

Here are my review comments for the class chapter.

Main general comment:
This entire chapter looks more like a user manual or tutorial guiding the user to the use of
classes rather than a Language Reference standard. (may be because it was extracted
from Vera).The chapter needs to be rewritten in a more formal language so that it does
not stands out from the rest of the document.

DWS: This has been a continuing comment. There is nothing to do about it at this point.
Changes have been made, incrementally, to improve this.

Section 11.1:
SystemVerilog introduces the object-oriented class framework.

Q: The notion of framework is kind of foreign to Verilog.
Why not replacing this with:
SystemVerilog introduces an object-oriented class type system.
since classes are just a new type.

DWS: Done in LRM-201

Classes allow objects to be dynamically created and deleted, to be assigned, and to be
accessed via handles, which provide a safe pointer-like mechanism to the language.

The sentence above is grammatically incorrect and should be split into 2 sentences.

DWS: Done in LRM-201

I would replace the sentence below (removing the framework concept):
With inheritance and abstract classes, this framework brings the advantages of C function
pointers with none of the type-safety problems, thus, bringing true polymorphism into
Verilog.
with:
Classes offer inheritance and abstract type modeling which brings the advantages....

DWS: Done in LRM-201

Section 11.3:
Everywhere in Verilog we talk about tasks and functions, we should be consistent with
the terms and not use different ones such as subroutines.
A class is a type that includes data and subroutines that operate on that data.
I suggest to replace subroutines with functions, unless we describe them as methods of
the class. (method is also used in the data type chapter to refer to methods of the type
string or enum types). IN fact the terms are used later, why not introducing them

immediately in the first section.

DWS: This was discussed in EC. The term subroutine is being used in the generic sense
of “routines” that incorporate both tasks and functions. Replacing all uses of subroutines
with functions would be inappropriate. I would prefer to add (tasks and functions) in
parenthesis after the first use of subroutine to clarify. I would not be adverse to using the
term methods in other places where subroutines have been used but it would cause
problems in this introduction.
DWS: Done in LRM-202

The term object is used without being defined.
Should add something like:
an object is an instance of a class. The class properties and methods are available to the
object.

DWS: In 11.3 the term object is not just an instance of a class. It is a conceptually model.
It turns out that, with classes, it is an instance of a class. I guess I feel that this term is
widely enough defined in the literature to not feel compelled to define it here. The
definition you are looking for is actually given in Section 11.4.

Page 85 (example)
The data and methods portions should be delimited.
Sometimes the comment is on the first line, sometimes it is below.

class Packet ;
bit [3:0] command; // data portion
bit [40:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;
function new(); // initialization
command = IDLE;
address = 41’b0;
master_id = 5’bx;
endfunction
task clean();
command = 0; address = 0; master_id = 5’bx;
endtask
// public access entry points
task issue_request(int delay);
// send request to bus
endtask

DWS: Done in LRM-203

Q: Are functions defined in a class following the same syntax as regular SystemVerilog
functions?
 If that is true, function new(); is not legal Verilog it should be function new;
Q: What is the return data type of function new? Shouldn't it be explicit?

DWS: It does not need to be explicit since it is based on the class defined within. This is
the same as for C++.

Q: Can the task or functions inside a class be specified as automatic?
Q: if the mode is not specified, is it INPUT by default?
Q: can you have no ANSI C formal arguments? (old style funcitons and tasks)?
In other words are funcitons and tasks declared in classes following the same rules as
tasks
and functions in Verilog?
DWS: I believe that the functions used within Classes were not meant to support the non-
ANSI-C style prototypes. That is what we discussed in committee.

Q: are there any restrictions on functions and tasks declared in a class?
Q: how do you specify the return value of a function?
 IN Verilog you either assign the return value to the name of the function or you use a
return
statement. Does this rule apply here?
Q: is there any semantic restrictions on what the task/function can do?

DWS: Sent request to Arturo for responses to the above (all of them even the ones I
attempted to answer).

Section 11.4
The first paragraph needs to be rewritten in a standard LRM form
Replace:

The previous section only provided the definition of a class Packet. That is a new,
complex data type, but one
can’t do anything with the class itself. First, one needs to create an instance of the class, a
single Packet
object. The first step is to create a variable that can hold an object handle:
Packet p;
Nothing has been created yet. The declaration of p is simply a variable that can hold a
handle of a Packet
object. For p to refer to something, an instance of the class must be created using the new
function.
Packet p;
p = new;

With:
A class defines a data type, an instance of that class is called an object and can be created
by first declaring a variable of that class type and then allocating an object of that class
and assigning it
to the variable.
Packet p; // declare a variable of class Packet

p = new ; // initialize the variable to an new allocated object of the class Packet.

