
Mantis 1523

 P1800-2012 sub-clause 11.4.11:
Motivation
This Mantis clarifies how the semantics for the conditional operator when the cond_predicate evaluates to an

ambiguous value and the first and second expression is a non-integral type.

 Change
If cond_predicate is true, the operator returns the value of the first expression without evaluating the second

expression; if false, it returns the value of the second expression without evaluating the first expression. If

cond_predicate evaluates to an ambiguous value (x or z), then both the first expression and the second

expression shall be evaluated, and their results shall be combined bit by bit using Table 11-20 to calculate

the final result unless either the first or second expression is real, in which case the result shall be 0. The first

and second expressions are extended to the same width, as described in 11.6.1 and 11.8.2.

To:
If cond_predicate is true, the operator returns the value of the first expression without evaluating the second

expression; if false, it returns the value of the second expression without evaluating the first expression. If

cond_predicate evaluates to an ambiguous value (x or z), then both the first expression and the second

expression shall be evaluated and compared for logical equivalence as described in 11.4.5. If that comparison

is true(1), the operator shall return either the first or second expression. Otherwise the operator returns a result

based on the data types of the expressions.

When both the first and second expressions are of integral types, if the cond_predicate evaluates to an

ambiguous value and the expressions are not logically equivalent, their results shall be combined bit by bit

using Table 11-20 to calculate the final result unless either the first or second expression is real, in which case

the result shall be 0. The first and second expressions are extended to the same width, as described in 11.6.1

and 11.8.2.

Change:

"The conditional operator can be used with nonintegral types (see 6.11.1) and aggregate expressions (see

11.2.2) using the following rules:

— If both the first expression and second expression are of integral types, the operation proceeds as defined.

— If the first expression or second expression is an integral type and the opposing expression can be

implicitly cast to an integral type, the cast is made and proceeds as defined."

to

"The conditional operator can be used with nonintegral types (see 6.11.1) and aggregate expressions (see

11.2.2) using the following rules:

— If both the first expression and second expression are of integral types, the operation proceeds as defined.

— If both expressions are real, then the resulting type is real. If one expression is real and the other

expression is shortreal or integral, the other expression is cast to real, and the resulting type is real.

 If one expression is shortreal and the other expression is integral, the integral expression is cast to

shortreal, and the resulting type is shortreal.

— Otherwise, if If the first expression or second expression is of an integral type and the other expression can

be implicitly cast to an integral type, the cast is made and proceeds as defined above for integral types.

 Change
For nonintegral and aggregate expressions, if cond_predicate evaluates to an ambiguous value, then:

— If the first expression and the second expression are of a class data type and if the conditional operation

is legal, then the resulting type is determined as defined above and the result is null.

— Otherwise, both the first expression and second expression shall be evaluated, and their results shall

be combined element by element. If the elements match, the element is returned. If they do not

match, then the default-uninitialized value for that element’s type shall be returned.

To:
For nonintegral and aggregate expressions, if cond_predicate evaluates to an ambiguous value and the

expressions are not logically equivalent, then:

— If the first expression and the second expression are of a class data type and if the conditional operation

is legal, then the resulting type is determined as defined above and the result is null.

— Otherwise, both the first expression and second expression shall be evaluated, and For aggregate array data

types, except associative arrays, where both expressions contain the same number of elements their results

shall be combined element by element. If the elements match, the element is shall be returned. If they do not

match, then the default-uninitialized value specified in Table 7-1 for that element’s type shall be returned.

— For all other data types, the value specified in Table 7-1 for the resulting type as defined above shall be

returned.

