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Abstract

System Verilog has struct and union types. We propose related extensions: taggedunion types,
together with pattern matching. These yield the following benefits: (1) complete type-safety (which
unions do not have), (2) greater brevity, (3) a more “visual” (i.e., readable) way of programming with
structures, (4) tagged union expressions, usable in arbitrary expression contexts, (5) zero implementation
overhead, and (6) customizable bit representations. These properties raise the level of programming
with structures and unions, thereby eliminating a number of common errors and making programs more
readable. The proposed constructs are synthesizable, and have been used in some languages for many
years.

Contents

The actual extension proposed herein (part of the LRM) is syntactically quite small and described in a few
pages in the Appendices.

Most of this document is about rationale and motivation (intended for the Accellera committees and not
part of the LRM). It describes the extension, gives examples, compares it to existing constructs, and
discusses implementation issues.

1 Background concepts: tagged and untagged unions

Mathematics has the concepts of untagged unions (A + B) and tagged unions (A⊕B). The latter are also
called discriminated unions or discriminated sums. The difference is the following.

In untagged unions, when a component value (of type A or B) is injected into a union value (of type A+B),
it loses its identity, i.e., there is no way to know which summand it came from. This loss of information is
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the source of type-loopholes, because it is possible to inject an A value into an A + B value and then to
project it out as a B value, thereby misinterpreting the representation (bits).

In tagged unions, a union value (of type A⊕B) always has a tag that “remembers”which summand it came
from, so that it is possible to examine a union value to determine which summand it came from. This
allows correct (type-safe) projection of the contained value back into the summand domains.

The union construct in System Verilog (and C/C++) corresponds to untagged unions. This proposal
introduces tagged unions.

2 Motivating Examples

Example 1: Imagine that we are designing hardware in which some processor has two kinds of instructions:
Add and Jump. An Add instruction contains three 5-bit register names (two sources and a destination).
A Jump instruction is either unconditional and contains a 10-bit immedate address offset, or conditional
and contains a register name (for destination address) and a 2-bit condition-code register name.

Note that the certain fields are only meaningful in certain contexts. For example, the destination register
field is only meaningful in an Add instruction. A condition-code register field is only meaningful in a
conditional Jump instruction.

Example 2: Imagine that we are designing hardware in which we wish to reprsent an integer together with
a “valid” bit.

Note that the integer field is only meaningful if the valid bit is set.

Both these examples can be expressed using existing struct and union notations. We will show how they can
be improved significantly using tagged unions. The primary benefit is type-safety (a verification benefit)
because fields can only be examined/assigned when they are meaningful, but additional benefits include
greater brevity and a more “visual” (readable) notation.

3 Background: SystemVerilog 3.1 structs and unions

In this section we recap some features of existing structs and unions in System Verilog 3.1, which will be
improved/fixed in the proposed tagged unions introduced in § 4.

Fields of structs and unions are set and accessed only using traditional “dot-notation” (structure.member).
The tagged union proposal improves this with pattern matching and tagged union expressions.

There are several potential non-orthogonalities in the facilities for struct and union “values”, i.e., some
facilities are missing, and some can be used in only limited contexts:

• An entire struct value can be transferred in an assignment, or in argument- and result-passing. But
the LRM seems to be silent on whether union values can be similarly passed (LRM § 3.11), possibly
because unions are untagged and so union values are considered to be the same as summand values.

• There are two very similar but separately described constructs for creating structure values: “structure
literals” (LRM § 2.8) and “structure expressions” (LRM § 7.13).

• There do not seem to be analogous union values (union literals or union expressions), perhaps because
unions are untagged, so a summand literal/expression can be used directly.

2



• The syntax of structure expressions (LRM § 7.13) overlaps with the syntax of bit-concatenation
(braces and commas). Hence structure expressions can only be used in limited contexts (e.g., as the
top-level of a right-hand side of an assignment to a structure variable, see LRM § 7.13).

