Following, some issues, remarks, questions, and proposals for the future development arisen during the reading of “System-Verilog 3.1 Accellera’s Extensions to Verilog” can be found.
For any questions, clarifications, or remarks, you can contact me at:

Thomas Kruse

Infineon Technologies AG

Corporate Development

Design Automation

Balanstr. 73

81541 Munich

Germany


Phone: +49 (0)89 234 46380


Fax: +49 (0)89 234 955 6601


Email: thomas.kruse@infineon.com
Version 1.0; June 13, 2003
2.7 Array literals

· For generalization of the syntax for structure literals, the following should be possible in array literals:

real n[7:0] = {7,5 : 3.0, 4 : 3.5, default: 4.0};

3.10.2 Enumeration

· Semantic of the following combination is not defined!

enum {sub[5]=10};
3.12 Class

· “An object can be declared as an argument of type input, output, inout, or, ref.“
· input, outputs etc. are not types!
· The comma after “or” is not needed.
3.14 Casting

· It should be mentioned when a cast is needed and when an implicit (automatic) cast exist.
4.2 Packed and unpacked array + 4.6 Dynamic array + 4.9 Associative arrays

· Can an unpacked array be declared with a basic type “dynamic array” etc.?

typedef int int_a [8];

int_a k[];

int_a l[int];

typedef int int_da [];

int_da m[8];

int_da n[];

int_da o[int];

typedef int int_aa [int];

int_aa p[8];

int_aa q[];

int_aa r[int];

· “SystemVerilog accepts a single number (not a range) to specify the size of an unpacked array, like C.”
· Is this possible for unpacked arrays, only? Why not for packed arrays?
4.5 Array querying functions and 4.6-4.10

· The mixture of system calls ($length, $right etc.) and methods (size(), first()) is very confusing.

· I suggest to introduce additional methods for all system calls.

4.7 Array assignment

· “Assignment is done by assigning each element of the source array to the corresponding element of the target array, which requires that the source and target arrays be of compatible types. Compatible types are types that are assignment compatible.“

· Term ”assignment compatible“ is not defined. Please beware that this can not be “inherited” from Verilog2001 because of the new type system!
5.3 Constants

· If a constant instance of a class references another object, can this object be changed?

5.6 Nets, regs, logic

· “SystemVerilog variables may be packed or unpacked aggregates of other types.”

· Definition of aggregate is missing.
5.7 Signal Aliasing

· “The members of an alias list are signals whose bits share the same physical wires.”

· Definition of signal is missing.
7. Operators and expressions

· VERY IMPORTANT

· The valid types for the operators are not defined for the new SystemVerilog types!!

· It should be possible to overload operators. For example, important for a reasonable use of data type parameters!!
7.2 Operator syntax

· Following operator is missing:

· assignment op.: <=

7.3 Assignment, incrementor, and decrementor operations

· Following operator is missing:

· assignment op.: <=

7.9 Operator precedence and associativity

· Following operator is missing:

· assignment op.: <=

7.12 Unpacked array expressions
· “The type of each element is matched against the type of the expression according to the same rules as for a scalar.”
· Definition of “scalar” is missing.
7.14 Aggregate expression

· What is an aggregate?

· “Unpacked structure and array variables, literals, and expressions can all be used as aggregate expressions.”

· What is an aggregate expression? “... can be used as ... “ is not a definition!

8.3 Selection statements

· “A priority if indicates that a series of if...else...if conditions shall be evaluated in the order listed.”
· An if-statement always means evaluation of the conditions in a prioritized manner.

· “A unique case shall guarantee no overlapping case values, allowing the case items to be evaluated in parallel.”

· “shall guarantee” is too weak

· The same sentence from unique if should be used: “A software tool shall issue an error if it determines that there is a potential overlap in the conditions.”

8.5.2 Enhanced for loop

· Is “a” re-declared in the following example or is it only the change of its value?

int a=8;

for (int b=0, a=0; …);

8.6 Jump statement

· “The continue statement jumps to the end of the loop and executes the loop control if present.”

· I strongly recommend to change the wording because it is ambiguous. Please use the explanation used in C (“start next iteration”)!

10 Tasks and functions

· It should be possible to overload subroutines!
· this means two or more subroutines with equal name but different parameter lists

10.3 Functions
· “The default type in SystemVerilog is logic, which is compatible with Verilog.”

· logic does not exist in Verilog.

10.5.2 Pass by reference

· Contradiction in the two sentences:

· “Combining ref with any other qualifier is illegal.”

· “To protect arguments passed by reference from being modified by a subroutine, the const qualifier can be used together with ref to indicate that the argument, although passed by reference, is a read-only variable.”

· If an instance of a class (used as “const ref” parameter) references inside another object, can this object be changed in the subroutine?

11.3 Overview + 17.10 The property definition

· The term “property” is introduced twice into SystemVerilog for two different things!!

