (...); )

— defparam statements, using hierarchical path names to redefine each parameter

NOTE—The defparam statement might be removed from future versions of the language. See 25.2.



IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 61

6.3.1 Parameter declaration syntax
 

Syntax 6-1—Parameter declaration syntax (excerpt from Annex A)

6.3.2 Value parameters 

A module, interface, program or class can have parameters, which are set during elaboration and are constant
during simulation. They are defined with data types and default values. With SystemVerilog, if no data type is
supplied, parameters default to type logic of arbitrary size for Verilog compatibility and interoperability. For
compatibility with Verilog, if no data type is supplied, the type is determined when the value is determined. 

local_parameter_declaration ::= 
localparam data_type_or_implicit list_of_param_assignments ; 

| localparam type list_of_type_assignments ; 
parameter_declaration ::= 

parameter data_type_or_implicit list_of_param_assignments 
| parameter type list_of_type_assignments 

specparam_declaration ::= 
specparam [ packed_dimension ] list_of_specparam_assignments ; 

data_type_or_implicit ::= 
data_type 

| [ signing ] { packed_dimension } 
type_reference ::= 

type ( expression28 ) 
| type ( data_type ) 

list_of_param_assignments ::= param_assignment { , param_assignment } 
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment } 
list_of_type_assignments ::= type_assignment { , type_assignment } 
param_assignment ::= 

parameter_identifier { unpacked_dimension } = constant_param_expression 
specparam_assignment ::= 

specparam_identifier = constant_mintypmax_expression 
| pulse_control_specparam 

type_assignment ::= 
type_identifier = data_type 

| type_identifier = $typeof ( expression28 ) 
| type_identifier = $typeof ( data_type ) 

parameter_port_list ::= 
# ( list_of_param_assignments { , parameter_port_declaration } ) 

| # ( parameter_port_declaration { , parameter_port_declaration } ) 
| #( ) 

parameter_port_declaration ::=
parameter_declaration 

| data_type list_of_param_assignments 
| type list_of_type_assignments 

28. The An expression that is used as the argument to the $typeof system function shall contain no hierarchi-
cal references in a type_reference shall not contain any hierarchical references or references to elements of
dynamic objects. 

// from A.2.1.1

// from A.2.2.1

// from A.2.3

// from A.2.4

// from A.1.3



IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
62 This is an unapproved IEEE Standards Draft, subject to change.

In an assignment to, or override of, a parameter without an explicit type declaration, the type of the right-hand
expression shall be unsized, real or integral. If the expression is real, the parameter is real. If the expression is
integral, the parameter is a logic vector of the same size with range [size-1:0]. In an assignment to, or over-
ride of, a parameter with an explicit type declaration, the type of the right-hand expression shall be assignment
compatible with the declared type. 

Unlike non-local parameters, local parameters can be declared in a generate block, in a package, or in a compila-
tion unit scope. In these contexts, the parameter keyword can be used as a synonym for the localparam key-
word. 

6.3.2.1 $ as a parameter value

$ can be assigned to parameters of integer types. A parameter to which $ is assigned shall only be used wherever
$ can be specified as a literal constant.

For example, $ represents unbounded range specification, where the upper index can be any integer.

parameter r2 = $;
property inq1(r1,r2);

@(posedge clk) a ##[r1:r2] b ##1 c |=> d;
endproperty 
assert inq1(3);

To support whether a constant is $, a system function is provided to test whether a constant is a $. The syntax of
the system function is

$isunbounded(const_expression);

$isunbounded returns true if const_expression is unbounded. Typically, $isunbounded would be used as a
condition in the generate statement.

The example below illustrates the benefit of using $ in writing properties concisely where the range is parameter-
ized. The checker in the example ensures that a bus driven by signal en remains 0, i.e, quiet for the specified min-
imum (min_quiet) and maximum (max_quiet) quiet time.

Note that NOTE—The function $isunbounded is used for checking the validity of the actual arguments. 

interface quiet_time_checker #(parameter min_quiet = 0,
parameter max_quiet = 0)
(input logic clk, reset_n, logic [1:0]en); 

generate 
if ( max_quiet == 0) begin 

property quiet_time;
@(posedge clk) reset_n |-> ($countones(en) == 1);

endproperty 
a1: assert property (quiet_time);

end 
else begin 

property quiet_time;
@(posedge clk)

(reset_n && ($past(en) != 0) && en == 0)
|->(en == 0)[*min_quiet:max_quiet]

##1 ($countones(en) == 1);
endproperty 
a1: assert property (quiet_time);

end 
if ((min_quiet == 0) && ($isunbounded(max_quiet))

$display(warning_msg);



IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 63

endgenerate 
endinterface 

quiet_time_checker #(0, 0) quiet_never (clk,1,enables);
quiet_time_checker #(2, 4) quiet_in_window (clk,1,enables);
quiet_time_checker #(0, $) quiet_any (clk,1,enables);

Another example below illustrates that by testing for $, a property can be configured according to the require-
ments. When parameter max_cks is unbounded, it is not required to test for expr to become false.

interface width_checker #(parameter min_cks = 1, parameter max_cks = 1)
(input logic clk, reset_n, expr);

generate 
if ($isunbounded(max_cks)) begin 

property width;
@(posedge clk)

(reset_n && $rose(expr)) |-> (expr [* min_cks]);
endproperty 
a2: assert property (width);

end 
else begin 

property assert_width_p;
@(posedge clk) 