The variable p is said to hold a handle to an object of class Packet.

DWS: Done in LRM-204 (with some rewording)

Add a statement that Variables of class type are not static but dynamic.
Add a statement indicating which kind of Verilog things can be of a class type.
(regs, vars, parameters?....)

DWS: TBD

The sentence:
Accessing non-static members or virtual methods via a null object handle is illegal. The
result of an illegal
access via a null object is indeterminate, and implementations can issue an error.
EC-CH104
introduces for the first time "non-static members and virtual methods". These terms need
to
be defined and described in the previous section describing the class data type.

DWS: The LRM does many forward references. This is just another one.

The paragraph and table 11.2 below should be informative (may not be embedded here
and may be inserted at the end of this chapter) At least that way I think it would
not break the class chapter flow description, which I feel it does disrupt right now.

SystemVerilog objects are referenced using an “object handle”. There are some
differences between a C
pointer and a SystemVerilog object handle. C pointers give programmers a lot of latitude
in how a pointer may
be used. The rules governing the usage of SystemVerilog object handles are much more
restrictive. A C
pointer can be incremented for example, but a SystemVerilog object handle cannot. In
addition to
object handles, Section 3.7 introduces the chandle data type for use with the DPI Direct
Programming Interface (see Section 26).

DWS: I will leave it where it is at this point. It is at the end of the section. It does
document the difference between object handles and chandle (by forward reference
again).

The last column of the table 11-1 and 11-2 should be logically their first column (to help reading the table).

DWS: I cannot find Table 11-1. I will reorder the table. Done in LRM-205

Section 11.6:
The whole paragraph should be removed:

Note that we did not say:

status = current_status(p);

The focus in object-oriented programming is the object, in this case the packet, not the
function call. Also,
objects are self-contained, with their own methods for manipulating their own properties.
So the object doesn’t have to be passed as an argument to current_status(). A class’
properties are freely and broadly available to the methods of the class, but each method
only accesses the properties associated with its object, i.e., its instance.

The concept of a method working on a data type has already been introduced (strings, enums). Or if we
want to leave something of this effect, we should introduce it earlier as a characteristic to a data type and
forward refer the class chapter.

DWS: In the discussion in the SV-EC committee about this we decided to leave it in as
help to reader’s that might not be completely familiar with object oriented methodology. I
will choose to leave it. It reminds me of much of the 1364-2001 LRM where examples
and discussions seem prevalent (unlike 1076.1 which is concise and terse).

Page 88:
In the course of creating this instance, the new function is invoked,
in which any specialized initialization required may be done. The new task is also called
the class constructor.

Is new a task or a function?

DWS: Fixed in LRM-206

The new operation is defined as a function with no return type, thus, it must be
nonblocking. Even though
new does not specify a return type, the left-hand side of the assignment determines the
return type.

In Verilog a function cannot block, the "it must be nonblocking" should be removed.

DWS: Why remove it? It is not incorrect just highlighting a “truth”.

Q: isn't the new function always creating an object of the embedding class type?
Realistically
it has a return type even if it is not specified.

DWS: True but there is no return type (nor should there be) specified in the declaration.
Constructors are unique in C++ and SystemVerilog in that they are like functions but
have special semantics and behavior.

At the bottom of 11.7:
The conventions for arguments are the same as for procedural subroutine calls, including

the use of default
arguments.

Replace procedural subroutine with function/task.
Q: does it also include passing by name and position?

DWS: Changed the phrase from “including” to “such as” since the statement says it uses
the same conventions as for other procedural subroutine (as defined earlier) calls. The
term procedural is used to distinguish it from class subroutines.

Section 11.8
A formal definition of what can be a class property needs to be provided.
Which type are allowed?
Can you declare event type properties, reg properties, wires?

DWS: The BNF clearly defines the list of items as data_declaration which does not
include net_declaration. The discussion in 11.8 refers to variables (which do not include
nets). The BNF when added to 11.2 will include the list of legal items. I agree a more
formal description here would be helpful but the information does exist in the Section and
the BNF.

