
General
Sections 4.6.1 new[], 4.8 Arrays as arguments, 10.5.2 Pass by reference, 10.5.4
Argument passing by name, 12.6 In-line constraints - randomize() with, 13.3.5 get(), 13.4
Parameterized mailboxes, 13.8 $wait_var(), 15.2 Clocking domain declaration, 15.3 Input
and output skews, 18.7 Module instances

Editor’s Note: "parameter" is a Verilog keyword, and "parameterized" models refer to the usage of
Verilog "parameters" (see Sections 11.21, 19.6 and 20). Use of the word "parameterized" in this
context is not consistent with the Verilog LRM. Suggest using "arguments" (as in Verilog LRM),
"formal arguments" or "formals".

Section 2.5 Time Literals

The time literal is interpreted as a realtime value scaled to the current time unit and rounded to the
current time precision. Note that if a time literal is used as an actual parameter to a module or
interface instance, the current time unit and precision are those of the module or interface instance.

Editor’s Note: What is meant by "actual parameter" in the preceding paragraph? Is it referring to
the Verilog parameter data type?

Section 3.4 Time data types

Editor’s Note: BC08-05 says to "Remove section 3.4.1". There is no such section, and the change order does not have the requisite
details of which version it referred to, or what text is to be deleted.

Section 3.8.9 atoi(), atohex(), atooct(), atobin()

function integer atoi()
function integer atohex()
function integer atooct()
function integer atobin()

Editor’s Note: "integer" or "int"?

Section 3.10 User defined types

A typedef inside a generate may not define the actual type of a forward definition that exists
outside the scope of the forward definition.

Editor’s Note: Does "may not" in the preceding paragraph indicate a mandatory rule or an optional
rule? If mandatory, then change to "shall". If optional, the sentence needs to be rephrased to not be
ambiguous.

Section 7.12 Unpacked array expressions, 7.13 Structure
expressions, 7.14 Aggregate expressions, 7.15 Conditional operator

Editor’s Note: Both BC62a and BC65 added this new section. I used BC62a.

Section 8.10 Nonblocking event trigger

Editor’s Note: This new operator needs to be added to the operator precedence table and other
sections describing operator rules (signed/unsigned/2-state/4-state/real operands, etc.).

Section 10 Tasks and Functions

— Importing and exporting functions through the Direct Programming Interface (DPI)

Editor’s Note: Previous bullet added by the editor. It was not actually specified in EC-C120.

Section 10.6 Import and Export Functions

For any given cname, all declarations, regardless of scope, must have exactly the same type
signature. The type signature includes the return type, the number, order, direction and types of
each and every argument. Type includes dimensions and bounds of any arrays/array dimensions.
For import declarations, arguments can be open arrays. Open arrays are defined in Section 1.4.5
of the DPI LRM. Signature also includes the pure/context qualifiers that may can be associated
with an import definition.

Editor’s Note: What is meant by "Signature"?

Section 11.20 Class scope resolution operator::

Editor’s Note: This new operator needs to be added to the operator precedence table and other
sections describing operator rules (signed/unsigned/2-state/4-state/real operands, etc.).

Section 11.22 Parameterized classes
class vector #(parameter int size = 1;);

bit [size-1:0] a;
static int count = 0;
function void disp_count();

$display("count: %d of size %d", count, size);
endfunction

endclass

Editor’s Note: Verilog syntax is "int static". Is the "static int" above correct? NOTE: The Co-
design SystemSim simulator allows both forms. I submitted a request to the BC committee to
clarify if SystemVerilog was intended to also allow both forms. I do not know the result of that
request.

Section 12.4.3 Set membership

inside

Editor’s Note: This new operator needs to be added to the operator precedence table and other
sections describing operator rules (signed/unsigned/2-state/4-state/real operands, etc.).

Section 12.4.4 Distribution

dist

Editor’s Note: This new operator needs to be added to the operator precedence table and other
sections describing operator rules (signed/unsigned/2-state/4-state/real operands, etc.).

The := operator assigns the specified weight to the item, or if the item is a range, to every value in
the range.

The :/ operator assigns the specified weight to the item, or if the item is a range, to the range as a
whole. Ifthere are n values in the range, the weight of each value is range_weight / n.

Editor’s Note: These new operators need to be added to the operator precedence table and other
sections describing operator rules (signed/unsigned/2-state/4-state/real operands, etc.).

Section 12.4.5 Implication

=>

Editor’s Note: This new operator needs to be added to the operator precedence table and other
sections describing operator rules (signed/unsigned/2-state/4-state/real operands, etc.).

