
Issue #266 - Negative vote from Entity #6 - Version #3

Cliff-notes - Version #3 - DONE!!

I have examined and proposed fixes for normative notes.

There were a few notes that I was unsure of. See 8.16, 12.17, 29.5.2,
30.2.2.2, 32.2, E.8.2,

Consider this entire document to be my proposal to fix Negative Issue #266
(with the six exceptions above to be "friendly-amended" or fixed).

Regards - Cliff Cummings

Issue #266 Comments

In many places throughout the LRM, the usage of "Note" and "Notes" is not
correct. In IEEE standards, notes are informative and not a required part of
the standard. It is clear that in many places in the LRM there are notes that
are both intended to be normative and are required for proper
implementation of the standard.

I believe that IEEE standards also require that notes be in a separate
paragraph and use a smaller font. In many places in the LRM, there are
sentences (often in the middle of a paragraph) that begin with "Note..." but
are not in a smaller font. It is unclear as to whether these notes are meant to
be an informative notes, or an important normative fact that users and/or
implementers need to observe. All usage's of the word "Note" "note,"
"NOTE," "Notes," "notes" and "NOTES" should be reviewed and brought
into IEEE standards compliance.

Clauses that should be reviewed as to whether the terms "note" or "notes"
are correctly used as only informative text include:

3.8
WAS: Note that the C-like alternative '{1, 1.0, 2, 2.0} is not allowed.
PROPOSED: The C-like alternative '{1, 1.0, 2, 2.0} for the preceding
example is not allowed.

4.3.3
WAS: Note that the signed keyword is part of Verilog.
PROPOSED: The signed keyword in the preceding example is part of
Verilog.

4.7.2
WAS: Note: str.putc(j, x) is semantically equivalent to str[j] = x.
PROPOSED: The putc method assignment str.putc(j, x) is semantically
equivalent to str[j] = x.

4.7.3
WAS: Note: x = str.getc(j) is semantically equivalent to x = str[j].
PROPOSED: The getc method assignment x = str.getc(j) is semantically
equivalent to x = str[j].

4.9 (multiple occurrences)
A type can be used before it is defined, provided it is first identified as a type by an
empty typedef:

 typedef foo;
 foo f = 1;
 typedef int foo;

WAS: Note that this does not apply to enumeration values, which must be
defined before they are used.
PROPOSED: An empty typedef shall not be allowed with enumeration
values. Enumeration values must be defined before they are used.

Sometimes a user-defined type needs to be declared before the contents of the type has
been defined. This is of use with user-defined types derived from enum, struct, union,
and class. For an example, see 12.24. Support for this is provided by the following forms
for typedef: ...

WAS: Note that, while this is useful for coupled definitions of classes as
shown in 12.24, it cannot be used for coupled definitions of structures, since
structures are statically declared and there is no support for pointers to
structures.

PROPOSED: While an empty user-defined type declaration is useful for
coupled definitions of classes as shown in 12.24, it cannot be used for
coupled definitions of structures, since structures are statically declared and
there is no support for pointers to structures.

4.11
The text preceding this note is about packed unions (?? should "normal" union and
"normal" structures both be changed to "unpacked"??)

WAS: Note that writing one member and reading another is independent of
the byte ordering of the machine, unlike a normal union of normal
structures, which are C-compatible and have members in ascending address
order.
PROPOSED: With packed unions, writing one member and reading another
is independent of the byte ordering of the machine, unlike a unpacked union
of unpacked structures, which are C-compatible and have members in
ascending address order.

4.13
WAS: Note that although a class is a type, there are no variables or
expressions of class type directly, only class object handles that are singular.
So classes need not be categorized in this manner (see Clause 12 on classes).
PROPOSED: Although a class, as described in Clause 12, is a type, there are
no variables or expressions of class type directly, only class object handles
that are singular. So classes need not be categorized in this manner.

4.14
WAS: Note that the bit data type loses X values. If these are to be preserved,
the logic type should be used instead.
No change required - this is just an informative reminder of the behavior of the bit type,
which is adequately defined elsewhere in the standard.

4.15
WAS: Note: $cast is similar to the dynamic_cast function available in C++,
but, $cast allows users to check if the operation will succeed, whereas
dynamic_cast always raises a C++ exception.

No change required - this is just an informative comparison to the dynamic casting
capability of C++.

5.2
The preceding text in this paragraph is:
When assigning to an unpacked array, the source and target must be arrays with the same
number of unpacked dimensions, and the length of each dimension must be the same.
Assignment to an unpacked array is done by assigning each element of the source
unpacked array to the corresponding element of the target unpacked array. The leftmost
element of the source array corresponds to the leftmost element of the target array. ...

WAS: Note that an element of an unpacked array can be a packed array.
PROPOSED: Each element of an unpacked array that is assigned to the
corresponding element of another unpacked array can itself be a packed
array.

5.3
WAS: Note that the dimensions declared following the type and before the
name ([3:0][7:0] in the preceding declaration) vary more rapidly than the
dimensions following the name ([1:10] in the preceding declaration).
PROPOSED: In a multidimensional declaration, the dimensions declared
following the type and before the name ([3:0][7:0] in the preceding
declaration) vary more rapidly than the dimensions following the name
([1:10] in the preceding declaration).

5.6.2
WAS: Note: The size method is equivalent to $size(addr, 1).
PROPOSED: The size dynamic array method is equivalent to $size(addr, 1)
array query system function (see Clause 24.7).

5.8
WAS: Note that unsized dimensions can occur in dynamic arrays and in
formal arguments of import DPI functions. If one dimension of a formal is
unsized, then any size of the corresponding dimension of an actual is
accepted.

PROPOSED: If one dimension of a formal is unsized (unsized dimensions
can occur in dynamic arrays and in formal arguments of import DPI
functions) then any size of the corresponding dimension of an actual is
accepted.

5.14.1 (multiple occurrences)
WAS: — An invalid index (i.e., a 4-state expression with X's or Z's, or a
value that lies outside 0...$+1) shall cause a write operation to be ignored
and a run-time warning to be issued. Note that writing to Q[$+1] is legal.
PROPOSED: — An invalid index (i.e., a 4-state expression with X's or Z's,
or a value that lies outside 0...$+1) shall cause a write operation to be
ignored and a run-time warning to be issued; however, writing to Q[$+1] is
legal.

WAS: NOTE: Queues and dynamic arrays have the same assignment and
argument passing semantics.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note. This note just helps the reader recognize an interesting fact
about queues and dynamic arrays)

6.6 (multiple occurrences)
WAS: Note that in SystemVerilog, data can be declared in unnamed blocks
as well as in named blocks.
PROPOSED: In SystemVerilog, data can be declared in unnamed blocks as
well as in named blocks.

The text preceding the following note/paragraph is about declared for-loop variables and
class methods and how they are by default automatic. Swapping the order of the
sentences in the paragraph seems to help.

WAS: Note that automatic or dynamic variables cannot be written with
nonblocking or continuous assignments. Automatic variables and dynamic
constructs—objects handles, dynamic arrays, associative arrays, strings, and
event variables—shall be limited to the procedural context.

PROPOSED: Automatic variables and dynamic constructs—objects handles,
dynamic arrays, associative arrays, strings, and event variables—shall be

limited to the procedural context. Automatic or dynamic variables cannot be
written with nonblocking or continuous assignments.

6.7
WAS: Note that a SystemVerilog variable cannot have an implicit
continuous assignment as part of its declaration, the way a net can. An
assignment as part of the logic declaration is a variable initialization, not a
continuous assignment. For example:
PROPOSED: Unlike SystemVerilog nets, a SystemVerilog variable cannot
have an implicit continuous assignment as part of its declaration. An
assignment as part of the logic declaration is a variable initialization, not a
continuous assignment. For example:

6.9
WAS: Note that there is no category for identical types defined here because
there is no construct in the SystemVerilog language that requires it. For
example, as defined below, int can be interchanged with bit signed [31:0]
wherever it is syntactically legal to do so. Users can define their own level of
type identity by using the $typename system function (see 24.3), or through
use of the PLI.
PROPOSED: SystemVerilog does not require a category for identical types
to be defined here because there is no construct in the SystemVerilog
language that requires it. For example, as defined below, int can be
interchanged with bit signed [31:0] wherever it is syntactically legal to do
so. Users can define their own level of type identity by using the $typename
system function (see 24.3), or through use of the PLI.