11.7 Constructors

· Semantic of the following example should be defined.

class A ;

 integer j = 5;

 function new();

 j = 3;

 endfunction

endclass
11.8 Class properties

· It should be mentioned that class properties can be used without any instance as in the example from the LRM.
Packet p;

c = $fgetc(p.fileID);

11.9 Static methods

· Different semantic of “static task” and “task static” is very confusing.

11.18 Abstract classes

· I suggest to change the grammar that there is no “endfunction” in the example:

virtual class BasePacket;

virtual protected function integer send(bit[31:0] data);

endfunction

endclass

· According to the LRM, non-abstract classes can have virtual methods (which must have a body). What is the difference to a “normal,” non-virtual methods? If there is none, they are not needed. As I know now:
 Virtual methods are a basic polymorphic construct. A virtual method overrides a method in all the base classes, whereas a normal method only overrides a method in that class and its descendants. One way to view this is that there is only one implementation of a virtual method per class hierarchy, and it is always the one in the latest derived class.

This is a very important info and should be inserted in the LRM in any case!

11.20 Polymorphism

· The method call “send” in the example can not be used if it is assumed a method from the example in 11.18 is called because they are protected. If there is no connection between the examples of the subsections, then the classes must be defined.

· Otherwise, the names of the classes are identical with the classes in the previous subsection. In addition they all have the method “send”, so every reader would assume that the used classes “BasePacket”, “EtherPacket” are the classes defined in the subsection before. But here “send” is defined as “protected”. So the only change, which is needed, is the removing of the keyword “protected” in the declaration of “send” in 11.19.

11.22 Out-of-block declaration (please note the orthography)

· The location, where the out-of-block declarations have to be, must be declared.
12.5.2 Random Constraints

· Only here the term “overload” is used (twice). Does this means the same as “override”? Definition is needed!!

13.2.1 new() (Semaphores)

· One sensible enhancement would be to define a maximal number of keys in the semaphores to avoid programming mistakes, which can happen very easily (e.g., a process puts two keys back instead of one so that two processes can get a key).
13.2.3 get() (Semaphores)

· “If the specified number of key are not available, the process blocks until the keys become available.”
· It should be defined, when exactly get() will continue after blocking. In the same time step ….

14.2 Event simulation

· Maybe, the special handling of always_comb etc. should be mentioned here.

14.3.1 The SystemVerilog simulation reference algorithm

· Initialization of consts are missing

· What is the initialization order in case of dependent initialization?

17.7.4 AND operation
· Figure 17-4: “te3 ##2 te4 ##2 te5” is true also before clock tick 12: at clock tick 6
· “Here, The two operand sequences …“
· “The” should be “the”.
17.7.5 Intersection

· The requirement “The length … must be the same.” is not enough. They must start (and stop) at the same time.

17.7.8 Conditions over sequences
· “If signal burst_mode were to be maintained low until clock tick 10, the expression would result in a match as shown in Figure 17-12.”
· To be consistent with figure 17-12, the sentence should be changed: “… until at least clock tick 10 …”

17.7.10 Detecting and using endpoint of a sequence

· Why can ended/matched only be used in sequences without formal arguments?
17.7.11 Implication

· “For each successful match of antecedent sequence_expr, consequent sequence_expr is separately evaluated, beginning at the end point of the match. That is, the end point of matching sequence from antecedent sequence_expr overlaps with start point of the consequent sequence_expr.”

· Then for the first example, I would expect that the property data_end is false at clock ticks 2 to 5, because the antecedent seq_expr is true and the consequent sequence_expr is false. This is missing in Figure 17-13.

· I would expect analogous behaviour in the second example. ‘data_end_exp should be false until clock tick 5. This should be visualized in Figure 17-14.
17.8 Manipulation data in a sequence (+ 17.10 The property definition)
sequence sub_seq2(lv);

a ##1 !a, lv = data_in ##1 !b*[0:$] ##1 b && (data_out == lv);

endsequence
· Why is the syntax of argument passing in sequences and properties different from the syntax of ports in subroutines? For instance, type checking can not be done! The language should be a little bit stronger typed!

17.11 Multiple clock support
1) multiple-clock sequence

sequence mult_s;

@(posedge clk) a ## @(posedge clk1) s1 ## @(posedge clk2) s2;

endsequence

2) property with a multiple-clock sequence

property mult_p1;

@(posedge clk) a ## @(posedge clk1) s1 ## @(posedge clk2) s2;

endproperty
· What exact is the difference between 1) and 2)?

sequence s1;

@(posedge clk1) a ##1 b; // single clock sequence

endsequence
property mult_p5

@(posedge clk1) s1;

endproperty
· Semantic of double clock reference is not explicitly defined.