The packed qualifier allows structs and unions to be considered as bit-vectors. But in a packed union, all
members must be packed elements with the same size (we drop this restriction in tagged unions).

3.1 Simulating tags using existing structs and unions

Tagged unions can be simulated by manual coding with existing structs and unions, but this is not type-safe,
and they are generally not as concise or visually obvious.

Here are some definitions for Example 1.

typedef enum { A, J } Opcode;
typedef enum { JC, JU } JumpOpcode;

typedef struct {
Opcode op;
union {

struct {
bit [4:0] reg1;
bit [4:0] reg2;
bit [4:0] regd;

} A_operands;
struct {

JumpOpcode jop;
union {

bit [9:0] JU_operand;
struct {

bit [1:0] cc;
bit [4:0] addr;

} JC_operands;
} J_suboperands;

} J_operands;
} operands;

} Instr;

Note that the op field acts as a “tag” which indicates how to intepret the remaining bits, i.e., as add
operands or as jump operands. Similarly, the jop field acts as another tag which indicates whether to
interpret the remaining fields as unconditional or condition jump operands.

A typical usage, employing dot-notation to access components:

Instr instr;

...
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case (instr.op)
A: rf [instr.operands.A_operands.regd] =

rf [instr.operands.A_operands.reg1] +
rf [instr.operands.A_operands.reg2];

J: case (instr.operands.J_operands.jop)
JU: pc = pc + instr.operands.J_operands.J_suboperands.JU_operand;
JC: if (cf [instr.operands.J_operands.J_suboperands.JC_operands.cc])

pc = instr.operands.J_operands.J_suboperands.JC_operands.addr;
endcase

endcase

where rf is the main register file and cf is the condition-code register file. Often, programmers use macros
to abbreviate such multi-level dot-selections.

Lack of type-safety: Extracting a union member opens a type-loophole. For example, we can set the
tag to “A” and assign “J” fields:

Instr instr;

instr.op = A;
instr.operands.J_operands.jop = JC; // meaningless when op == A

Or, when the tag is “A” we can still examine “J” fields:

case (instr.op)
A : ...

instr.operands.J_operands.jop ... // meaningless since tag is A
endcase

This lack of type-safety introduces a verification obligation to ensure that fields are only used meaningfully.

Note: very occasionally, this kind of type loophole, or “type laundering”, is exactly what the programmer
wants, because he intends to view the same bits in two different ways. It might be better to make those
(dangerous) situations clearly visible using an explicit ’cast’ operation.

4 Proposed Extensions: Tagged Unions and Pattern Matching

We propose to add a new construct called a “taggedunion” type, together with an extension to case-
statements called“Pattern Matching”, and an extension to expressions for constructing tagged union values.
With these, our examples can be rendered:

• with complete type-safety (so, simpler verification),

• with greater brevity, and

• with a more visually apparent notation

These properties raise the level of programming with structures and unions and thereby eliminate a number
of common errors and make programs more readable.
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4.1 Tagged union types

We extend the syntax of types to include tagged unions. A tagged union type contains one or more tags,
each associated with a type (the associated summand type).

Here is our 2-instruction example, using a tagged union:

typedef taggedunion {
struct {

bit [4:0] reg1;
bit [4:0] reg2;
bit [4:0] regd;

} A;
taggedunion {

bit [9:0] JU;
struct {

bit [1:0] cc;
bit [9:0] addr;

} JC;
} J;

} Instr;

Here, Instr is declared as a new tagged union type. A and J are declared as tags for the union. The tags
can be viewed as an implicit enumeration. The representation of a tagged union value implicitly contains
enough additional bits to contain the tags (in this example, 1 bit). Also, in this example, the tag can be
seen as identical to the opcode (A or J). Similarly, JU and JC are declared as tags for the nested union.
The JU address field is not named (it could be named if desired).

Note that we have to invent far fewer names for intermediate unions and structs.