6.9.1
WAS: Two array types match if they have the same number of unpacked
dimensions and their slowest-varying dimensions have matching types and
the same left and right range bounds. Note that the type of the slowest
varying dimension of a multidimensional array type is itself an array type.
PROPOSED: ???
I do not even understand the note in this paragraph and the accompanying examples did
not clarify the point of confusion. Does someone else want to understand this note
enough to make a proposal??

6.9.2
WAS: Note that if any bit of a packed structure or union is 4-state, the entire
structure or union is considered 4-state.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note and separate into a separate paragraph)
Note that if any bit of a packed structure or union is 4-state, the entire structure or union
is considered 4-state (see Clause 4.11).
(Adding the supporting section number would be useful)

8.3
The preceding text in this paragraph is:
In SystemVerilog, an expression can include a blocking assignment, provided it does not
have a timing control.

WAS: Note that such an assignment must be enclosed in parentheses to
avoid common mistakes such as using a=b for a==b, or a|=b for a!=b.
PROPOSED: These blocking assignments must be enclosed in parentheses
to avoid common mistakes such as using a=b for a==b, or a|=b for a!=b.

8.12
WAS: Note that unlike bit concatenation, the result of a string concatenation
or replication is not truncated.
PROPOSED: Unlike bit concatenation, the result of a string concatenation
or replication is not truncated.

8.13.2
WAS: Note that the default keyword applies to members in nested
structures or elements in unpacked arrays in structures.
PROPOSED: Use of the default keyword applies to members in nested
structures or elements in unpacked arrays in structures.

8.16 (multiple occurrences)
For example, suppose there is a structure type float:
 typedef struct {
 bit sign;
 bit [3:0] exponent;
 bit [10:0] mantissa;
 } float;

...
bind + function float fcopyf(float); // unary +
bind + function float fcopyi(int); // unary +
bind + function float fcopyr(real); // unary +
bind + function float fcopyr(shortreal); // unary +
...

WAS: Note that the function prototype does not need to match the actual
function declaration exactly. If it does not, then the normal implicit casting
rules apply when calling the function. For example the fcopyi function can
be defined with an int argument:
 function float fcopyi (int i);
 float o;
 o.sign = i[31]; // Only keeping the sign bit???
 o.exponent = 0;
 o.mantissa = 0; // Is this right???
 …
 return o;
 endfunction
PROPOSED: A function prototype does not need to match the actual
function declaration exactly. If it does not, then the normal implicit casting
rules apply when calling the function. For example the fcopyi function can
be defined with an int i argument:
The paragraph is not very clear. Is it trying to show that the prototype only
referenced "int" and not "int i??" (does the function example from above
need to be corrected???)

(Please check my assumption on this next one. The intent of the description was not clear
to me)
(Pertinent text)
bind = function float fcopyi(int); // cast int to float
bind = function float fcopyr(real); // cast real to float
bind = function float fcopyr(shortreal); // cast shortreal to float

WAS: The operators that can be overloaded are the arithmetic operators, the
relational operators and assignment. Note that the assignment operator from
a float to a float cannot be overloaded here because it is already legal.
Similarly, equality and inequality between floats cannot be overloaded.
PROPOSED: The operators that can be overloaded are the arithmetic
operators, the relational operators and assignment. The assignment operator
from a float to a float cannot be overloaded above because it is already legal
in the three preceding bind statements. Similarly, equality and inequality
between floats cannot be overloaded.

8.19
WAS: The inside operator uses the equality (==) operator on non-integral
expressions to perform the comparison. If no match is found, the inside
operator returns 1'b0. Integral expressions also use the equality operator,
except that a z inside a value in the set is treated as a don’t care and that bit
position shall not be considered. Note that unlike comparisons performed by
the casez statement, z values in the expression on the left-hand side are not
treated as a don’t-care; the don’t-care is unidirectional.
PROPOSED: The inside operator uses the equality (==) operator on non-
integral expressions to perform the comparison. If no match is found, the
inside operator returns 1'b0. Integral expressions also use the equality
operator, except that a z inside a value in the set is treated as a don’t care and
that bit position shall not be considered. Unlike comparisons performed by
the casez statement, z values in the expression on the left-hand side are not
treated as a don’t-care; the don’t-care is unidirectional.

9.4
WAS: Note: by specifying unique or priority, it is not necessary to code a
default case to trap unexpected case values. For Example:
PROPOSED: (keep this as a note - smaller font and make this a separate note-
paragraph)
Note: by specifying unique or priority, it is not necessary to code a default case to trap
unexpected case values.
Consider the following example:

9.4.1
WAS: In pattern-matching, the value V of an expression is always matched
against a pattern. Note that static type checking ensures that V and the
pattern have the same type. The result of a pattern match is:
PROPOSED: In pattern-matching, the value V of an expression is always
matched against a pattern and static type checking ensures that V and the
pattern have the same type. The result of a pattern match is:

9.4.1.1

WAS: Example (same as previous example, but note that the first inner case
statement involves only structures and constants but no tagged unions):
PROPOSED: Example (same as previous example, except that the first inner
case statement involves only structures and constants but no tagged unions):

9.6
WAS: Note that SystemVerilog does not include the C goto statement.
PROPOSED: (keep this as a note - smaller font and keep it as a separate note-
paragraph ... unless everybody would like to add a goto statement ☺)
Note that SystemVerilog does not include the C goto statement.

9.10 (multiple occurrences)
module latch (output logic [31:0] y, input [31:0] a, input enable);
 always @(a iff enable == 1)
 y <= a; //latch is in transparent mode
endmodule

WAS: The event expression only triggers if the expression after the iff is
true, in this case when enable is equal to 1. Note that such an expression is
evaluated when a changes, and not when enable changes. Also note that iff
has precedence over or. This can be made clearer by the use of parentheses.

PROPOSED: The event expression only triggers if the expression after the
iff is true, in this case when enable is equal to 1. This type of expression is
evaluated when a changes, and not when enable changes. Also in similar
event expressions of this type, iff has precedence over or. This can be made
clearer by the use of parentheses.

11.4.2
(From 11.4.1)
For example, calling the function bellow copies 1000 bytes each time the call is made.
 function int crc(byte packet [1000:1]);
 for(int j= 1; j <= 1000; j++) begin
 crc ^= packet[j];
 end
 endfunction

...
(From 11.4.2 - Pass by reference)
For example, the example above can be written as:
 function int crc(ref byte packet [1000:1]);
 for(int j= 1; j <= 1000; j++) begin
 crc ^= packet[j];

 end
 endfunction

WAS: Note that in the example, no change other than addition of the ref
keyword is needed. The compiler knows that packet is now addressed via a
reference, but users do not need to make these references explicit either in
the callee or at the point of the call. That is, the call to either version of the
crc function remains the same:
PROPOSED: In the preceding example, no change other than addition of the
ref keyword is needed. The compiler knows that packet is now addressed via
a reference, but users do not need to make these references explicit either in
the callee or at the point of the call. That is, the call to either version of the
crc function remains the same:

11.4.3
WAS: The default_value is an expression. The expression is evaluated in the
scope of the caller each time the subroutine is called. The elements of the
expression must be visible at the scope of subroutine and, if used, at the
scope of the caller. If the default_value is not used, the expression is not
evaluated and need not be visible at the scope of the caller. Note that default
values are only allowed with the ANSI style declaration.
PROPOSED: The default_value is an expression. The expression is
evaluated in the scope of the caller each time the subroutine is called. The
elements of the expression must be visible at the scope of subroutine and, if
used, at the scope of the caller. If the default_value is not used, the
expression is not evaluated and need not be visible at the scope of the caller.
An important restriction surrounding the use of default values is that they are
only allowed with the ANSI style declaration.

11.5 (multiple occurrences)
WAS: Several SystemVerilog functions can be mapped to the same foreign
function by supplying the same c_identifier for several fnames. Note that all
these SystemVerilog functions must have identical argument types, as
defined in the next paragraph.
PROPOSED: Several SystemVerilog functions can be mapped to the same
foreign function by supplying the same c_identifier for several fnames. All
these same SystemVerilog functions must have identical argument types, as
defined in the next paragraph.

WAS: Note that import "DPI" functions declared this way can be invoked
by hierarchical reference the same as any normal SystemVerilog function.
PROPOSED: All import "DPI" functions declared this way can be invoked
by hierarchical reference the same as any normal SystemVerilog function.