If possible, I suggest changing the terminology from class property to class data
members, because it is strange to denote an event variable as a property.

DWS: Good suggestion for future. A little too late for this kind of change in this version.
Class properties are also a viable alternative (more in line with object oriented usage).

I would designate the class task and functions as class behavioral members. (class
methods is also okay).

DWS: Class methods is how it is actually defined (with the term class being optional
when the context is obvious).

Section 11.8.1
This section should not be under class properties. It should be a parallel section or a
section under class methods.

DWS: Agreed. This was supposed to be 11.9. Oops. Fixed in LRM-208

Remove the use of subroutine.

DWS: The term subroutine is appropriate here as defined above.

End of the section:
A static method is different from a method with static lifetime. The former refers to the
lifetime of the method

within the class, while the latter refers to the lifetime of the arguments and variables
within the task.
class TwoTasks;
static task foo(); ... endtask // static class method with
// automatic variable lifetime
task static bar(); ... endtask // non-static class method with
// static variable lifetime
endclass

 The bnf for tasks and functions or class_item does NOT allow the static keyword before
the task and function keyword.

DWS: Then the BNF is wrong. It needs to be supported both before and after with
different meaning. Opened LRM-216

Section 11.9: a more formal definition for "this" should be there, rather than an informal
description.
For example:
"this" is a reserved identifier which denote the current instantiated object.

DWS: I would agree. I have updated the description to give a better definition. More
could still be done. This is done in LRM-209.

Q: is "this" a reserved word inside the class context?

DWS: Yes and no. It is a predefined class property (of a special type) similar to new
being a predefined class method (of a special type).

Section 11.10:
A more formal definition would be nice.

DWS: Yes it would ☺.

Section 11.11
The title refers to inheritance and sub-classes but the text does not define which syntax
specifies inheritance and which one specifies sub-classes.
A more clear definition of how to create a sub-class of a class is required.
A clear description on how to specify inheritance is required.
I suggest to rewrite this section and divide it into 2 sub-sections: sub-classes, inheritance.
And add the informative note that both provide ways to specialize classes into more
specific
data types.

DWS: This does not make sense. The sentence “… extend the class creating a new
subclass that inherits the members …” indicates there is only one action here. Extending
a class. The terms inheritance and sub-classes are both related to this, as indicated in the
text.

This section should define the terms of derived and parent classes, and specialized classes
as these terms are used later but not defined.

DWS: These terms are standard object oriented methodology defined in many places. Do
we need to define all English language terms used in the LRM? I know these are more
specific than generic English language but so are many other terms in the language. I will
live this for a future effort since the meanings are well defined.

Section 11.13 Super

The super keyword is used from within a derived class to refer to properties of the parent
class. It is necessary
to use super to access properties of a parent class when those properties are overridden by
the derived class.

Should say "properties and function and tasks members"
"Derived class" is not a defined term.

DWS: Derived class is well defined in the art. LRM_192 changed properties to members.

Replace:
The property may be a member declared a level up or a member inherited by the class
one level up.

With:
The property or task or function referred to with the super keyword must be a a member
declared a level up or a member inherited by the class one level up.

DWS: The proper wording is “The member may be declared a level up or be inherited by
the class one level up”. This is changed in LRM-210.

Add to the following paragraph that subclasses are also called derived classes.
Super classes are also called parent classes.

Subclasses are classes that are extensions of the current class. Whereas superclasses are
classes that the current class is extended from, beginning with the original base class.

DWS: Modified the previous paragraph to define derived, base, and sub classes in
LRM_211.

Section 11.14: casting
However, it may be legal to place the contents of the superclass handle in a subclass
variable.

Q: is it legal? or not? What does "may" means?

DWS: Clearly it depends on the contents of the subclass definition. In C++ one of the
constraints is due to multiple inheritance. We do not have that here. I have asked Arturo
for clarification.

Section 11.15:
Replace:
When a subclass is instantiated, one of the system’s first actions is to invoke the class
method new(). The first implicit action new() takes is to invoke the new() method of its
superclass, and so on up the inheritance hierarchy.
With:
When a subclass is instantiated it first invoke the class method new(). The first implicit or explicit
statement in the method new should be to invoke the new method of its superclass and so ...