4.2 Tagged union expressions

We extend the syntax of expressions to include tagged union expressions. (Whereas structs distinguish
between “structure literals” and “structure expressions”, we make no such distinction.)

Tagged union expressions are expressions that evaluate to tagged union values, and can be used in any
expression context. A tagged union expression consists of a tag followed by the corresponding component(s).

taggedunion expression ::=
identifier { expression ; ... ; expression }

| identifier { field = expression ; ... ; field = expression }

field ::= identifier

The latter form is used if the tagged union member is a struct and the fields are defined by name (instead
of by position).

Examples of tagged union expressions, evaluating to tagged union values:
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A { e1; e2; ed } // by position
A { reg2 = e2; regd = ed; reg1 = e1 } // by name
J {JU {eOffset}}
J {JC { eC; eAddr }} // inner expr by position
J {JC { cc = eC; addr = eAddr }} // inner expr by name

4.3 Pattern Matching

We extend the syntax of case statements to include tagged union patterns before the “:” in each case item.
Here is our example, again:

Instr instr;

...
case (instr)
A{r1;r2;rd} : rf[rd] = rf[r1] + rf[r2];
J{j} : case (j)

JU{a} : pc = pc + a;
JC{c;a}: if (cf[c]) pc = a;

endcase
endcase

Here, the pattern “A{r1;r2;rd}” will “match” tagged union values that have tag A, and in that case
implictly declares and binds the variables r1, r2 and rd to the values of the fields reg1, reg2 and regd,
respectively. r1 is implicitly declared to be of type bit [4:0], and similarly for r2 and rd. These variables
can then be used in the statement after the “:”, i.e., the scope of these declarations is the RHS of the same
case item.

Similarly, the pattern “J(j)” only matches tagged union values that have tag J, and in that case implicitly
declares and binds the variable j to the nested tagged union value. The nested case statement further
discriminates between JU and JC.

Patterns can be nested, so the above example can also be written very succinctly as follows:

case (instr)
A{r1;r2;rd} : rf[rd] = rf[r1] + rf[r2];
J{JU{a}} : pc = pc + a;
J{JC{c;a}} : if (cf[c]) pc = a;

endcase

(Note: although the tag J now appears in two patterns, this does not imply any ineffiency in testing. It is
well understood how to implement this so that the test for A vs. J is performed no more than once, i.e.,
how to convert this into a deterministic decision tree).

Observe the substantial increase in brevity, and the more “visual” access to the fields of the structures due
to pattern matching. In particular, tagged union expressions and tagged union patterns look the same,
i.e., a tag followed by the component. They both suggest the “layout” of the structure.

The above example used “positional” pattern matching. When the summand is a struct, pattern matching
can also be done by name (in which case the ordering of the fields is not relevant):
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case (instr)
A{reg2=r2;regd=rd;reg1=r1} : rf[rd] = rf[r1] + rf[r2];
J{JC{cc=c;addr=a}} : if (cf[c]) pc = a;

endcase

Further, when done by name, it is ok to omit fields that are not of interest in a particular case item.

In a case statement, pattern matching is attempted sequentially, from first case item to last case item. In
particular, if more than one pattern matches the case value, the first one is selected.

Patterns do not have to be exhaustive. The usual default mechanism can be used as a final catch-all if
all patterns fail.

Note: it is well understood in the literature how to compile this kind of pattern matching to avoid repeated
tests, to exploit mutual exclusion, etc.

4.3.1 Optional extension: pattern matching in if statements

An option to this proposal is to extend if statements so that the predicate uses pattern matching:

if (e matches J{JC{cc=c;addr=a}})
... // c and a can be used here

else
...

Here, matches is a new keyword. If the value of expression e matches the pattern, the then-arm is
executed, otherwise the else-arm is executed. The variables c and a can be used in the then-arm, and will
be bound to the values of the corresponding fields.