WAS: Import context functions can have side effects and can use other
SystemVerilog interfaces (including but not limited to VPI). However, note
that declaring an import context function does not automatically make any
other simulator interface available. For VPI access (or any other interface
access) to be possible, the appropriate implementation-defined mechanism
must still be used to enable these interface(s). Note also that DPI calls do not
automatically create or provide any handles or any special environment that
might be needed by those other interfaces. ...
PROPOSED: Import context functions can have side effects and can use
other SystemVerilog interfaces (including but not limited to VPI). However,
declaring an import context function does not automatically make any other
simulator interface available. For VPI access (or any other interface access)
to be possible, the appropriate implementation-defined mechanism must still
be used to enable these interface(s). Also, SystemVerilog DPI calls do not
automatically create or provide any handles or any special environment that
might be needed by those other interfaces. ...

WAS: To access functions defined in any other scope the foreign code shall
have to change DPI context appropriately. Attempting to invoke an exported
SystemVerilog function from a scope in which it is not directly visible shall
result in a runtime error. How such errors are handled shall be
implementation dependent. If an imported function needs to invoke an
exported function that is not visible from the current scope, it needs to
change, via svSetScope, the current scope to a scope that does have visibility
to the exported function. This is conceptually equivalent to making a
hierarchically qualified function call in SystemVerilog. The current
SystemVerilog context shall be preserved across a call to an exported
function, even if current context has been modified by an application. Note
that context is not defined for non-context imports and attempting to use any
functionality depending on context from non-context imports can lead to
unpredictable behavior.
PROPOSED: To access functions defined in any other scope the foreign
code shall have to change DPI context appropriately. Attempting to invoke
an exported SystemVerilog function from a scope in which it is not directly

visible shall result in a runtime error. How such errors are handled shall be
implementation dependent. If an imported function needs to invoke an
exported function that is not visible from the current scope, it needs to
change, via svSetScope, the current scope to a scope that does have visibility
to the exported function. This is conceptually equivalent to making a
hierarchically qualified function call in SystemVerilog. The current
SystemVerilog context shall be preserved across a call to an exported
function, even if current context has been modified by an application. For
non-context imports the context is not defined and attempting to use any
functionality depending on context from non-context imports can lead to
unpredictable behavior.

12.6
12.6 Object methods
An object’s methods can be accessed using the same syntax used to access class
properties:
 Packet p = new;
 status = p.current_status();

WAS: Note that the assignment to status is not:
 status = current_status(p);
PROPOSED: The above assignment to status cannot be written as:
 status = current_status(p);

12.7
SystemVerilog provides a mechanism for initializing an instance at the time the object is
created. When an object is created, for example
 Packet p = new;

The system executes the new function associated with the class:
 class Packet;
 integer command;
 function new();
 command = IDLE;
 endfunction
 endclass

WAS: Note that new is now being used in two very different contexts with
very different semantics. The variable declaration creates an object of class
Packet. In the course of creating this instance, the new function is invoked,

in which any specialized initialization required can be done. The new
function is also called the class constructor.
PROPOSED: As can be seen above, new is now being used in two very
different contexts with very different semantics. The variable declaration
creates an object of class Packet. In the course of creating this instance, the
new function is invoked, in which any specialized initialization required can
be done. The new function is also called the class constructor.

12.8
 class Packet ;
 static integer fileId = $fopen("data", "r");

Now, fileID shall be created and initialized once. Thereafter, every Packet object can
access the file descriptor in the usual way:
 Packet p;
 c = $fgetc(p.fileID);

WAS: Note that static class properties can be used without creating an object
of that type.
PROPOSED: The static class properties can be used without creating an
object of that type.

12.10
The x is now both a property of the class and an argument to the function new. In the
function new, an unqualified reference to x shall be resolved by looking at the innermost
scope, in this case the subroutine argument declaration. To access the instance class
property, it is qualified with the this keyword, to refer to the current instance. ...

WAS: Note that in writing methods, members can be qualified with this to
refer to the current instance, but it is usually unnecessary.
PROPOSED: (keep this as a note - smaller font and keep it as a separate note-
paragraph)

12.11
Declaring a class variable only creates the name by which the object is known. Thus:
 Packet p1;

creates a variable, p1, that can hold the handle of an object of class Packet, but the initial
value of p1 is null. The object does not exist, and p1 does not contain an actual handle,
until an instance of type Packet is created:

 p1 = new;

Thus, if another variable is declared and assigned the old handle, p1, to the new one, as
in:
 Packet p2;
 p2 = p1;

then there is still only one object, which can be referred to with either the name p1 or p2.
...

WAS: Note, new was executed only once, so only one object has been
created.
PROPOSED: In this example, new was executed only once, so only one
object has been created.

12.17
(Check the wording in this proposal. I am not sure if I have correctly interpreted the
meaning of the original wording)

A protected class property or method has all of the characteristics of a local member,
except that it can be inherited; it is visible to subclasses.

WAS: Note that within the class, a local method or class property of the
class can be referenced, even if it is in a different instance. For example:
PROPOSED: Within a class, a local method or class property of the same
class can be referenced, even if it is in a different instance of the same class.
For example:

 class Packet;
 local integer i;
 function integer compare (Packet other);
 compare = (this.i == other.i);
 endfunction
 endclass

A strict interpretation of encapsulation might say that other.i should not be visible inside
of this packet, since it is a local class property being referenced from outside its instance.
Within the same class, however, these references are allowed. In this case, this.i shall be
compared to other.i and the result of the logical comparison returned.

12.24 (multiple occurrences)

Sometimes a class variable needs to be declared before the class itself has been declared.
For example, if two classes each need a handle to the other. When, in the course of
processing the declaration for the first class, the compiler encounters the reference to the
second class, that reference is undefined and the compiler flags it as an error.

This is resolved using typedef to provide a forward declaration for the second class:
 typedef class C2; // C2 is declared to be of type class
 class C1;
 C2 c;
 endclass
 class C2;
 C1 c;
 endclass

WAS: In this example, C2 is declared to be of type class, a fact that is re-
enforced later in the source code. Note that the class construct always
creates a type, and does not require a typedef declaration for that purpose
(as in typedef class …). This is consistent with common C++ use.
PROPOSED: In this example, C2 is declared to be of type class, a fact that
is re-enforced later in the source code. In SystemVerilog, the class construct
always creates a type, and does not require a typedef declaration for that
purpose (as in typedef class …). This is consistent with common C++ use.

WAS: Note that the class keyword in the statement typedef class C2; is not
necessary, and is used only for documentation purposes. The statement
typedef C2; is equivalent and shall work the same way.
PROPOSED: In the preceding example, the class keyword in the statement
typedef class C2; is not necessary, and is used only for documentation
purposes. The statement typedef C2; is equivalent and shall work the same
way.

13.4.3
WAS: It is important to note that the inside operator is bidirectional, thus,
the second example above is equivalent to a == b || a == c.
PROPOSED: In SystemVerilog, the inside operator is bidirectional, thus,
the second example above is equivalent to a == b || a == c.

13.4.11 (multiple occurrences)
WAS: Unlike the count_ones function, more complex properties, which
require temporary state or unbounded loops, may be impossible to convert

into a single expression. The ability to call functions, thus, enhances the
expressive power of the constraint language and reduces the likelihood of
errors. Note that the two constraints above are not completely equivalent; C2
is bidirectional (length can constrain v and vice-versa), whereas C1 is not.
PROPOSED: Unlike the count_ones function, more complex properties,
which require temporary state or unbounded loops, may be impossible to
convert into a single expression. The ability to call functions, thus, enhances
the expressive power of the constraint language and reduces the likelihood
of errors. The two constraints, C1 and C2, from above are not completely
equivalent; C2 is bidirectional (length can constrain v and vice-versa),
whereas C1 is not.

... For example:
 class B;
 rand int x, y;
 constraint C { x <= F(y); }
 constraint D { y inside { 2, 4, 8 } ; }
 endclass

WAS: Forces y to be solved before x. Thus, constraint D is solved separately
before constraint C, which uses the values of y and F(y) as state variables.
Note that the behavior for variable ordering implied by function arguments
differs from the behavior for ordering specified using the “solve...before...”
constraint; function argument variable ordering subdivides the solution
space thereby changing it. Since constraints on higher-priority variables are
solved without considering lower-priority constraints at all this subdivision
can cause the overall constraints to fail. Within each prioritized set of
constraints, cyclical (randc) variables are solved first.
PROPOSED: Forces y to be solved before x. Thus, constraint D is solved
separately before constraint C, which uses the values of y and F(y) as state
variables. In SystemVerilog, the behavior for variable ordering implied by
function arguments differs from the behavior for ordering specified using the
“solve...before...” constraint; function argument variable ordering
subdivides the solution space thereby changing it. Since constraints on
higher-priority variables are solved without considering lower-priority
constraints at all this subdivision can cause the overall constraints to fail.
Within each prioritized set of constraints, cyclical (randc) variables are
solved first.