17.11.1 Detecting and using endpoint of a sequence in multi-clock context

· To detect the end point of a sequence when the clock of the source sequence is different than the desalination sequence, method matched on the source sequence is used.
· What is a “desalination sequence”?
17.12.2 Embedding concurrent assertions in procedural code

property rule;

a ##1 b ##1 c;

endproperty

always @(posedge clk) begin

<statements>;

assert property (rule);

end
· “begin,” “assert,” and “property” should be bold

· “If the statement appears in an always block, the property is always monitored. If the statement appears in an initial block, then the monitoring is performed only on the first clock tick.”

· Is this valid also in the following example?
property rule;

a ##1 b ##1 c;

endproperty

always @(posedge clk) begin

#5;

<statements>;

assert property (rule);

end
17.12.1 Using concurrent assertion statements outside of procedural code
module top(input bit clk);

logic a,b,c;

sequence seq3;

@(posedge clk) b ##1 c;

endsequence

c1: cover property (seq3);

...

endmodule
· “cover” and “property” should be bold
17.13 Clock resolution
sequence s;

//sequence composed of two named sub-sequences

@(posedge s_clk) e ##1 s1 ##1 s2 ##1 f;

endsequence

sequence s1;

@(posedge clk1) a ##1 b; // single clock sequence

endsequence

sequence s2;

@(posedge clk2) c ##1 d; // single clock sequence

endsequence

· “These example sequences are used in Table 17-2 to explain the clock resolution rules for a sequence definition. The clock of any sequence when explicitly specified is indicated by X. The absence of a clock is indicated by a dash.”
· What does “when explicitly specified” mean? In the example, the clocks are always explicitly specified.

· What does “The absence of a clock” mean? Please, be a little more precise!

17.14 Binding properties to scopes or instances
interface range (input clk,enable, input int minval,expr);

property crange_en;

@(posedge clk) enable |-> (minval <= expr);

endproperty

range_chk: assert property (crange_en);

endinteface
· “enable” should not be bold

· The following description has no relation to the example, which is directly above.

Where:

— cpu1 is the name of module instance (cpu1 is an instance of module of module cpu).

— fpu_props is the name of the program containing properties.

— fpu_rules_1 is the program instance name.

— Ports (a, b,c) get bound to signals (a,b,c) of module instance cpu1.

— Only the cpu1 instance of cpu gets the properties.
· If I understand the construct “bind” right then it makes an implicit instantiation of a module, a program, or an interface. This should be mentioned explicitly!!
· What is the difference to a “normal” instantiation?

· What is the relation of “bind” and “properties”? Can I bind an arbitrary program, module, or interface to a module or an instance? Are there limitations? Must they contain properties? Is it allowed to write/read variables of the module/instance via the bound module/program/interface? If yes, why “bind” is needed?
· “In this example, interface range is instantiated in the module cr_unit. Effectively, every instance of module cr_unit shall contain the interface instance r1.”
· How can the instantiated interface be used? Is it inside or outside of the module?
18.5 Port declaration

· “For subsequent ports in the port list, if the type and direction are omitted, then both are inherited from the previous port.”

· It should be “port declaration list” instead of “port list”.

19.5.3 An example of exporting tasks and functions

· The tasks Read and Write are used (declared, defined, called) four times each. Sometimes they have one parameter, sometimes none. I assume that the slave defines the tasks and made them available via “export”. It seems, the master want to use exactly these tasks because the tasks with parameters are not defined in the interface, and in the master module (cpuMod), the comment describes explicitly the use of the slave method--but the call is made with a parameter!!
19.6 Parameterized interfaces

module memMod(interface a); // Uses just the interface keyword

logic avail;

always @(posedge b.clk) // the clk signal from the interface

a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(b.start)

if (a.mode[0] == 1’b0)

a.slaveRead;

else

a.slaveWrite;

endmodule
· “b.clock” and “b.start” should be “a.xxxx”

VERY IMPORTANT
· It is not clearly defined whether the parameters of the interfaces (e.g., a.AWIDTH) are accessible. This feature is very important and should be explicitly defined. Such functionality is a must for a clear hierarchical design. The parameters have to be inherited from the only natural place - the interfaces. Otherwise, I had to declare it twice – as a parameter of the module again, which is very error-prone because of inconsistency problems.
20. Parameter

· VERY IMPORTANT

· How can operations with generic types can be defined (as in the example j++) without knowing about the current type (could be a class, structure etc)?

· A comparison of types is needed if generic types should make sense.

· for instance:

· if (p2==shortint)

· case (p2)

shortint, int:

real: ...

Annex A
data_type ::=

integer_vector_type [signing] { packed_dimension } [range]
…

· What is “range” for? It looks like to be compatible with Verilog2001 but this should be given by packed_dimension, too.

Annex H

· The glossary is much too short. There are many terms in SV, which should be clarified here!
· Examples: block, program, procedure, subroutine, signal, property, scalar, assignment compatible, aggregate, formal etc. argument, parameter, port, type, qualifier
General

· An empty parameter list (for function, tasks, methods etc.) should always be written down by “()”

· By making this optional, the code becomes confusingly. This feedback was given by several people!!