(reset_n && $rose(expr)) |-> (expr[* min_cks:max_cks])
##1 (!expr);

endproperty 
a2: assert property (width);

end 
endgenerate 

endinterface 

width_checker #(3, $) max_width_unspecified (clk,1,enables);
width_checker #(2, 4) width_specified (clk,1,enables);

6.3.3 Type parameters 

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to have
data whose type is set for each instance.

module ma #( parameter p1 = 1, parameter type p2 = shortint )
(input logic [p1:0] i, output logic [p1:0] o);

p2 j = 0; // type of j is set by a parameter, (shortint unless redefined) 
always @(i) begin 

o = i; 
j++; 

end 
endmodule 

module mb;
logic [3:0] i,o;
ma #(.p1(3), .p2(int)) u1(i,o); //redefines p2 to a type of int 

endmodule 

In an assignment to, or override of, a parameter without an explicit type declaration, the type of the right-hand
expression shall be unsized, real or integral. If the expression is real, the parameter is real. If the expression is



IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
64 This is an unapproved IEEE Standards Draft, subject to change.

integral, the parameter is a logic vector of the same size with range [size-1:0]. In an assignment to, or over-
ride of, a parameter with an explicit type declaration, the type of the right-hand expression shall be assignment
compatible with the declared type. In an assignment to, or override of, a type parameter, the right-hand expres-
sion shall represent a data type.

It is an error to override a type parameter with a defparam statement. 

6.3.4 Parameter port lists 

SystemVerilog also adds the ability to omit the parameter keyword in a parameter port list. 

class vector #(size = 1);
logic [size-1:0] v;

endclass 

typedef vector#(16) word;

interface simple_bus #(AWIDTH = 64, type T = word) (input bit clk) ;
endinterface 

In a list of parameters, a parameter can depend on earlier parameters. In the following declaration, the default
value of the second parameter depends on the value of the first parameter. The third parameter is a type, and the
fourth parameter is a value of that type.

module mc # (int N = 5, M = N*16, type T = int, T x = 0)
 ( ... );
...
endmodule 

6.3.5 Const constants 

SystemVerilog adds another form of a local constant, const. A const form of constant differs from a
localparam constant in that the localparam must be set during elaboration, whereas a const can be set dur-
ing simulation, such as in an automatic task. 

A value parameter or local parameter (parameter, localparam or specparam) can only be set to an expres-
sion of literals, value parameters or local parameters, genvars, enumerated names, or a constant function of these.
Package references are allowed. Hierarchical names are not allowed. A specparam can also be set to an expres-
sion containing one or more specparams. 

A data-type parameter (parameter type) can only be set to a data-type. Package references are allowed. Hier-
archical names are not allowed. 

A specparam can also be set to an expression containing one or more specparams. 

A static constant declared with the const keyword can only be set to an expression of literals, parameters, local
parameters, genvars, enumerated names, a constant function of these, or other constants. The parameters, local
parameters or constant functions can have hierarchical names because constants declared with the const key-
word are calculated after elaboration. An automatic constant declared with the const keyword can be set to any
expression that would be legal without the const keyword. Hierarchical names are allowed because constants
declared with the const keyword are calculated after elaboration. 

const logic option = a.b.c ;

A constant expression contains literals and other named constants.

An automatic constant declared with the const keyword can be set to any expression that would be legal without
the const keyword. 



IEEE P1800/D5, June 7, 2005

Copyright © 2005 by the IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 65

An instance of a class (an object handle) can also be declared with the const keyword. 

const class_name object = new(5,3);

This means that the object acts like a variable that cannot be written. The arguments to the new method must be
constant expressions. The members of the object can be written (except for those members that are declared
const). 

SystemVerilog enhancements to parameter and localparam constant declarations are presented in Clause 22.
SystemVerilog does not change specparam constants declarations. A const form of constant differs from a
localparam constant in that the localparam must be set during elaboration, whereas a const can be set dur-
ing simulation, such as in an automatic task. 

6.4 Variables

One form of variable declaration consists of a data type followed by one or more instances.

shortint s1, s2[0:9];

Another form of variable declaration begins with the keyword var. The data type is optional in this case. If a data
type is not specified then the data type logic shall be inferred. 

var byte my_byte; // equivalent to "byte my_byte;" 
var v; // equivalent to "var logic v;" 
var [15:0] vw; // equivalent to "var logic [15:0] vw;" 
var enum bit { clear, error } status; 
input var logic data_in;
var reg r; 

A variable can be declared with an initializer, for example: 

int i = 0;

In Verilog, an initialization value specified as part of the declaration is executed as if the assignment were made
from an initial block, after simulation has started. Therefore, the initialization can cause an event on that variable
at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration (including static
class members) shall occur before any initial or always blocks are started, and so does not generate an event.
If an event is needed, an initial block should be used to assign the initial values.

In Verilog, an initialization value specified as part of the declaration is executed as if the assignment were made
from an initial block, after simulation has started. In SystemVerilog, setting the initial value of a static vari-
able as part of the variable declaration (including static class members) shall occur before any initial or
always blocks are started. 

Initial values in SystemVerilog are not constrained to simple constants; they can include run-time expressions,
including dynamic memory allocation. For example, a static class handle or a mailbox can be created and initial-
ized by calling its new method (see 14.3.1), or static variables can be initialized to random values by calling the
$urandom system task. This requires a special pre-initial pass at run-time.

The following table contains the default values for SystemVerilog variables.