13.5.3

WAS: 13.5.3 Randomization methods notes
PROPOSED: 13.5.3 Behavior of Randomization methods

13.11
For example:
 module stim;
 bit [15:0] addr;
 bit [31:0] data;
 function bit gen_stim();
 bit success, rd_wr;
 // call std::randomize
 success = randomize(addr, data, rd_wr);
 return rd_wr ;
 endfunction
 ...
 endmodule

WAS: The function gen_stim calls std::randomize() with three variables as
arguments: addr, data, and rd_wr. Thus, std::randomize() assigns new
random variables to those variables that are visible in the scope of the
gen_stim function. Note that addr and data have module scope, whereas
rd_wr has scope local to the function. The above example can also be
written using a class:
PROPOSED: The function gen_stim calls std::randomize() with three
variables as arguments: addr, data, and rd_wr. Thus, std::randomize()
assigns new random variables to those variables that are visible in the scope
of the gen_stim function. In the preceding example addr and data have
module scope, whereas rd_wr has scope local to the function. The preceding
example can also be written using a class:

14.3.7
WAS: Note that calling peek() can cause one message to unblock more than
one process. As long as a message remains in the mailbox queue, any
process blocked in either a peek() or get() operation shall become
unblocked.
PROPOSED: Calling the peek() method can also cause one message to
unblock more than one process. As long as a message remains in the
mailbox queue, any process blocked in either a peek() or get() operation
shall become unblocked.

15.2

WAS: The SystemVerilog language is defined in terms of a discrete event
execution model. The discrete event simulation is described in more detail in
this clause to provide a context to describe the meaning and valid
interpretation of SystemVerilog constructs. These resulting definitions
provide the standard SystemVerilog reference algorithm for simulation,
which all compliant simulators shall implement. Note that there is a great
deal of choice in the definitions that follow, and differences in some details
of execution are to be expected between different simulators. In addition,
SystemVerilog simulators are free to use different algorithms than those
described in this clause, provided the user-visible effect is consistent with
the reference algorithm.
PROPOSED: The SystemVerilog language is defined in terms of a discrete
event execution model. The discrete event simulation is described in more
detail in this clause to provide a context to describe the meaning and valid
interpretation of SystemVerilog constructs. These resulting definitions
provide the standard SystemVerilog reference algorithm for simulation,
which all compliant simulators shall implement. Within the following event
execution model definitions, there is a great deal of choice and differences in
some details of execution are to be expected between different simulators. In
addition, SystemVerilog simulators are free to use different algorithms than
those described in this clause, provided the user-visible effect is consistent
with the reference algorithm.

16.13
WAS: Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note
that the index a is evaluated at runtime.
@(negedge dom.sign[a]);
PROPOSED: Wait for the falling edge of the specified 1-bit slice
dom.sign[a] (the index a is evaluated at runtime).
@(negedge dom.sign[a]);

17.4
WAS: Since the program schedules events in the Reactive region, the
clocking block construct is very useful to automatically sample the steady-
state values of previous time steps or clock cycles. Programs that read design

values exclusively through clocking blocks with #0 input skews are
insensitive to read-write races. It is important to note that simply sampling
input signals (or setting non-zero skews on clocking block inputs) does not
eliminate the potential for races. Proper input sampling only addresses a
single clocking block. With multiple clocks, the arbitrary order in which
overlapping or simultaneous clocks are processed is still a potential source
for races. The program construct addresses this issue by scheduling its
execution in the Reactive region, after all design events have been
processed, including clocks driven by nonblocking assignments.
PROPOSED: Since the program schedules events in the Reactive region, the
clocking block construct is very useful to automatically sample the steady-
state values of previous time steps or clock cycles. Programs that read design
values exclusively through clocking blocks with #0 input skews are
insensitive to read-write races. It is important to understand that simply
sampling input signals (or setting non-zero skews on clocking block inputs)
does not eliminate the potential for races. Proper input sampling only
addresses a single clocking block. With multiple clocks, the arbitrary order
in which overlapping or simultaneous clocks are processed is still a potential
source for races. The program construct addresses this issue by scheduling
its execution in the Reactive region, after all design events have been
processed, including clocks driven by nonblocking assignments.

18.2
WAS: Note: The assertion control system tasks are described in 24.9.
PROPOSED: (keep this as a note - smaller font and keep it as a separate note-
paragraph)
Note: The assertion control system tasks are described in 24.9.

18.3
The sampled values are used to evaluate value change expressions or boolean
subexpressions that are required to determine a match of a sequence.

WAS: Note:
— It is important to ensure that the defined clock behavior is glitch free.
Otherwise, wrong values can be sampled.
— If a variable that appears in the expression for clock also appears in an
expression with an assertion, the values of the two usages of the variable can
be different. The current value of the variable is used in the clock

expression, while the sampled value of the variable is used within the
assertion.
PROPOSED: For concurrent assertions:
— It is important to ensure that the defined clock behavior is glitch free.
Otherwise, wrong values can be sampled.
— If a variable that appears in the expression for clock also appears in an
expression with an assertion, the values of the two usages of the variable can
be different. The current value of the variable is used in the clock
expression, while the sampled value of the variable is used within the
assertion.

18.6
A sequence is declared with optional formal arguments. When a sequence is instantiated,
actual arguments can be passed to the sequence. The sequence gets expanded with the
actual arguments by replacing the formal arguments with the actual arguments. Semantic
checks are performed to ensure that the expanded sequence with the actual arguments is
legal.

An actual argument can replace an:
— identifier
— expression
— event control expression
— upper delay range or repetition range if the actual argument is $

WAS: Note that variables used in a sequence that are not formal arguments
to the sequence are resolved according to the scoping rules from the scope in
which the sequence is declared.
PROPOSED: Variables used in a sequence that are not formal arguments to
the sequence are resolved according to the scoping rules from the scope in
which the sequence is declared.

18.7.3
When intermediate optional arguments between two arguments are not needed, a comma
must be placed for each omitted argument. For example,
 $past(in1, , enable);

WAS: Here, a comma is specified to omit number_of_ticks. The default of
one is used for the empty number_of_ticks argument. Note that a comma for
the omitted clocking_event argument is not needed, as it does not fall within
the specified arguments.

PROPOSED: Here, a comma is specified to omit number_of_ticks. The
default of one is used for the empty number_of_ticks argument. There is no
need to include a comma for the omitted clocking_event argument as it does
not fall within the specified arguments.

18.8
In a single cycle, there can be multiple matches of a sequence instance to which ended is
applied, and these matches can have different valuations of the local variables. The
multiple matches are treated semantically the same way as matching both disjuncts of an
or (see below). In other words, the thread evaluating the instance to which ended is
applied will fork to account for such distinct local variable valuations.

WAS: Note that when a local variable is a formal argument of a sequence
declaration, it is illegal to declare the variable, as shown below.
PROPOSED: When a local variable is a formal argument of a sequence
declaration, it is illegal to declare the variable, as shown below.
 sequence sub_seq3(lv);
 int lv; // illegal since lv is a formal argument
 (a ##1 !a, lv = data_in) ##1 !b[*0:$] ##1 b && (data_out == lv);
 endsequence

18.11.2
The use of implication when multi-clock sequences and properties are involved is
explained in 18.12.

WAS: The following example illustrates a bus operation for data transfer
from a master to a target device. When the bus enters a data transfer phase,
multiple data phases can occur to transfer a block of data. During the data
transfer phase, a data phase completes on any rising clock edge on which
irdy is asserted and either trdy or stop is asserted. Note that an asserted
signal here implies a value of low.
PROPOSED: The following example illustrates a bus operation for data
transfer from a master to a target device. When the bus enters a data transfer
phase, multiple data phases can occur to transfer a block of data. During the
data transfer phase, a data phase completes on any rising clock edge on
which irdy is asserted and either trdy or stop is asserted. In this example, an
asserted signal here implies a value of low.

18.12.3
The scope of a clocking event does not flow into the reset condition of disable iff.

WAS: Note that juxtaposing two clocking events nullifies the first of them:
PROPOSED: Juxtaposing two clocking events nullifies the first of them;
therefore, the following two-clocking-event statement

 @(d) @(c) x

is equivalent to
 @(c) x

because the flow of clock d is immediately overridden by clock c.