Section 12.4.9 Static constraint blocks

Editor’s Note: Verilog syntax puts "static" after the data type, the opposite of C. Should the
declaration for constraint be consistent with Verilog, or with C? Note that the Co-design
SystemSim simulator allows the static declaration of SystemVerilog variables to be in either order.
I submitted a request to the BC committee asking if the SystemVerilog LRM was intended to
allow the same. I do not know the result of that request.

Section 12.10.1 $urandom

function unsigned int $urandom [(int seed)] ;

Editor’s Note: Verilog syntax is "function int unsigned" instead of "function unsigned int". Co-
design’s SystemSim allows both Verilog and C styles.

Section 12.10.2 $urandom_range

function unsigned int $urandom_range(unsigned int maxval, unsigned int minval = 0);

Editor’s Note: Verilog syntax is “function int unsigned” instead of “function unsigned int” ?

Section 12.10.3 $srandom

task $srandom(int seed, [object obj]);

Editor’s Note: Is “object” a data type? There is no keyword “object” anywhere else in the LRM.

Section 14.4 The PLI callback control points

There are two kinds of PLI callbacks, those that are executed immediately when some object
changes value in an update event, and those that are explicitly registered as a one-shot evaluation
event.

Editor’s Note: The preceding paragraph does not account for all types of callbacks. For example:
cbStmt, cbEnterInteractive, cbStartOfReset, etc. These and some other callbacks are not logic
value related, and they may occur more than one time after being registered.

Section 18.7.3 Instantiation using implicit .name port connections

Editor’s Note: BC42-24 said to make “.name” all bold. This was not done, because the bold text is
used to designate a keyword, and “name” is not a keyword.

Section 18.8.3 Port connection rules for interfaces

See Section XX for more port connection rules with interfaces.

Editor’s Note: What is the cross reference for above?

Section 22.6 Assertion control system tasks, 22.7 Assertion system
functions

Editor’s Note: Are these system tasks to be removed? The new 3.1 assertion section does not
mention them.

Section 26.4.4 Import declarations

import "DPI" newQueue=function handle newAnonQueue(input string s=NULL);

Editor’s Note: Is the uppercase “NULL” correct? The SystemVerilog keyword is in lowercase.

Section 26.4.6.1 Open arrays

Here are examples of types of formal arguments (empty square brackets [] denote open array):

logic
bit [8:1]
bit[]
bit [7:0] b8x10 [1:10] // b8x10 is a formal arg name
logic [31:0] l32x [] // l32x is a formal arg name
logic [] lx3 [3:1] // lx3 is a formal arg name
bit [] an_unsized_array [] // an_unsized_array is a formal arg name

Editor’s Note: It is illegal in Verilog to start a name with a number (e.g. “132x”. Does that rule apply here?

Section 27.1.2 Nomenclature

Assertion Temporal expression—A declarative expression (one or more clock cycles) describing
the behavior

of a system over time. // This is the "body" of the assertion.

Editor’s Note: Why the underlined comment, above? Should it be regular text, or deleted?

Section 27.2 Extensions to VPI enumerations

These extension shall be merged into the contents of the vpi_user.h file, described in IEEE Std
1364-2001, Annex G. The numbers in the range 700 - 799 are reserved for the assertion portion
of the VPI.

Editor’s Note: Is “shall”, which means mandatory, too strong here? It seems to infer that users or software
vendors must modify the IEEE standard vpi_user.h header file, thereby making the file non IEEE compliant.

Section 27.2.3 Callbacks

27.2.2 Object properties
This section lists the object property VPI calls. The VPI reserved range for these call is 700 -
729.

/* Directives as properties */
#define vpiSequenceAssertion 701
#define vpiAssertAssertion 702
#define vpiAssumeAssertion 703
#define vpiRestrictAssertion 704
#define vpiCoverAssertion 705
#define vpiCheckAssertion 705 /* inlined behavior assertion */
#define vpiOtherDirectiveAssertion 706 /* placeholder for other
assertion directive */

27.2.3 Callbacks
This section lists the system callbacks. The VPI reserved range for these call is 700 - 719.

1) Assertion
#define cbAssertionStart 700
#define cbAssertionSuccess 701
#define cbAssertionFailure 702
#define cbAssertionStepSuccess 703
#define cbAssertionStepFailure 704
#define cbAssertionDisable 705
#define cbAssertionEnable 706
#define cbAssertionReset 707
#define cbAssertionKill 708

Editor’s Note: This section is using some of the same constant values as the previous section.

Section 27.3.2 Obtaining static assertion information

Any assertion updates from the SV-AC.
— Assertion source information: the file, line, and column where the assertion is defined.
— Assertion clocking domain/expression2

Editor’s Note: Item 6, above, does not seem appropriate in a standard. Should it be deleted?
Editor’s Note: Are the two dashed-list lines above part of item 6?
Editor’s Note: What is the “2” in “expression2”, above?

