
Data Type Expressions in SystemVerilog

Background
There is a need for expressions that compute equality/inequality of data types. At the
minimum these expressions are useful during elaboration, to enable generate statements
that can handle the flexibility of the SystemVerilog data type system.

 module multitypemodule #(parameter type thetype=logic)
 (input thetype datai,
 output thetype datao);
 generate
 if (thetype == typedef1)
 always_comb begin
 datao.field1 = datai.field2;
 datao.field2 = datai.field1;
 end
 else if (thetype == typedef2)
 always_comb begin
 datao[1:0] = datai[3:2];
 datao[3:2] = datai[1:0];
 end
 else
 always_comb
 datao = datai;
 endgenerate
endmodule

This capability could be extended to run-time but this feature would be more applicable
to general programming or test bench code. Justification for extending this capability to
run-time is welcomed but left for interested parties. The rest of this document specifies
the capabilities for elaboration only.

Accompanying the need to compare data types is the need for a function that reports the
data type of an expression. For example:

multitypemodule #($type(a)) imultitypemodule (a,b);

The addition of $type makes macros more convenient:

`define mymacro(a,b,id) multitypemodule #($type(a)) id (a,b);

The $type system function is justified just as the $bits, $left, etc. system function(s) are
justified. The $type system function would extend introspective capabilities to
SystemVerilog data types just as the other system functions add introspective capabilities
to Verilog-2001 and previous data types. If $bits, etc. become methods, $type should
follow accordingly.

Proposal
The following is proposed language to add data type equality/inequality expressions and
the $type system function to SystemVerilog.

3.? Data Type Equality
Two date types will be defined as equal data types using the following inductive
definition. If the two data types are not defined equal using the following definition then
they are defined to be not equal.

1. A data type, type1 is equal to itself if type1 is of one of the following types
• Integer vector type
• Integer atom type
• Type declaration identifier
• Non integer type
• string
• event
• chandle
• class scope type identifier

2. type1 is equal to type2, if type1 is equal to type3 and type2 is equal to type3

3. type1 is equal to type2, if type2 is equal to type1

4. ‘type1 signed’ is equal to type1, if the by default type1 is signed (i.e. byte signed

is equal to byte)
5. ‘type1 unsigned’ is equal to type1, if the by default type1 is unsigned (i.e. logic

unsigned is equal to logic)
6. type1 signed is equal to type1 signed
7. type1 unsigned is equal to type1 unsigned
8. If type1 and type2 are equal then the packed arrays type1[M1:L1] and

type1[M2:L2] if the evaluated values of M1 and L1 are respectively equal to M2
and L2 (i.e. logic[10:0] is equal to logic [5+5:0])

9. type1 is equal to type2, if type1 is defined to be type2 using a typedef definition.
10. type1 is equal to type2, if type1 is a type parameter assigned to be type2.

Note that according to the previous definition:

• Two struct or union types are not equal if they have the same fields.
• Two enumerated types are not equal even if they are both of the same data type

and both have the same enumeration values.
• An enumerated data type is not equal to the enumeration’s data type (i.e. enum int

{…} is not equal to int)
• logic and reg types are not equal
• logic[0:0] and logic are not equal
• reg[31:0] and integer are not equal

7.? Data Type Expressions

SystemVerilog includes the ability to compute the equality/inequality of data types using
data type expressions. Data type expressions enable the comparison of two data types
using the operators equality operator '==' and inequality operator '!='. Data type
expressions are evaluated during elaboration.

Example data type expressions include:

typedef logic [1:0] typedef1;

typedef logic [1:0] typedef2;
typedef logic [3:0] typedef3;

typedef1 == typedef2
typedef1 != typedef2

typedef struct {
 logic a;
} stype1;
typedef struct {
 logic a;
} stype2;
typedef stype2 stype3;

stype1 != stype2
stype2 == stype3
logic [1:0] == typedef1

Data type expressions are generally applicable to generate statements:

generate
 if (thetype == typedef1)
 always_comb begin
 datao.field1 = datai.field2;
 datao.field2 = datai.field1;
 end
 else if (thetype == typedef2)
 always_comb begin
 datao[1:0] = datai[3:2];
 datao[3:2] = datai[1:0];
 end
 else
 always_comb
 datao = datai;
endgenerate

22.? Data Type System Function

 type_function ::= // not in Annex A

$type (expression)

The $type system function returns a data type corresponding to the input expression.
The data type returned by the $type system function can be used like any other data type,
for example:

parameter type paramtype = $type(structvar);

$type(somevar) var_somevartype;

The data type expression should be compatible with system tasks that make use of the %s
format specification.

logic [1:0] mda [1:0][2:0];
...
$display("type mda = %s",$type(mda));

The value for other format types is undefined.

Annex A
Under A.8.3 Expressions

REPLACE
constant_expression ::=
 constant_primary
 | unary_operator { attribute_instance } constant_primary
 | constant_expression binary_operator { attribute_instance } constant_expression

| constant_expression ? { attribute_instance } constant_expression :
constant_expression

 | string_literal

WITH
constant_expression ::=
 constant_primary
 | unary_operator { attribute_instance } constant_primary
 | constant_expression binary_operator { attribute_instance } constant_expression

| constant_expression ? { attribute_instance } constant_expression :
constant_expression

 | string_literal
 | constant_data_type_expression

ADD
constant_data_type_expression ::=
 data_type data_type_operator data_type

Under A.8.6 Operators
ADD
data_type_operator ::=
 == | !=