18.13.1
WAS: Note: The pass and fail statements are executed in the Reactive
region. The regions of execution are explained in the scheduling semantics
Clause 15.
PROPOSED: The pass and fail statements of an assert statement are
executed in the Reactive region. The regions of execution are explained in
the scheduling semantics Clause 15.

18.13.2
WAS: Note that assume does not provide an action block, as the actions for
an assumption serve no purpose.
PROPOSED: The assume statement does not provide an action block, as the
actions for an assumption serve no purpose.

18.15 (multiple occurrences)
Example of binding a program instance to a module:
 bind cpu fpu_props fpu_rules_1(a,b,c);

Where:
— cpu is the name of the target module.
— fpu_props is the name of the program to be instantiated.
— fpu_rules_1 is the program instance name to be created in the target scope.
— An instance named fpu_rules_1 is instantiated in every instance of module cpu.
...

WAS: — The first three ports of program fpu_props get bound to objects a,
b, and c in module cpu. Note that these objects are viewed from module
cpu’s point of view. They are completely distinct from any objects named a,
b, and c that are visible in the scope that contains the bind directive.
PROPOSED: — The first three ports of program fpu_props get bound to
objects a, b, and c in module cpu (these objects are viewed from module
cpu’s point of view and they are completely distinct from any objects named
a, b, and c that are visible in the scope that contains the bind directive).

WAS: It is legal for more than one bind statement to bind a
bind_instantiation into the same target scope. However, it shall be an error
for a bind_instantiation to introduce an instance name that clashes with
another name in the module name space of the target scope (See 19.13). This
applies to both pre-existing names as well as instance names introduced by
other bind statements. Note that the latter situation will occur if the design
contains more than one instance of a module containing a bind statement.
PROPOSED: It is legal for more than one bind statement to bind a
bind_instantiation into the same target scope. However, it shall be an error
for a bind_instantiation to introduce an instance name that clashes with
another name in the module name space of the target scope (See 19.13). This
applies to both pre-existing names as well as instance names introduced by
other bind statements; and the latter situation will occur if the design
contains more than one instance of a module containing a bind statement.

19.6
WAS: This allows the same module name, e.g. and2, to occur in different
parts of the design and represent different modules. Note that an alternative
way of handling this problem is to use configurations.
PROPOSED: This allows the same module name, e.g. and2, to occur in
different parts of the design and represent different modules. An alternative
way of handling this problem is to use configurations.

19.7
WAS: To support separate compilation, extern declarations of a module can
be used to declare the ports on a module without defining the module itself.
An extern module declaration consists of the keyword extern followed by
the module name and the list of ports for the module. Both list of ports

syntax (possibly with parameters), and original Verilog style port
declarations can be used. Note that the potential existence of defparams
precludes the checking of the port connection information prior to
elaboration time even for list of ports style declarations.
PROPOSED: (Separate the note -use a smaller font for the note)
To support separate compilation, extern declarations of a module can be
used to declare the ports on a module without defining the module itself. An
extern module declaration consists of the keyword extern followed by the
module name and the list of ports for the module. Both list of ports syntax
(possibly with parameters), and original Verilog style port declarations can
be used.

Note that the potential existence of defparams precludes the checking of the port
connection information prior to elaboration time even for list of ports style declarations.

19.12.2
WAS: Note that where the data types differ between the port declaration and
connection, an initial value change event can be caused at time zero.
PROPOSED: If there is a data type difference between the port declaration
and connection, an initial value change event can be caused at time zero.

20.2.1
WAS: This example shows a simple bus implemented without interfaces.
Note that the logic type can replace wire and reg if no resolution of multiple
drivers is needed.
PROPOSED: This example shows a simple bus implemented without
interfaces. The logic type, as used in this example, can replace wire and reg
if no resolution of multiple drivers is needed.

20.3
WAS: Note: Because the instantiated interface names do not match the
interface names used in the memMod and cpuMod modules, implicit port
connections cannot be used for this example.
PROPOSED: In the preceding example, the instantiated interface names do
not match the interface names used in the memMod and cpuMod modules;
therefore, implicit port connections cannot be used for this example.

20.4 (multiple occurrences)
WAS: The syntax of interface_name.modport_name reference_name gives a
local name for a hierarchical reference. Note that this can be generalized to
any interface with a given modport name by writing interface.
modport_name reference_name.
PROPOSED: The syntax of interface_name.modport_name reference_name
gives a local name for a hierarchical reference. This technique can be
generalized to any interface with a given modport name by writing
interface. modport_name reference_name.

WAS: Note that if no modport is specified in the module header or in the
port connection, then all the nets and variables in the interface are accessible
with direction inout or ref, as in the examples above.
PROPOSED: Adding modports to an interface does not require that any of
the modports be used when the interface is used. If no modport is specified
in the module header or in the port connection, then all the nets and variables
in the interface are accessible with direction inout or ref, as in the examples
above.

20.6.4
WAS: For a read task, only one module should actively respond to the task
call, e.g. the one containing the appropriate address. The tasks in the other
modules should return with no effect. Only then should the active task write
to the result variables.
Note multiple export of functions is not allowed, because they must always
write to the result.
PROPOSED: For a read task, only one module should actively respond to
the task call, e.g. the one containing the appropriate address. The tasks in the
other modules should return with no effect. Only then should the active task
write to the result variables.
Unlike tasks, multiple export of functions is not allowed, because they must
always write to the result.

20.8.1
20.8.1 Virtual interfaces and clocking blocks
Clocking blocks and interfaces can be combined to represent the interconnect between
synchronous blocks. Moreover, because clocking blocks provide a procedural mechanism

to assign values to both nets and variables, they are ideally suited to be used by virtual
interfaces. For example:
 interface SyncBus(input bit clk);
 wire a, b, c;

 clocking sb @(posedge clk);
 input a;
 output b;
 inout c;
 endclocking
 endinterface

 typedef virtual SyncBus VI; // A virtual interface type

 task do_it(VI v); //handles any SyncBus via clocking sb
 if(v.sb.a == 1)
 v.sb.b <= 0;
 else
 v.sb.c <= ##1 1;
endtask

WAS: In the preceding example, interface SyncBus includes a clocking
block, which is used by task do_it to ensure synchronous access to the
interface’s signals: a, b, and c. Note that changes to the storage type of the
interface signals (from net to variable and vice-versa) requires no changes to
the task. The interfaces can be instantiated as shown below.
PROPOSED: In the preceding example, interface SyncBus includes a
clocking block, which is used by task do_it to ensure synchronous access to
the interface’s signals: a, b, and c. A change to the storage type of the
interface signals (from net to variable and vice-versa) requires no changes to
the task. The interfaces can be instantiated as shown below.

There is no 20.10.1

21.10
WAS: It is important to note that the cumulative coverage considers the
union of all significant bins, thus, it includes the contribution of all bins
(including overlapping bins) of all instances.
PROPOSED: It is important to understand that the cumulative coverage
considers the union of all significant bins, thus, it includes the contribution
of all bins (including overlapping bins) of all instances.

22.2
WAS: Note that function $isunbounded is used for checking the validity of
the actual arguments.
PROPOSED: (This is an informational usage note. No change to the note - except use
a smaller font for the note)

24.17
WAS: Note that the diagram would be identical if one or more of the
unpacked dimension declarations were reversed, as in:
reg [31:0] mem [2:0][0:4][8:5]
PROPOSED: The above diagram would be identical if one or more of the
unpacked dimension declarations were reversed, as in:
reg [31:0] mem [2:0][0:4][8:5]

25.2
WAS: Note that the current VCD format does not indicate whether a
variable has been declared as signed or unsigned.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note)

28.3
Every task or function imported to SystemVerilog must eventually resolve to a global
symbol. Similarly, every task or function exported from SystemVerilog defines a global
symbol. Thus the tasks and functions imported to and exported from SystemVerilog have
their own global name space of linkage names, different from compilation-unit scope
name space. Global names of imported and exported tasks and functions must be unique
(no overloading is allowed) and shall follow C conventions for naming; specifically,
such names must start with a letter or underscore, and can be followed by alphanumeric
characters or underscores. Exported and imported tasks and functions, however, can be
declared with local SystemVerilog names. Import and export declarations allow users to
specify a global name for a function in addition to its declared name. Should a global
name clash with a SystemVerilog keyword or a reserved name, it shall take the form of
an escaped identifier. The leading backslash (\) character and the trailing white space
shall be stripped off by the SystemVerilog tool to create the linkage identifier. ...

