| Modify the text in section 2.7

The nesting of braces must follow the number of dimensions, unlike in C. However, replicate operators can be
nested. The inner pair of braces in a replication are removed. Each replication represents one dimension.

int n[1:2][1:6] = {2{{3{4.5}}}}; // {{4.5.4,5,4,5},{4,5, 4,5, 4,5}}

If the type is not given by the context, it must be specified with a cast.

typedef int {43} triple [1:3]; // Array of 3 integers packed-together
$nydi splay(triple {0.1,2}):

Array literals can also use their index or type as a key, and a default key value (see Section 7.13):

={1:1, default:0}; // indexes 2 and 3 assigned 0

ADD to the end of section 2.8

Replicate operators can be used to represent their exact number of members. The inner pair of braces in a
replication are removed.

struct {int X VY, Z} XYZ = {3{1}};
typedef struct {int a,b[4]} ab t;
int a,b,c;

ab_t vi1[1:0][2:0];

vl = {2{{3{a, {2{b,c}}}}}};

|Move section 7.12 static prefixes before section 7.11 Concatenation.

| DELETE the following text in 7.11 (will become section 7.12)

| Modify section 7.13

Braces are also used for expressions to assign to unpacked arrays. Unlike in C, the expressions must match ele-
ment for element, and the braces must match the array dimensions. Fhe-type-efeach-elementis-matched-against
the-type-of the-expression-aceording to-the same rules-as-for-a-sealar- Each expression item shall be evaluated in

the context of an assignment to the type of the corresponding element in the array. This means that the follow-
ing examples do not give size warnings, unlike the similar assignments above:

The syntax of multiple concatenations can be used for unpacked array expressions as well. Each replication
represents a single dimension.

unpackedbits = {2 {y}}
int n[1:2][1:3] = {2{{

SystemVerilog determines the context of the braces bylookingatthelefthand-side-efan when used in the con-
text of an assignment. If theleft-hand side-is-an used in the context of an assignment to an unpacked array, the

braces represent an unpacked array literal or expression. Outside the context of an assignment en-theright hand
side-to an aggregate type, an explicit cast shall be used with the braces to distinguish it from a concatenation.

sane as {y, v}
}: /1 same as {{y.y.y}.{y.y.Vv}}

An_unpacked array expression can address specific indexes with the { index:value} syntax. The expression
need not specify all elements in the array unless being used as an initialization in a declaration. For dynamic
arrays and queues, the element must already exist. See section 4.1.4 for addressing associative arrays.

int n([3:1] ={2:1,3:2,1:3};

n =4{2:x,3:y}: // only elenent 2 witten, equivalent to
n[2] = x;

n[3] =vy;

It can sometimes be useful to set array elements to a value without having to keep track of how many members
there are. This can be done with the def aul t keyword:

initial unpackedints = {default:2}; // sets elenments to 2

For more arrays of structures, it is useful to specify one or more matching types keys, as illustrated under struc-
ture
expressions, below.

struct {int a; time b;} abkey[1:0];
abkey = {{a:1, b:2ns}, {int:5, tinme:$tine}};

When the braces include an index, type, or default key, the braces are syntactically distinguished from being a
concatenation for both packed and unpacked array types.

The rules for unpacked array matching are as follows:

— An i ndex: val ue specifies an explicit value for a keyed element index. The value is evaluated in the con-
text of an assignment to the indexed element and must be castable to its type. It shall be an error to specify the
same index more than once in a single array expression.

— For t ype: val ue, if the element or sub array type of the unpacked array exaetly-matehes is equivalent to this
type, then each element or sub array shall be set to the value that has not been matched by an index above. The
value is evaluated in the context of an assignment to the matching type must be castable to the array element or
sub array type. Otherwise, if the unpacked array is multidimensional, then there is a recursive descent into each
sub array of the array using the rules in this section and the type and default speeifiers keys. Otherwise, if the
unpacked array is an array of structures, there is a recursive descent into each element of the array using the
rules for structure expressions and the type and default speeifiers keys. If more than one type matches the same
element, the last value shall be used.

— For def aul t : val ue, this key specifies the default value to use for each element of an unpacked array that
has not been covered by the earlier rules in this section. The value is evaluated in the context of each assign-
ment to an element covered by the default and must be castable to the array element type.

Every element shall be covered by one of these rules.

If the type key, default key, or replication operator is used on an expression with side effects, the number of
times that expression eval uates is undefined.

| Modify section 7.14

A structure expression (packed or unpacked) can be built from member expressions using braces and commas,
with the members in declaration order. Each member expression shall be evaluated in the context of an assign-
ment to the type of the corresponding member in the structure. It can also be built with the names of the mem-
bers

SystemVerilog determines the context of the braces bylookingatthelefthand-side-efan when used in the con-
text of an assignment. If the-left-hand-side-is-an used in the context of an assignment to an unpacked structure,

the braces represent an unpacked structure literal or expression. Outside the context of an assignment en-the
right-hand side-to an aggregate type, an explicit cast must be used with the braces to distinguish it from a con-
catenation. When the braces include a label, type, or default key, the braces are syntactically distinguished from
being a concatenation for both packed and unpacked structure types.

The matching rules are as follows:

— A menber : val ue: specifies an explicit value for a named member of the structure. The named member
must be at the top level of the structure—a member with the same name in some level of substructure shall

not be set. The value must be castable to the member type and is evaluated in the context of an assignment to
the named member, otherwise an error is generated.

— The t ype: val ue specifies an explicit value for a field in the structure which exaetly-matehes is equivalent
to the type and has not been set by a field name speeifiers key above. If the same type key is mentioned more
than once, the last value is used. The value is evaluated in the context of an assignment to the matching type

— The def aul t : val ue applies to members that are not matched by either member name or type key and are
not either structures or unpacked arrays. The value_is evaluated in the context of each assignment to a member
covered by the default and must be castable to the member type, otherwise an error is generated. For unmatched
structure members, the type and default specifiers are applied recursively according to the rules in this section to
each member of the substructure. For unmatched unpacked array members, the type and default speeifiers keys
are applied to the array according to the rules for unpacked arrays.

Every element member shall be covered by one of these rules.

If the type key, default key, or replication operator is used on an expression with side effects, the number of
times that expression eval uates is undefined.