If this example were written using ordinary struct-and-union notation, and without the implicit declaration
of pattern variables, it would look like this:

x = e;
if ((x.op == J) &&

(x.operands.J_operands.jop == JC)) begin
bit [1:0] c;
bit [4:0] a;
c = x.operands.J_operands.J_suboperands.cc;
a = x.operands.J_operands.J_suboperands.addr;
... // c and a can be used here

end
else

...

(this relies on the sequential evaluation of the && operator, since its right operand is only meaningful if the
left operand is true). Compare this to the brevity of the pattern-matching version.
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4.4 Type-safety and verification

All these examples are also completely type-safe because the compiler ensures that the reg1, reg2 and
regd fields can only be accessed in the A case, and the cc and addr fields can only be accessed in the J/JC
case. It is syntactically impossible, for example, to access the reg1 field in the J case.

This type-safety directly impacts verification. If the same functionality were manually coded using ex-
isting structs and unions, then we are left with a verification obligation to ensure that fields are only
accessed/updated meaningfully w.r.t. the tags. Here, that obligation is discharged automatically by static
type-checking based on the syntactic structure.

Note: by ’type-safe’ we mean that it is impossible to misinterpret or “launder” the bits in a tagged union,
the way it is possible to do in an ordinary (untagged) union. Tagged unions can still, of course, raise
run-time errors, but these situations are now known and controllable.

4.5 Dot notation to select and assign fields type-safely

“Dot notation” can still be used to access fields of tagged unions:

r2 = instr.reg2

but these will now be completely type-safe, because they are equivalent to:

case (instr)
A{reg2=x} : r2 = x;
default : $error (....);

endcase

Similarly, it is possible to use dot notation to assign a field, again with complete type-safety.

4.6 Packed representations (canonical)

Tagged unions can be packed, using the packed keyword, just like structs and unions, provided their
components are packed items.

Tagged unions have a simple, orthogonal and transparent canonical representation in bits (non-canonical,
or custom, representations, which are also sometimes useful in real hardware, are discussed in § 4.8). The
canonical representation of a tagged union value is:

+-----+-------+--------+--------+-----+--------+
| tag | XXXXX | field1 | field2 | ... | fieldN |
+-----+-------+--------+--------+-----+--------+

where the fieldJ’s are appropriate for the tag.

Unlike the requirement for unions, the tagged union summands do not have to be of the same size. A
tagged union value, no matter what the current tag value, has a fixed, definite size which is easily and
transparently apparent from the summand sizes.
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• The tag uses as many bits as necessary to discriminate amongst all the tags, and is always left-justified
(i.e., towards the most-significant bits).

• No matter what the current tag value, the size of a tagged union value is always the size of the tag
plus the size of the largest summand.

• For smaller summands, the summand bits are right-justified (i.e., towards the least-significant bits),
and the bits between the tag and the summand are undefined (the “XXX”s in the figure above). In
the extreme case of a summand of void type, only the tag is significant and all the remaining bits
are undefined.

Following these principles, the representations for Example 1 is directly evident from its type declaration:

1 5 5 5
+-+---------+---------+---------+
|A| reg1 | reg2 | regd |
+-+---------+---------+---------+

1 2 1 2 10
+-+---+-+---+-------------------+
|J| X |J| X | |
| | |U| | |
+-+---+-+---+-------------------+

1 2 1 2 10
+-+---+-+---+-------------------+
|J| X |J|cc | addr |
| | |C| | |
+-+---+-+---+-------------------+

These representation choices make tagged union values synthesizable with efficient circuits (note: tags are
always at known bit positions).

4.7 Zero implementation overhead

Tagged union values have zero overhead with respect to the number of bits in their representation, compared
to manually coding the same functionality explicitly with structs and unions. Both the struct-and-union
version of the Instr structure and the tagged union version are represented in 16 bits: 15 bits for the
largest summand (A) plus 1 bit for the tag.

Note: in the limit case of a tagged union with just one summand, 0 bits are needed for the tag, i.e., there
is no representation overhead at all. This is sometimes useful in place of an ordinary struct, allowing the
use of pattern matching to access the fields instead of dot notation.

