Section 19 Interfaces

19.1 Introduction (informative)

The communication between blocks of a digital system is a critical area that can affect everything from ease of RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and protocol checking. The interface construct in SystemVerilog was specifically created to encapsulate the communication between blocks, allowing a smooth migration from abstract system-level design through successive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the communication between blocks, the interface construct also facilitates design re-use. The inclusion of interface capabilities is one of the major advantages of SystemVerilog.

At its lowest level, an interface is a named bundle of nets or variables. The interface is instantiated in a design and can be accessed through a port as a single item, and the component nets or variables referenced where needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity, making an interface, at its highest level, more like a class template. An interface can have parameters, constants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be passed in as parameters. The member variables and functions are referenced relative to the instance name of the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/ function members of that interface to drive the communication. With the functionality thus encapsulated in the interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol can be easily changed by replacing the interface with a different interface containing the same members but implemented at a different level of abstraction. The modules connected via the interface don’t need to change at all.

To provide direction information for module ports and to control the use of tasks and functions within particular modules, the modport construct is provided. As the name indicates, the directions are those seen from the module.

In addition to task/function methods, an interface can also contain processes (i.e. initial or always blocks) and continuous assignments, which are useful for system-level modeling and testbench applications. This allows the interface to include, for example, its own protocol checker that automatically verifies that all modules connected via the interface conform to the specified protocol. Other applications, such as functional coverage recording and reporting, protocol checking and assertions can also be built into the interface.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import constructs. This could be coded using hierarchical path names, but this would impede re-use because the names would be design-specific. A better way is to declare the task and function names in the interface, and to use local hierarchical names from the interface instance for both definition and call. Broadcast communication is modeled by forkjoin tasks, which can be defined in more than one module and executed concurrently.

19.2 Interface syntax
... SYNTAX BOX ...

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be accessed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and wires in interfaces, and may impose access restrictions with port directions in modports. The modules can be made generic so that the interfaces can be changed. The following examples show these features. At a higher level of abstraction, communication can be done by tasks and functions. Interfaces can include task and function definitions, or just

task and function prototypes (see section 19.6.1 An example of using tasks in an interface) with the definition in one module (server/slave) and the call in another (client/ master).

A simple interface declaration is as follows (see Syntax 19-1 for the complete syntax):

interface identifier;

 ...

 interface_items

 ...

endinterface [: identifier]

An interface can be instantiated hierarchically like a module, with or without ports. For example:

myinterface #(100) scalar1(), vector[9:0]();

In this example, 11 instances of the interface of type "myinterface" have been instantiated and the first parameter within each interface is changed to 100. One myinterface instance is instantiated with the name "scalar1", and an array of 10 myinterface interfaces are instantiated with instance names vector[9] to vector[0].

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, as is illustrated in the examples below.

19.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire and reg if no resolution of multiple drivers is needed.

module memMod(input bit req,

 bit clk,

 bit start,

 logic [1:0] mode,

 logic [7:0] addr,

 inout wire [7:0] data,

 output bit gnt,

 bit rdy);

 logic avail;

 ...

endmodule

module cpuMod(input bit clk,

 bit gnt,

 bit rdy,

 inout wire [7:0] data,

 output bit req,

 bit start,

 logic [7:0] addr,

 logic [1:0] mode);

 ...

endmodule

module top;

 logic req, gnt, start, rdy; // req is logic not bit here

 logic clk = 0;

 logic [1:0] mode;

 logic [7:0] addr;

 wire [7:0] data;

 memMod mem(req, clk, start, mode, addr, data, gnt, rdy);

 cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode);

endmodule
19.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface is referenced as a port, the variables and nets in it are assumed to have ref and inout access, respectively. The following interface example shows the basic syntax for defining, instantiating and connecting an interface. Usage of the SystemVerilog interface capability can significantly reduce the amount of code required to model port connections.

interface simple_bus; // Define the interface

 logic req, gnt;

 logic [7:0] addr, data;

 logic [1:0] mode;

 logic start, rdy;

endinterface: simple_bus

module memMod (simple_bus a, // Access the simple_bus interface

 input bit clk);

 logic avail;

 // When memMod is instantiated in module top, a.req is the req
 // signal in the sb_intf instance of the ’simple_bus’ interface

 always @(posedge clk) a.gnt <= a.req & avail;

endmodule

module cpuMod(simple_bus b, input bit clk);