WAS: Note that after this stripping, the linkage identifier so formed must
comply with the normal rules for C identifier construction.

PROPOSED: After this stripping, the linkage identifier so formed must
comply with the normal rules for C identifier construction.

28.4.1.1
WAS: Note that imported tasks can consume time, similar to native
SystemVerilog tasks.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note)

28.4.1.4
WAS: NOTE—In this last scenario, a block of memory is allocated and
freed in the foreign code, even when the standard functions malloc and free
are called directly from SystemVerilog code.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note)

28.4.3 (multiple occurrences)
WAS: Only calls of context imported tasks or functions are properly
instrumented and cause conservative optimizations; therefore, only those
tasks or functions can safely call all tasks or functions from other APIs,
including PLI and VPI functions or exported SystemVerilog tasks or
functions. For imported tasks or functions not specified as context, the
effects of calling PLI or VPI functions or SystemVerilog tasks or functions
can be unpredictable and such calls can crash if the callee requires a context
that has not been properly set. However note that declaring an import
context task or function does not automatically make any other simulator
interface automatically available. For VPI access (or any other interface
access) to be possible, the appropriate implementation defined mechanism
must still be used to enable these interface(s). Note also that DPI calls do not
automatically create or provide any handles or any special environment that
can be needed by those other interfaces. It is the user’s responsibility to
create, manage or otherwise manipulate the required handles/environment(s)
needed by the other interfaces.
PROPOSED: Only calls of context imported tasks or functions are properly
instrumented and cause conservative optimizations; therefore, only those
tasks or functions can safely call all tasks or functions from other APIs,
including PLI and VPI functions or exported SystemVerilog tasks or

functions. For imported tasks or functions not specified as context, the
effects of calling PLI or VPI functions or SystemVerilog tasks or functions
can be unpredictable and such calls can crash if the callee requires a context
that has not been properly set; however, declaring an import context task or
function does not automatically make any other simulator interface
automatically available. For VPI access (or any other interface access) to be
possible, the appropriate implementation defined mechanism must still be
used to enable these interface(s). Realize also that DPI calls do not
automatically create or provide any handles or any special environment that
can be needed by those other interfaces. It is the user’s responsibility to
create, manage or otherwise manipulate the required handles/environment(s)
needed by the other interfaces.

28.4.4 (multiple occurrences)
An import declaration specifies the task or function name, function result type, and types
and directions of formal arguments. It can also provide optional default values for formal
arguments. Formal argument names are optional unless argument binding by name is
needed. An import declaration can also specify an optional task or function property.
Imported functions can have the properties context or pure; imported tasks can have the
property context.

WAS: Note that an import declaration is equivalent to defining a task or
function of that name in the SystemVerilog scope in which the import
declaration occurs, and thus multiple imports of the same task or function
name into the same scope are forbidden. Note that this declaration scope is
particularly important in the case of imported context tasks or functions, see
28.4.3; for non-context imported tasks or functions the declaration scope has
no other implications other than defining the visibility of the task or
function.
PROPOSED: (The first "Note that" should be changed to "Since" as shown below, but
the second note is an informational note and should be placed in a separate paragraph
with smaller font for the note)
Since an import declaration is equivalent to defining a task or function of
that name in the SystemVerilog scope in which the import declaration
occurs, and thus multiple imports of the same task or function name into the
same scope are forbidden.
Note that this declaration scope is particularly important in the case of imported context
tasks or functions, see 28.4.3; for non-context imported tasks or functions the declaration
scope has no other implications other than defining the visibility of the task or function.

WAS: Note that multiple declarations of the same imported or exported task
or function in different scopes can vary argument names and default values,
provided the type compatibility constraints are met.
PROPOSED: It is permitted to have multiple declarations of the same
imported or exported task or function in different scopes; therefore,
argument names and default values can vary, provided the type compatibility
constraints are met.

28.4.6
WAS: — packed one dimensional arrays of type bit and logic
Note however, that every packed type, whatever is its structure, is eventually
equivalent to a packed one dimensional array. Therefore practically all
packed types are supported, although their internal structure (individual
fields of structs, multiple dimensions of arrays) shall be transparent and
irrelevant.
PROPOSED: — packed one dimensional arrays of type bit and logic
Since every packed type, whatever its structure, is eventually equivalent to a
packed one dimensional array. Therefore practically all packed types are
supported, although their internal structure (individual fields of structs,
multiple dimensions of arrays) shall be transparent and irrelevant.

28.6 (multiple occurrences)
WAS: Note that class member functions cannot be exported, but all other
SystemVerilog functions can be exported.
PROPOSED: One important restriction exists. Class member functions
cannot be exported, but all other SystemVerilog functions can be exported.

WAS: c_identifier is optional here. It defaults to function_identifier. For
rules describing c_identifier, see 28.3. Note that all export functions are
always context functions. No two functions in the same SystemVerilog
scope can be exported with the same explicit or implicit c_identifier. The
export declaration and the definition of the corresponding SystemVerilog
function can occur in any order. Only one export declaration is permitted per
SystemVerilog function.
PROPOSED: c_identifier is optional here. It defaults to function_identifier.
For rules describing c_identifier, see 28.3. No two functions in the same
SystemVerilog scope can be exported with the same explicit or implicit

c_identifier. The export declaration and the definition of the corresponding
SystemVerilog function can occur in any order. Only one export declaration
is permitted per SystemVerilog function and all export functions are always
context functions.

28.8 (multiple occurrences)
WAS: An imported task or function is said to be in the disabled state when a
disable statement somewhere in the design targets either it or a parent for
disabling. Note that the only way for an imported task or function to enter
the disabled state is immediately after the return of a call to an exported task
or function. An important aspect of the protocol is that disabled import tasks
and functions must programmatically acknowledge that they have been
disabled. A task or function can determine that it is in the disabled state by
calling the API function svIsDisabledState().
PROPOSED: An imported task or function is said to be in the disabled state
when a disable statement somewhere in the design targets either it or a
parent for disabling. An imported task or function can only enter the
disabled state immediately after the return of a call to an exported task or
function. An important aspect of the protocol is that disabled import tasks
and functions must programmatically acknowledge that they have been
disabled. A task or function can determine that it is in the disabled state by
calling the API function svIsDisabledState().

WAS: Note that if an exported task itself is the target of a disable, its parent
imported task is not considered to be in the disabled state when the exported
task returns. In such cases the exported task shall return value 0, and calls to
svIsDisabledState() shall return 0 as well.
PROPOSED: If an exported task itself is the target of a disable, its parent
imported task is not considered to be in the disabled state when the exported
task returns. In such cases the exported task shall return value 0, and calls to
svIsDisabledState() shall return 0 as well.

29.3.1
WAS: NOTES
1—As with all VPI handles, assertion handles are handles to a specific
instance of a specific assertion.
2—Unnamed assertions cannot be found by name.
PROPOSED: IMPORTANT DETAILS

1—As with all VPI handles, assertion handles are handles to a specific
instance of a specific assertion.
2—Unnamed assertions cannot be found by name.

29.3.2.1 (multiple occurrences)
WAS: Assertions can occur in modules and interfaces: for assertions defined
in modules, the instance field in the s_vpi_assertion_info structure shall
contain the handle to the appropriate module or interface instance. Note that
VPI does not currently define the information model for interfaces and
therefore the interface instance handle shall be implementation dependent.
PROPOSED: (The note is an informational note and should be placed in a separate
paragraph with smaller font for the note)
Assertions can occur in modules and interfaces: for assertions defined in
modules, the instance field in the s_vpi_assertion_info structure shall
contain the handle to the appropriate module or interface instance.
Note that VPI does not currently define the information model for interfaces and
therefore the interface instance handle shall be implementation dependent.

WAS: NOTE: a single call returns all the information for efficiency reasons.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note)

29.4.2
WAS: NOTES
1—In a failing transition, there shall always be at least one element in the
expression array.
2—Placing a step callback results in the same callback function being
invoked for both success and failure steps.
3—The content of
PROPOSED: IMPORTANT DETAILS
1—In a failing transition, there shall always be at least one element in the
expression array.
2—Placing a step callback results in the same callback function being
invoked for both success and failure steps.
3—The content of

29.5.1

WAS: vpiAssertionSysEnd discard all attempts in progress and disables any
further assertions from starting. All assertion callbacks currently installed
shall be removed. Note that once this control is issued, no further assertion
related actions shall be permitted.
PROPOSED: vpiAssertionSysEnd discard all attempts in progress and
disables any further assertions from starting. All assertion callbacks
currently installed shall be removed. Once this control is issued, no further
assertion related actions shall be permitted.