Similarly, the circuits produced for case statements with tagged union values are exactly the same as those
that would be produced if the same functionality were coded manually using unions and structs.
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4.8 Non-canonical (custom) representations

Sometimes, the programmer wants a non-canonical (usually non-orthogonal) representation. For example,
processor instruction encodings are typically full of special tricks to fit an instruction into the shortest
possible instruction word, where the packing is highly dependent on the particular opcode, sub-opcodes,
and so on.

To support non-canoncial encodings, the programmer can customize the representations by defining two
methods pack and unpack associated with the tagged union type. For example,

function Instr Instr.unpack #(parameter n) (Bit [n:0] bits);
function Bit [n:0] Instr.pack #(parameter n) (Instr instr);

If the programmer provides these function definitions in the same scope as the tagged union typdef for
Instr, the compiler will automatically use these functions to convert a literal tagged union into its packed
bit-representation, and to unpack the fields out of a packed tagged union value in a pattern-match.

With this mechanism, the programmer can choose any preferred representation, which sometimes can be
more efficient than the canonical representation. For example, suppose we want to represent something
that is:

• Either a 32b byte pointer, but which is always word-aligned, or
• a 31b immediate integer value.

(This is a standard trick in implementing garbage-collected languages.) The tagged union definition for
this might be:

typedef taggedunion {
bit [31:0] Ptr;
bit [30:0] Immed31;

} PtrOrImmed;

The canonical (orthogonal) representation would take 33 bits (32 bits for the pointer, plus 1 bit for the
tag). However, using pack and unpack explicitly to define a non-canonical representation, we can squeeze
the representation into 32 bits, exploiting the fact that Ptr LSBs are always zero due to word-alignment.
We can represent Ptr summands just using their 32 bits (LSB always 0), and Immed31 summands as
{31b_value, 1’b1}, with LSB always 1.

To get a non-canonical representation, one simply provides definitions for pack and unpack. Except for
this, the tagged unions are used as usual in expressions and pattern matching. It is straightforward for the
compiler automatically to insert the pack/unpack routines wherever necessary while generating code for
tagged union expressions and pattern matching. Again, this automation removes another potential source
of programming errors.

5 Example 2

Example 2 (an integer together with a valid bit) can be expressed as follows:
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typedef taggedunion {
void Invalid;
int Valid;

} VInt;

The representation will have 33 bits: 32 bits for the int, plus 1 bit for the tag (but note, following the
discussion on non-canonical representations in § 4.8, if a particular application does not use all possible
integer values, VInt can be represented in 32 bits by using one of the unused values to encode the invalid
summand).

A valid Vint value is constucted by the expression:

Valid {e}

where e is an integer expression. The “invalid” Vint value is constructed by the expression:

Invalid {}

A VInt value v can be examined using pattern matching:

case (v)
Invalid {} : $display ("Is invalid");
Valid {x} : $display ("Valid with value %d", x);

endcase

Note: again, it is syntactically impossible to extract an int value from a VInt value that has the Invalid
tag.

6 Maturity of the proposed constructs

All these constructs have been implemented and well-tested for over a decade in many high-level program-
ming languages, including Haskell and SML. There are plenty of of papers in the literature on how to
implement tagged unions and pattern matching efficiently.

Tagged unions have also been implemented and used in the Hardware Description Language Bluespec for
over 3 years. Tagged unions, tagged union expressions and pattern matching are eminently synthesizable
into efficient hardware.

Although the ideas behind tagged unions and pattern matching are very mature from previous languages,
to our knowledge this is the first time they are being cast into syntax that is consistent with System Verilog.

7 More on relationship to existing constructs

A tagged union in which each summand has the void type is equivalent to an enumeration. Example:

typedef enum { red, yellow, green} Colors;
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is equivalent to:

typedef taggedUnion {
void red;
void yellow;
void green;

} Colors;

The representation needs exactly the same number of bits (2, in this example).