 ...

endmodule

module top;

 logic clk = 0;

 simple_bus sb_intf(); // Instantiate the interface

 memMod mem(sb_intf, clk); // Connect the interface to the module instance
 cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name endmodule

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interface in the memMod and cpuMod module headers, then implicit port declarations also could have been used to instantiate the memMod and cpuMod modules into the top module, as shown below.

module memMod (simple_bus sb_intf, input bit clk);

 ...

endmodule

module cpuMod (simple_bus sb_intf, input bit clk);

 ...

endmodule

module top;

 logic clk = 0;

 simple_bus sb_intf();

 memMod mem (.*); // implicit port connections

 cpuMod cpu (.*); // implicit port connections

endmodule

19.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface reference
as a place-holder for an interface to be selected when the module itself is instantiated. The unspecified interface is referred to as a “generic” interface reference.

This generic interface reference can only be declared by using the list of port declaration style of reference. It shall be illegal to declare such a generic interface reference using the old Verilog-1995 list of port style.

The following interface example shows how to specify a generic interface reference in a module definition.

// memMod and cpuMod can use any interface

module memMod (interface a, input bit clk);

 ...

endmodule

module cpuMod(interface b, input bit clk);

 ...

endmodule

interface simple_bus; // Define the interface

 logic req, gnt;

 logic [7:0] addr, data;

 logic [1:0] mode;

 logic start, rdy;

endinterface: simple_bus

module top;

 logic clk = 0;

 simple_bus sb_intf(); // Instantiate the interface

 // Reference the sb_intf instance of the simple_bus

 // interface from the generic interfaces of the

 // memMod and cpuMod modules

 memMod mem (.a(sb_intf), .clk(clk));

 cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

An implicit port cannot be used to reference a generic interface. A named port must be used to reference a generic interface, as shown below.

 module memMod (interface a, input bit clk);

 ...

endmodule

module cpuMod (interface b, input bit clk);

 ...

endmodule

module top;

 logic clk = 0;

 simple_bus sb_intf();

 memMod mem (.*, .a(sb_intf)); // partial implicit port connections

 cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections

endmodule

19.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to connect to a port with the same nets and variables. To share an external net or variable, one that makes a connection from outside of the interface as well as forming a common connection to all module ports that instantiate the interface, an interface port declaration is required. The difference between nets or variables in the interface port list and other nets or variables within the interface is that only those in the port list can be connected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);

 wire d;

endinterface

The wires a, b and c can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between two instances of the interface.

interface simple_bus (input bit clk); // Define the interface

 logic req, gnt;

 logic [7:0] addr, data;

 logic [1:0] mode;

 logic start, rdy;

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface

 logic avail;

 always @(posedge a.clk) // the clk signal from the interface

 a.gnt <= a.req & avail; // a.req is in the ’simple_bus’ interface endmodule

module cpuMod(simple_bus b);

 ...

endmodule

module top;

 logic clk = 0;

 simple_bus sb_intf1(clk); // Instantiate the interface

 simple_bus sb_intf2(clk); // Instantiate the interface

 memMod mem1(.a(sb_intf1)); // Reference simple bus 1 from memory 1

 cpuMod cpu1(.b(sb_intf1));

 memMod mem2(.a(sb_intf2)); // Reference simple bus 2 from memory 2

 cpuMod cpu2(.b(sb_intf2));

endmodule

Note: Because the instantiated interface names do not match the interface names used in the memMod and cpuMod modules, implicit port connections cannot be used for this example.

19.4 Modports

To restrict interface access within a module, there are modport lists with directions declared within the interface. The keyword modport indicates that the directions are declared as if inside the module.

interface i2;

 wire a, b, c, d;

 modport master (input a, b, output c, d);

 modport slave (output a, b, input c, d);

endinterface

In this example, the modport list name (master or slave) can be specified in the module header, where the interface name selects an interface and the modport name selects the appropriate directional information for the interface signals accessed in the module header.

module m (i2.master i);

 ...

endmodule

module s (i2.slave i);

 ...

endmodule

module top;

 i2 i();

 m u1 (.i(i));

 s u2 (.i(i));

endmodule

The modport list name (master or slave) can also be specified in the port connection with the module instance, where the modport name is hierarchical from the interface instance.

 module m (i2 i);

 ...

endmodule

module s (i2 i);

 ...

endmodule

module top;

 i2 i();

 m u1 (.i(i.master));

 s u2 (.i(i.slave));

endmodule

The syntax of interface_name.modport_name reference_name gives a local name for a hierarchical reference. Note that this can be generalized to any interface with a given modport name by writing interface.modport_name reference_name.