29.5.2
WAS: NOTE—In this release, the only step control constant available is
vpiAssertionClockSteps, indicating callbacks on a per assertion/clock-tick
basis. The assertion clock is the event expression supplied as the clocking
expression to the assertion declaration. The assertion shall “advance”
whenever this event occurs and, when stepping is enabled, such events shall
also cause step callbacks to occur.

PROPOSED: ???
I do not know how to fix this "NOTE." It refers to "this release" which
sounds "note-ish" but it ends with "... such events SHALL ..." which sounds
very normative.

30.2.2.1 (multiple occurrences)
WAS: ‘SV_COV_START
If possible, starts collecting coverage information in the specified hierarchy.
No effect if coverage is already being collected. Note that coverage is
automatically started at the beginning of simulation for all portions of the
hierarchy enabled for coverage.
PROPOSED: ‘SV_COV_START
If possible, starts collecting coverage information in the specified hierarchy.
No effect if coverage is already being collected. Coverage is automatically
started at the beginning of simulation for all portions of the hierarchy
enabled for coverage.

WAS: ‘SV_COV_CHECK
Checks if coverage information can be obtained from the specified
hierarchy. Note the possibility of having coverage information does imply
that coverage is being collected, as the coverage could have been stopped.

PROPOSED: (Typo?? Did the above note mean to say that "coverage
information does NOT imply that coverage is being collected?" If not, the
Note is very confusing to me)
‘SV_COV_CHECK
Checks if coverage information can be obtained from the specified
hierarchy. The existence of coverage information does not imply that
coverage is being collected, as the coverage could have been stopped.

WAS: NOTE—Definition names are represented as strings, whereas
instance names are referenced by hierarchical paths. A hierarchical path
need not include any . if the path refers to an instance in the current context
(i.e., normal Verilog hierarchical path rules apply).
PROPOSED: (This is an informational note. No change to the note - the note already
uses a smaller font)

30.2.2.2
WAS: NOTE—This value is proportional to the design size and structure, so
it also needs to be constant through multiple independent simulations and
compilations of the same design, assuming any compilation options do not
modify the coverage support or design structure.
This appears to be a note giving the recommendation that the design not change between
invocations of the $get_coverage_max function over multiple simulations of the same
design in order to properly correlate coverage information between simulation runs
using different stimulus vectors. It raises the question: What will a simulator do if the
$get_coverage_max function is called on a design that changes between simulations
runs?

30.2.2.5
WAS: NOTES
1—The coverage database format is implementation-dependent.
2—Mapping of names to actual directories/files is implementation-
dependent. There is no requirement that a coverage name map to any
specific set of files or directories.
PROPOSED: IMPORTANT DETAILS
1—The coverage database format is implementation-dependent.
2—Mapping of names to actual directories/files is implementation-
dependent. There is no requirement that a coverage name map to any
specific set of files or directories.

30.4.3 (multiple occurrences)
WAS: Returns the number of times each coverable entity referred by the
handle has been covered. Note that this is only easily interpretable when the
handle points to a unique coverable item (such as an individual statement);
when handle points to an item containing multiple coverable entities (such
as a handle to a block statement containing a number of statements), the
result is the sum of coverage counts for each of the constituent entities.
PROPOSED: Returns the number of times each coverable entity referred by
the handle has been covered. The handle coverage information is only easily
interpretable when the handle points to a unique coverable item (such as an
individual statement); when handle points to an item containing multiple
coverable entities (such as a handle to a block statement containing a
number of statements), the result is the sum of coverage counts for each of
the constituent entities.

WAS: Returns the number of coverable entities pointed by the handle. Note
that this shall always return 1 (one) when applied to an assertion or FSM
state handle.
PROPOSED: Returns the number of coverable entities pointed by the
handle. The number returned shall always be return 1 (one) when applied to
an assertion or FSM state handle.

30.4.4
WAS: Controls the collection of coverage on the given instance or assertion.
Note that statement, toggle and FSM coverage are not individually
controllable (i.e., they are controllable only at the instance level and not on a
per statement/signal/FSM basis).
PROPOSED: Controls the collection of coverage on the given instance or
assertion. Statement, toggle and FSM coverage are not individually
controllable (i.e., they are controllable only at the instance level and not on a
per statement/signal/FSM basis).

31.8.3
WAS: Note that loading the object means loading the object from a database
into memory, or marking it for active use if it is already in the memory
hierarchy.

PROPOSED: "Loading the object" means loading the object from a database
into memory, or marking it for active use if it is already in the memory
hierarchy.

31.8.4
WAS: vpiHandle trvsHndl = vpi_handle(vpiTrvsObj, object_handle);
Note that the user (or tool) application can create more than one value
change traverse handle for the same object, thus providing different views of
the value changes.
PROPOSED: vpiHandle trvsHndl = vpi_handle(vpiTrvsObj, object_handle);
A user (or tool) application can create more than one value change traverse
handle for the same object, thus providing different views of the value
changes.

31.10
WAS: The SystemVerilog tool the user application is running under is
responsible for loading the appropriate extension, i.e. the reader API library
in the case of the read API. The extension name is used for this purpose,
following a specific policy, for example, this extension name can be the
name of the library to be loaded. Once the reader API library is loaded all
VPI function calls that wish to use the implementation in the library shall be
performed using the returned p_vpi_extension pointer as an indirection to
call the function pointers specified in s_vpi_extension or the extended
vendor specific structure as described above. Note that, as stated earlier, in
the case the application is using the built-in routine implementation (i.e. the
ones provided by the tool (e.g. simulator) it is running under) then the de-
reference through the pointer is not necessary.
PROPOSED: The SystemVerilog tool the user application is running under
is responsible for loading the appropriate extension, i.e. the reader API
library in the case of the read API. The extension name is used for this
purpose, following a specific policy, for example, this extension name can
be the name of the library to be loaded. Once the reader API library is
loaded all VPI function calls that wish to use the implementation in the
library shall be performed using the returned p_vpi_extension pointer as an
indirection to call the function pointers specified in s_vpi_extension or the
extended vendor specific structure as described above. As stated earlier, in
any case that the application is using the built-in routine implementation (i.e.

the ones provided by the tool (e.g. simulator) it is running under) then the
de-reference through the pointer is not necessary.

32.2 through 32.49 - many of these diagrams have supporting descriptions
included in a normative "NOTES" section at the bottom of each section.
Globally change "NOTES" to "IMPORTANT DETAILS" and change
"NOTE" to "IMPORTANT DETAIL" to fix the "informative" problem.

WAS: NOTES:
1) vpiMemory shall return array variable objects rather than vpiMemory
objects. The IEEE P1364 standard has made a similar update to the Verilog
VPI (refer to note 1 in P1364, 26.6.9)
PROPOSED: IMPORTANT DETAILS
1) vpiMemory shall return array variable objects rather than vpiMemory

objects. The IEEE P1364 standard has made a similar update to the
Verilog VPI (refer to note 1 in P1364, 26.6.9)

(Wait to see if the P1364 LRM changes before making a proposal)

... (same global solution until section 32.9)

(32.9 under Notes)
WAS: 2) The vpiImport iterator shall return all objects imported into the
current scope via import statements. Note that only objects actually
referenced through the import shall be returned, rather than items potentially
made visible as a result of the import. Refer to 19.2.2 for more details.
PROPOSED: 2) The vpiImport iterator shall return all objects imported into
the current scope via import statements. Only objects actually referenced
through the import shall be returned, rather than items potentially made
visible as a result of the import. Refer to 19.2.2 for more details.