A tagged union with a single summand is equivalent to a struct. Example:

typedef struct {
byte b;
int i;

} s;

is equivalent to:

typedef taggedunion {
struct {

byte b;
int i;

} T;
} s;

and is represented in exactly the same number of bits (because a single tag can always be represented in
0 bits). Using a tagged union instead of the corresponding struct may sometimes be preferable because it
allows the use of pattern matching and tagged union expressions instead of dot notation.

Thus, in principle, tagged unions could subsume enumerations, structs and unions. However, since enu-
merations, structs and unions have a long history in C/C++ and are widely familiar amongst legions of
programmers, we do not propose replacing them with tagged unions; we simply propose tagged unions and
pattern matching as extensions that provide a new opportunity for type-safety, brevity, and a more visual
style of programming.
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A Additions to LRM Text

The following is a new section to be added after Section 3.11:

Section 3.11+ Tagged unions

data type ::= from Annex A.2.2.1
...

| taggedunion packed [ signing ] { { struct union member } } { packed dimension }
| taggedunion [ signing ] { { struct union member } }

Tagged unions capture certain common usages of structs and unions. Together with tagged
union expressions (Section 7.13+) and pattern matching (Section 8.4.1), they providing addi-
tional type-safety, brevity and readability.

In the case of tagged unions, each struct union member is also known as a summand. The
identifiers declared by the summands are called tags. Conceptually, a tagged union is a like a
union, but is one in which we use the tag to remember which summand the value came from.
This, in turn, allows us to type-safely extract a value from a tagged union into the correct
summand domain.

Example: an integer together with a valid bit:

typedef taggedunion {
void Invalid;
int Valid;

} VInt;

Example: two kinds of instructions in a processor: Add and Jump. An Add instruction contains
three 5-bit register names (two sources and a destination). A Jump instruction is either uncon-
ditional and contains a 10-bit immedate address offset, or conditional and contains a register
name (for destination address) and a 2-bit condition-code register name.

typedef taggedunion {
struct {

bit [4:0] reg1;
bit [4:0] reg2;
bit [4:0] regd;

} A;
taggedunion {

bit [9:0] JU;
struct {

bit [1:0] cc;
bit [9:0] addr;

} JC;
} J;

} Instr;
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Section 3.11+.1 Canonical representations

As with structs and unions, the packed, signed and unsigned qualifiers may also be used
with tagged unions.

When the packed qualifier is used, all the summand types must also be packed types, and the
canonical representation for a tagged union is the given by following rules.

• The tag uses as many bits as necessary to discriminate amongst all the tags, and is always
left-justified (i.e., towards the most-significant bits).

• No matter what the current tag value, the size of a tagged union value is always the size
of the tag plus the size of the largest summand.

• For smaller summands, the summand bits are right-justified (i.e., towards the least-
significant bits), and the bits between the tag and the summand are undefined. In the
extreme case of a summand of void type, only the tag is significant and all the remaining
bits are undefined.

Section 3.11+.2 Non-canonical (custom) representations

For a tagged union type T, a non-canonical representation can be given by defining the following
methods in the same scope as T’s declaration:

function T T.unpack #(parameter n) (Bit [n:0] bits);
function Bit [n:0] T.pack #(parameter n) (T t);

These functions can perform arbitrary packing and unpacking to and from bits.

The following is a new section to be added after Section 7.13:

Section 7.13+ Tagged union expressions

expression ::= from Annex A.8.3
...

| taggedunion expression

taggedunion expression ::=
identifier { expression ; ... ; expression }

| identifier { field = expression ; ... ; field = expression }

field ::= identifier

A tagged union expression (packed or unpacked) can be built from member expressions using
a tag followed by values for the components of the summand indicated by the tag.

