
Hi, All -

For the past six years, I have been trying to fix the annoying requirement that forces
engineers to declare procedural variables or change declarations when procedural
variables are moved to continuous assignments or vice versa. I even wrote an HDLCON
2000 conference paper on the topic titled: "A Proposal To Remove Those Ugly Register
Data Types From Verilog" (downloadable from my web site).

Every EDA tool developer should be required to teach Verilog syntax and semantics to a
class of bright VHDL engineers who have been forced by company policy to learn and
use Verilog and listen to their complaints about the separate reg-wire declaration
requirements. Every EDA tool developer should be required to teach Verilog syntax and
semantics to a class of new Verilog engineers and explain the reason for this requirement.

Engineers are not interested in the fact that the declarations make EDA tool development
easier and engineers see no value in making these different declarations just because the
language requires it.

I would like to try one more time to fix this in SystemVerilog.

I talked about the reg-wire proposal to Stu Sutherland and Karen Pieper after the
P1800 meeting yesterday to gauge acceptance or opposition. Stu and Karen suggested
that Steve Sharp and Francoise and Brad be brought into the discussion for their technical
insight into potential tool issues and limitations. I would like to invite comment from all
interested parties.

Let me list the goals for this enhancement:
(1) Fully backward compatible with all existing Verilog and SystemVerilog designs.
(2) Should not require an extra keyword to be added to output, input and inout

port declarations to use the enhancement.
(3) Should have a common keyword to declare wire-equivalent and reg-equivalent

vectors within a module.
(4) Should be first-usage context sensitive. If the first usage is that of an assigned

variable within a procedural block, the semantics should be identical to a declared
reg-variable (one nice, optional, possible exception noted below). If the first usage is
that of a driven net (output of a continuous assignment or connected to the
output or inout port of an instantiated module or Verilog primitive), the
semantics should be identical to a declared wire or wire-vector (including multi-
driver resolution, unlike the logic data type which only allows single driver-
assignment).

(5) It shall be illegal to make both procedural and driver assignments to the same
identifier (this is enforced in Verilog today because it is illegal to declare wires and
regs using the same identifier name).

(6) OPTIONAL: My own preference is that this new data type shall only be assigned
from a single procedural block and any attempt to make assignments to the variable
from more than one procedural block would be a syntax error (just like

always_comb, always_latch and always_ff procedural blocks). This would
enforce good hardware design practices that are already enforced by synthesis tools.
If this requirement proved to be a stumbling block, I could easily forego this
capability to get the rest.

My existing proposal overloaded the wire key-word, so no new additional keyword
would be required. Using wire is also very intuitive to hardware design engineers
because it just connects logic, and RTL designers do not distinguish between
combinational logic coded as an always block and combinational logic coded as a
continuous assignment. wires are also used connect the outputs of flip-flops to other
logic, so there really is no need for a reg variable as far as hardware engineers are
concerned (some companies do not even allow RTL designers to code RTL flip-flops -
they must be instantiated from a company library).

Stu's objection to the wire-overloading proposal was primarily related to the PLI. Stu
noted that internal vectors declared as wires but assigned with procedural assignments
could be de-compiled by the PLI and the de-compiled code would show that the internal "
wire"-vector in the elaborated design was indeed a reg, which could be confusing.

Stu suggested an alternative that would meet all of my enhancement goals but would
require a new keyword. For now let me call the new keyword TBD (the to-be-determined
keyword).
(1) TBD would be the new universal implicit declaration type.
(2) TBD types would be first-usage sensitive and behave exactly like wires or regs,

depending on first usage.
(3) It shall be illegal to make driver assignments and procedural assignments to the same

variable.
(4) To make it possible to still have implicit data type port declarations, the TBD type

would have to be the new default data type for SystemVerilog designs. This is still
100% backward compatible with existing SystemVerilog designs because undeclared
port types would default to the TBD type and per first-usage requirements, the TBD
ports would turn into wire-ports, the same as SystemVerilog today.

(5) De-compiled listings using the PLI would still show the individual identifier types to
be wire or reg, but Stu said this would be reasonable compared to declaring a
wire-identifier and having it show up in the de-compiled PLI as a reg-identifier..

NOTE: when some of us first joined the Superlog Work Group, the Co-Design guys
wanted logic to be the default data type, but we pointed out that that would break
existing Verilog designs that had undeclared multi-driver nets. That is why logic was
rejected as the new SystemVerilog data type. The TBD data type would not have this
problem.

Karen tried to find examples where an implicit, first usage type would fail. Karen gave
the example of a pass-through module where the data types of the ports for both modules
were undeclared. These are easily determined to be TBD wire-type ports.

Verilog already connects regs to wires through instantiated module ports, so a TBD-
reg-output port connected to a TBD-external-wire works fine. Similarly, a TBD-
reg-variable connected to an instantiated TBD-wire-input port also works fine.

Stu, myself and Karen are trying to figure out if there are some unresolved corner cases
that we have not considered.

I believe Stu and I would like to know what the interest-level and opposition-level is to
this type of proposal.

I personally believe that SystemVerilog users are not as likely to use the PLI (even
though tool vendors will still use the PLI) and that overloading the wire keyword for the
reg-wire proposal would be fine. The tradeoff is measuring the confusion-level that
might be experienced by PLI users against the problems of finding a good descriptive
keyword to use for the TBD variable and how many designs the new keyword would
break, but I could be persuaded to use either.

This type of enhancement offers the following advantages to the average design and
verification engineer:
(1) Finally get rid of the confusing net-variable separate declaration requirements.
(2) Eliminate the need to change declarations when the type of assignment changes

within a module.
(3) More concise.

• Enhanced SystemVerilog: For simple designs that use the TBD type, the only
required TBD declarations would be internal buses (net or reg) and internal
scalar declarations when using either the .name or .* SystemVerilog implicit
port connection styles.

• Existing SystemVerilog & Verilog-2001: Require additional variable declarations
for ports that are driven using procedural assignments and internal scalar
variables, but not wire ports or internal scalar wires.

• To force SystemVerilog & Verilog-2001 declarations: If you want to force
engineers to declare all port and internal identifiers, you can always use the
Verilog-2001 `default_nettype none compiler directive.

(4) Remove the verbose and annoying need to add `ifdef for declarations that change
according to usage context.

Please, for a little inconvenience on the part of the EDA tool vendors, we achieve a lot of
simplification and eliminate a nagging Verilog annoyance.

All feedback comments and potential-problem examples welcome.

Regards - Cliff