DWS: Reworded in LRM-212

In the following sentence, the term base class is used but not defined.
Thus, all the constructors are called, in the proper order, beginning with the base class
and ending with the current class.

DWS: Defined in Section 11.13

The reminder of the section needs to be rewritten in a more formal way. It is also possible
to move the initialization of the new arguments to the section which introduce class
inheritance. The section which describes extends class_type should also mention that
arguments can be passed to the new constructor through the extend syntax.

DWS: No change in this version.

Section 11.16 hiding and encapsulation
In SystemVerilog, unlabeled properties and methods are public, available to anyone who
has access to the
object’s name.

A label has a specific meaning in Verilog, do not use "unlabeled" to mean that the
property/method
has no specific scope. I would suggest to change unlabled to unqualified.

DWS: Done in LRM-213

Section 11.17: Constant properties
First paragraph:
Global constants and Instance constants.
Q: Why capitalizing G and I?

DWS: Fixed in LRM-214

What is the meaning of the following paragraph ? Can I write static const int size = 0;

Note that the BNF does not allow it.

Typically, global constants are also declared static since they are the same for all
instances of the class.
However, an instance constant cannot be declared static, since that would disallow all
assignments in the
constructor.

DWS: Clearly this is what we voted to support. I have asked Stefen to fix the BNF.
LRM_215

Section 11.18:

The information in this section is valuable but does not look like a standard. This section
needs to be formalized and complemented by an example rather than walking the reader
through a tutorial. A formal definition of a virtual class and virtual method is needed.

DWS: Agree but not possible today. It is accurate and useful as is. The BNF provides the
syntax.

remove "subroutine"

DWS: See earlier discussion on subroutine.

Q: Can a method declared as virtual have a body? If so, then why is it declared as virtual?
This is not clear from this section.

DWS: The following indicates that only the prototype is specified and not the body. The
BNF also clarifies.
Virtual methods provide prototypes for subroutines, all of the information generally found on the first line
of a method declaration: the encapsulation criteria, the type and number of arguments, and the return type if
it is needed.
This means that a virtual cannot have a body. This should show up in the BNF as well.

Different size font used for specifying it can be made abstract by specifying,

DWS: Fixed in LRM-217

Section 11.19
Replace: (it sounds like superclass is a keyword)
Polymorphism allows one to use superclass to hold subclass objects, and to reference the
methods of those
subclasses directly from the superclass variable.

With:
Polymorphism allows one to use a superclass instance to hold subclass objects. Methods
of those

sub-classes are directly referenced from the superclass variable. The compiler performs
runtime dynamic lookup.

DWS: Fixed in LRM-218

Section 11.20
Q: is a nested class the same as a sub-class?

DWS: No. A nested class is defined within a class while a sub-class is derived.

Q: when the embedding class is instantiated, are all the nested classes instantiated?

DWS: Clarification from Arturo requested.

Section 11.21
any attributes (local, protected, public, or virtual)

I think that these were called hiding encapsulation qualifiers? Do not use the word
attribute as it has a special meaning in Verilog.

DWS: Done ion LRM-210

This section needs to be rewritten in a more formal way.

DWS: Formal is good but non-formal is ok.

Section 11.23
typedef class

Q: Is it required to have the keyword class in order to refer to a class type?
Section 3.10 does not say anything about it while this section says it is optional.
(see end of section 11.23)

in 3.10:

typedef foo; // forward type declaration
foo f = 1;
typedef int foo;

in section 11.23:
This is resolved using typedef to provide a forward declaration for the second class:
typedef class C2; // C2 is declared to be of type class
class C1
C2 c;
endclass
Note that the class keyword in the statement typedef class C2; is not necessary,
and is used only for documentation purposes. The statement typedef C2; is equivalent
and will work the same way.

DWS: In Section 3.10 the following is given which is consistent with 11.23 and the BNF

typedef type_declaration_identifier;

Section 11.24:
Bullet 2
2) SystemVerilog structs are type compatible so long as their bit sizes are the same, thus
copying structs
of different composition but equal sizes is allowed. In contrast, SystemVerilog objects are
strictly
strongly-typed. Copying an object of one type onto an object of another is not allowed.

What about polymorphism? it allows to assign a derived class to a parent class.

DWS: A parent and derived class are not different types as implied in the last sentence
above. They are related which allows for copying. Standard object oriented terminology.

Replace framework with type system.

DWS: Done in LRM-220