Examples:

Valid {e}
Invalid {}

A { e1; e2; ed } // by position

14



A { reg2 = e2; regd = ed; reg1 = e1 } // by name
J {JU {eOffset}}
J {JC { eC; eAddr }} // inner expr by position
J {JC { cc = eC; addr = eAddr }} // inner expr by name

If the summand is a struct, the normal rules apply for using default, type keys, etc. (described
in Section 7.13).

The following is a new sub-section to be added at the end of Section 8.4:

Section 8.4.1 Pattern matching

In a case statement, the expression being tested can evaluate to a tagged union value. In such
a case statement, in each case item, the left-hand side of the colon “:” can contain a pattern,
which is simply an expression built from the following syntax (this syntax is not in the formal
grammar because it is simply a subset of the syntax of expressions):

pattern ::=
identifier

| number
| string literal
| tag { pattern ; ... ; pattern }
| tag { field = pattern ; ... ; field = pattern }

field ::= identifier

The value being tested by the case statement is matched against the patterns in the case
items, one at a time, in top-to-bottom (textual) order. If the value is a tagged union, its tag
must match the pattern’s tag, and then the fields of the value must match with the fields in
the pattern. An identifier pattern matches any value. a value-pattern (number, string) only
matches that value.

If a case-item’s pattern matches successfully, that case-item is selected, and the identifiers in the
pattern are bound to the corresponding fields in the value. These identifiers can then be used
in the right-hand side of the selected case-item. The identifiers in the pattern are implicitly
declared to have the type of the corresponding fields (this is statically determinable from the
pattern).

For struct components, pattern matching can be done either positionally or by name.

Example:

case (v)
Invalid {} : $display ("Is invalid");
Valid {x} : $display ("Valid with value %d", x);

endcase

Example:

Instr instr;
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...
case (instr)
A{r1;r2;rd} : rf[rd] = rf[r1] + rf[r2];
J{j} : case (j)

JU{a} : pc = pc + a;
JC{c;a}: if (cf[c]) pc = a;

endcase
endcase

Example:

case (instr)
A{r1;r2;rd} : rf[rd] = rf[r1] + rf[r2];
J{JU{a}} : pc = pc + a;
J{JC{c;a}} : if (cf[c]) pc = a;

endcase

Example:

case (instr)
A{reg2=r2;regd=rd;reg1=r1} : rf[rd] = rf[r1] + rf[r2];
J{JC{cc=c;addr=a}} : if (cf[c]) pc = a;

endcase

The following is an optional new subsection to be added at the end of Section 8.4, if pattern-matching in
if-statements is adopted:

Section 8.4.2 Pattern matching in if statements

match expression ::= expression matches expression from Annex A.6.6

The predicate of an if statement can use pattern matching using the form e1 matches pattern.
The matching rules are exactly as described in Section 8.4.1. If the pattern matches, the “then”
arm of the if statement is executed, and the identifiers bound during the pattern-match may
be used in the “then” arm. If the pattern fails, the “else” arm is executed.

Example:

if (e matches J{JC{cc=c;addr=a}})
... // c and a can be used here

else
...

16



B Additions to LRM BNF

A.2.2.1 Net and variable types

data type ::=
...

| taggedunion packed [ signing ] { { struct union member } } { packed dimension }
| taggedunion [ signing ] { { struct union member } }

A.8.3 Expressions

expression ::=
...

| taggedunion expression

taggedunion expression ::=
identifier { expression ; ... ; expression }

| identifier { field = expression ; ... ; field = expression }

field ::= identifier

No BNF extension is necessary for tagged union patterns in case statements, since the LHS of case_item
is already an expression, and patterns are just a subset of tagged union expressions.

B.1 Optional extension: tagged union patterns in if statements

If we add the option of pattern matching in if-statements:

A.6.6 Conditional statements

conditional statement ::=
[ unique priority ] if ( match expression ) statement or null
[ else statement or null ]

| ...

match expression ::= expression matches expression

where the expression after the new matches keyword is restricted to be a tagged union pattern.
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