... (same global solution until section 32.14)

(32.14 under Notes)
WAS: 19) Note that:
logic var == reg

var bit == reg bit
array var == reg array
PROPOSED: 19) In the above diagram:
logic var == reg
var bit == reg bit
array var == reg array

C.2
WAS: The mailbox class is described in 14.3 and its prototype is:
Note: dynamic_singular_type below represents a special type that enables
run-time type-checking.
class mailbox
PROPOSED: The mailbox class is described in 14.3 and its prototype is:
The dynamic_singular_type below represents a special type that enables run-
time type-checking.
class mailbox

E.5
WAS: E.5 Semantic constraints
Note that the constraints expressed here merely restate those expressed in
28.4.1.
PROPOSED: (This is an informational note. No change to the note - except use a
smaller font for the note)

E.5.7
WAS: NOTE—In this last scenario, a block of memory is allocated and
freed in C code, even when the standard functions malloc and free are called
directly from SystemVerilog code.
PROPOSED: (This is an informational note. No change to the note)

E.6.1
WAS: NOTE—The actual argument can have both packed and unpacked
parts of an array; either can be multidimensional.
PROPOSED: (This is an informational note. No change to the note)

E.6.4
WAS: Note that input mode arguments of type byte unsigned and shortint
unsigned are not equivalent to bit[7:0] or bit[15:0], respectively, since the
former are passed as C types unsigned char and unsigned short and the
latter are both passed by reference as svBitPackedArrRef
PROPOSED: The input mode arguments of type byte unsigned and
shortint unsigned are not equivalent to bit[7:0] or bit[15:0], respectively,
since the former are passed as C types unsigned char and unsigned short
and the latter are both passed by reference as svBitPackedArrRef

E.6.6
WAS: 1) If a packed part of an array has more than one dimension, it is
linearized as specified by the equivalence of packed types (see E.6.5 and
6.9.3).
2) A packed array of range [L:R] is normalized as [abs(L-R):0]; its most
significant bit has a normalized index abs(L-R) and its least significant bit
has a normalized index 0.
3) The natural order of elements for each dimension in the layout of an
unpacked array shall be used, i.e., elements with lower indices go first. For
SystemVerilog range [L:R], the element with SystemVerilog index min(L,R)
has the C index 0 and the element with SystemVerilog index max(L,R) has
the C index abs(LR).
NOTE—The above range mapping from SystemVerilog to C applies to calls
made in both directions, i.e., SystemVerilog calls to C and C-calls to
SystemVerilog.
PROPOSED: 1) If a packed part of an array has more than one dimension, it
is linearized as specified by the equivalence of packed types (see E.6.5 and
6.9.3).
2) A packed array of range [L:R] is normalized as [abs(L-R):0]; its most
significant bit has a normalized index abs(L-R) and its least significant bit
has a normalized index 0.
3) The natural order of elements for each dimension in the layout of an
unpacked array shall be used, i.e., elements with lower indices go first. For
SystemVerilog range [L:R], the element with SystemVerilog index min(L,R)
has the C index 0 and the element with SystemVerilog index max(L,R) has
the C index abs(LR).
The above range mapping from SystemVerilog to C applies to calls made in
both directions, i.e., SystemVerilog calls to C and C-calls to SystemVerilog.

E.8.1
WAS: Note that all DPI export tasks and functions require that the context of
their call is known.
PROPOSED: All DPI export tasks and functions require that the context of
their call is known.

E.8.2
WAS: Note that context is transitive through imported and export context
tasks and functions declared in the same scope. That is, if an imported task
or function is running in a certain context, and if it in turn calls an exported
task or function that is available in the same context, the exported task or
function can be called without any use of svSetScope(). For example,
consider a SystemVerilog call to a native function f(), which in turn calls a
native function g(). Now replace the native function f() with an equivalent
imported context C function, f’(). The system shall behave identically
regardless if f() or f’() is in the call chain above g(). g() has the proper
execution context in both cases.

(I am not sure if I have retained the correct meaning of context in this
proposal. Please check to make sure the wording is correct)
PROPOSED: The property context is transitive through imported and export
context tasks and functions declared in the same scope. That is, if an
imported task or function is running in a certain context, and if it in turn
calls an exported task or function that is available in the same context, the
exported task or function can be called without any use of svSetScope(). For
example, consider a SystemVerilog call to a native function f(), which in
turn calls a native function g(). Now replace the native function f() with an
equivalent imported context C function, f’(). The system shall behave
identically regardless if f() or f’() is in the call chain above g(). g() has the
proper execution context in both cases.

E.8.3 (multiple occurrences)
WAS: To achieve shared data storage, a related set of context imported tasks
and functions should all use the same user-Key. To achieve unique data
storage, a context import task or function should use a unique key. Note that
it is a requirement on the user that such a key be truly unique from all other
keys that could possibly be used by C code.

...
PROPOSED: To achieve shared data storage, a related set of context
imported tasks and functions should all use the same user-Key. To achieve
unique data storage, a context import task or function should use a unique
key and it is a requirement on the user that such a key be truly unique from
all other keys that could possibly be used by C code.
...

WAS: Note that it is never possible to share user data storage across
different contexts. For example, if a Verilog module m declares a context
imported task or function f, and m is instantiated more than once in the
SystemVerilog design, then f shall execute under different values of
svScope.
PROPOSED: It is never possible to share user data storage across different
contexts. For example, if a Verilog module m declares a context imported
task or function f, and m is instantiated more than once in the SystemVerilog
design, then f shall execute under different values of svScope.

E.8.5
WAS: There is no specific relationship defined between DPI and the existing
Verilog programming interfaces (VPI and PLI). Programmers must make no
assumptions about how DPI and the other interfaces interact. In particular,
note that a vpiHandle is not equivalent to an svOpenArrayHandle, and the
two must not be interchanged and passed between functions defined in two
different interface standards.
PROPOSED: There is no specific relationship defined between DPI and the
existing Verilog programming interfaces (VPI and PLI). Programmers must
make no assumptions about how DPI and the other interfaces interact. For
example, a vpiHandle is not equivalent to an svOpenArrayHandle, and the
two must not be interchanged and passed between functions defined in two
different interface standards.

E.11
WAS: Formal arguments specified as open arrays allows passing actual
arguments of different sizes (i.e., different range and/or different number of
elements), which facilitates writing more general C code that can handle
SystemVerilog arrays of different sizes. The elements of an open array can
be accessed in C by using the same range of indices and the same indexing

as in SystemVerilog. Plus, inquiries about the dimensions and the original
boundaries of SystemVerilog actual arguments are supported for open
arrays.
NOTE—Both packed and unpacked array dimensions can be unsized.
PROPOSED: (This is an informational note. No change to the note)

E.11.1
WAS: If a formal argument is specified as a sized array, then it shall be
passed by reference, with no overhead, and is directly accessible as a
normalized array. If a formal argument is specified as an open (unsized)
array, then it shall be passed by handle, with some overhead, and is mostly
indirectly accessible, again with some overhead, although it retains the
original argument boundaries.
NOTE—This provides some degree of flexibility and allows the
programmer to control the trade-off of performance vs. convenience.
PROPOSED: (This is an informational note. No change to the note)

E.11.4
WAS: If the actual layout of the SystemVerilog array passed as an argument
for an open unpacked array is different than the C layout, then it is not
possible to access such an array as a whole; therefore, the address and size of
such an array shall be undefined (zero (0), to be exact). Nonetheless, the
addresses of individual elements of an array shall be always supported.
NOTE—No specific representation of an array is assumed here; hence, all
functions use a generic pointer void *.
PROPOSED: If the actual layout of the SystemVerilog array passed as an
argument for an open unpacked array is different than the C layout, then it is
not possible to access such an array as a whole; therefore, the address and
size of such an array shall be undefined (zero (0), to be exact). Nonetheless,
the addresses of individual elements of an array shall be always supported.
PROPOSED: (This is an informational note. No change to the note)

G
WAS: — An user might want to switch between selections or provide
additional code. This-use case is covered by providing a set of tool switches
to define the corresponding information, although it might also use the
bootstrap file approach.

NOTE—This annex defines a set of switch names to be used for a particular
functionality.
PROPOSED: (This is an informational note. No change to the note)

G.2
WAS: The following conditions also apply.
— The compiled object code itself shall be provided in form of a shared
library having the appropriate extension for the actual platform.
NOTE—Shared libraries use, for example, .so for Solaris and .sl for HP-UX;
other operating systems might use different extensions. In any case, the
SystemVerilog application needs to identify the appropriate extension.
PROPOSED: (This is an informational note. No change to the note)

H.3
WAS: The semantics of assertions and properties is defined via a relation of
satisfaction by empty, finite, and infinite words over the alphabet Σ = 2P U
{T, �}. Such a word is an empty, finite, or infinite sequence of elements of
Σ. The number of elements in the sequence is called the length of the word,
and the length of word w is denoted |w|. Note that |w| is either a non-negative
integer or infinity.
PROPOSED: The semantics of assertions and properties is defined via a
relation of satisfaction by empty, finite, and infinite words over the alphabet
Σ = 2P U {T, �}. Such a word is an empty, finite, or infinite sequence of
elements of Σ. The number of elements in the sequence is called the length
of the word, and the length of word w is denoted |w|, where |w| is either a
non-negative integer or infinity.