In a hierarchically nested interface, the directions in a modport declaration can themselves be modport plus name.

interface i1;

 interface i3;

 wire a, b, c, d;

 modport master (input a, b, output c, d);

 modport slave (output a, b, input c, d);

 endinterface

 i3 ch1(), ch2();

 modport master2 (ch1.master, ch2.master);

endinterface

All of the names used in a modport declaration shall be declared by the same interface as is the modport itself. In particular, the names used shall not be those declared by another enclosing interface, and a modport declaration shall not implicitly declare new ports. No hierarchical references shall be permitted within a modport.
The following interface declarations would be illegal:

interface i;

 wire x, y;

 interface illegal_i;

 wire a, b, c, d; // x, y not declared by this interface

 modport master (input a, b, x, output c, d, y);

 modport slave (input a, b, x, output c, d, y);

 endinterface : illegal_i

 illegal_i ch1, ch2;

 modport master2 (ch1.master, ch2.master);

endinterface : i

interface illegal_i;

 // a, b, c, d not declared by this interface

 modport master (input a, b, output c, d);

 modport slave (output a, b, output c, d);

endinterface : illegal_i

Note that if no modport is specified in the module header or in the port connection, then all the nets and variables in the interface are accessible with direction inout or ref, as in the examples above.

19.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses the modport name in the module definition.

interface simple_bus (input bit clk); // Define the interface

 logic req, gnt;

 logic [7:0] addr, data;

 logic [1:0] mode;

 logic start, rdy;

 modport slave (input req, addr, mode, start, clk,

 output gnt, rdy,

 ref data);

 modport master(input gnt, rdy, clk,

 output req, addr, mode, start,

 ref data);

endinterface: simple_bus

module memMod (simple_bus.slave a); // interface name and modport name

 logic avail;

 always @(posedge a.clk) // the clk signal from the interface

 a.gnt <= a.req & avail; // the gnt and req signal in the interface endmodule

module cpuMod (simple_bus.master b);

 ...

endmodule

module top;

 logic clk = 0;

 simple_bus sb_intf(clk); // Instantiate the interface

 initial repeat(10) #10 clk++;

 memMod mem (.a(sb_intf)); // Connect the interface to the module instance

 cpuMod cpu (.b(sb_intf));

endmodule

19.4.2 An example of connecting a port bundle

This interface example shows how to use modports to restrict signal interface access and direction
. It uses the modport name in the module instantiation.

interface simple_bus (input bit clk); // Define the interface

 logic req, gnt;

 logic [7:0] addr, data;

 logic [1:0] mode;

 logic start, rdy;

 modport slave (input req, addr, mode, start, clk,

 output gnt, rdy,

 ref data);

 modport master (input gnt, rdy, clk,

 output req, addr, mode, start,

 ref data);

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface name

 logic avail;

 always @(posedge a.clk) // the clk signal from the interface

 a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule

module cpuMod(simple_bus b);

 ...

endmodule

module top;

 logic clk = 0; simple_bus sb_intf(clk); // Instantiate the interface

 initial repeat(10) #10 clk++;

 memMod mem (sb_intf.slave); // Connect the modport to the module instance

 cpuMod cpu (sb_intf.master);

endmodule

�PAGE \# "'Page: '#'�'" ��This example is not explained and I think it should be. If I read this correctly, we are instantiating interfaces of the type "myinterface" and we are changing the first parameter to be 100 (unknown what the first parameter was or its original initial value) and we are instantiating one instance with the instnace name "scalar1", and an array of 10 interfaces with instance names vector[9] to vector[0].

�PAGE \# "'Page: '#'�'" ��Here is just one example where the interface reference in a module header is called an instance - this is why I thought there were interface instances in both the module header and in the parent module that had to be physically connected.

�PAGE \# "'Page: '#'�'" ��Controlling signal direction implies there are ports because only ports have direction.

Page 258