Section 27.4.1 Placing assertion “system” callbacks

Editor’s Note: Why is “system” in quotes?.

Section 27.4.2 Placing assertions callbacks

cbAssertionStepSucess
the progress of one “thread” along an attempt. By default, step callbacks are not enabled on any
assertions; they are enabled on a per-assertion/per-attempt basis, rather than on a per-assertion
basis.

Editor’s Note: Why is “thread” in quotes?.

Section 27.5.2 Assertion control
For the following operator, the second argument shall be a valid assertion handle, the third
argument shall be an attempt start-time (as a pointer to a correctly initialized s_vpi_time
structure) and the fourth argument shall be a “step control” constant.

Editor’s Note: Why is “step control” in quotes?.

Section 28.2 System Verilog real-time coverage access

This section ...

Editor’s Note: Something appears to be missing in this section.

Section 28.2.2 Built-in coverage access system functions

This section ...

Editor’s Note: Something appears to be missing in this section.

Section 28.3.1 Specifying the signal that holds the current state

/* tool state_vector signal_name */

where tool and state_vector are required keywords. This pragma needs to be specified
inside the module definition where the signal is declared.

Editor’s Note: Throughout this coverage API section, Verilog-2001 attributes should be used,
instead of using obsolete pragmas that are hidden in comments!

Section 28.3.6 Specifying the possible states of the FSM

parameter [1:0] /* tool enum enumeration_name */
S0 = 0,
s1 = 1,
s2 = 2,
s3 = 3;

Editor’s Note: Can SystemVerilog enumerated types be used instead of parameter constants? What
about ‘define macros

Section 28.4 VPI coverage extension, 28.4.1 VPI entity/relation
diagrams related to coverage

28.4 VPI coverage extensions

This section ...

Editor’s Note: Something appears to be missing in this section.

28.4.1 VPI entity/relation diagrams related to coverage

This section ...

Editor’s Note: Something appears to be missing in this section.

Section 28.4.3 Obtaining coverage information

All **what?? use vpi_get() along with the appropriate properties and object handles.

Editor’s Note: The preceding sentence needs to be fixed.

Section 28.4.4 Controlling coverage

28.4.4 Controlling coverage
Revise similar to Assertions

Editor’s Note: What is this comment referring to?

Annex D.1 Overview

Formal arguments in SystemVerilog can be specified as open arrays solely in import declarations;
exported SystemVerilog functions can not have formal arguments specified as open arrays. A
formal argument is an open array when a range of one or more of its dimensions is unspecified
(denoted in SystemVerilog by using empty square brackets ([])). This corresponds to a relaxation
of the DPI argument-matching rules (section 1.5.1). An actual argument shall match the
corresponding formal argument regardless of the range(s) for its corresponding dimension(s),
which facilitates writing generalized C code that can handle SystemVerilog arrays of different
sizes.

Editor’s Note: What is the correct cross reference, above?

Annex D.5 Semantic constraints

Note that the constraints expressed here merely restate those expressed in section 1.4.1.

Editor’s Note: What is the correct cross reference, above?

Annex D.5.5 context and non-context functions

Also refer to section 1.4.3.

Editor’s Note: What is the correct cross reference, above?

Annex D.5.6 pure functions

See also 1.4.2.

Editor’s Note: What is the correct cross reference, above?

Annex D.5.7 Memory management

See also section 1.4.1.4.

Editor’s Note: What is the correct cross reference, above?

Annex D.1.2 Mapping between SystemVerilog ranges and normalized
ranges

1) If a packed part of an array has more than one dimension, it is linearized as specified by the
equivalence of packed types (see section ??).

Editor’s Note: What is the correct cross reference, above?

Annex D.3.2 Calling SystemVerilog functions from C

It can be done while preserving the binary compatibility, see Annex D.7.5 and section A.11.11.

Editor’s Note: What is the correct cross reference, above?

Annex D.3.5 Allocating actual arguments for SystemVerilog-specific
types

compromising the portability (see section A.11.11). Such a technique does not work if a packed
array is a part of another type.

Editor’s Note: What is the correct cross reference, above?

Annex D.3.7 input arguments

[There is a problem here: ‘int’ is the same as svBitVec32, long long is not the snae as
svBitVect32[2], so how to return a value in the canonical representation as a function result,
if this value is between 33 and 64 bits?]

Editor’s Note: Has the preceding note been taken care of?

Annex D.4 Context functions

A small set of DPI utility functions is available to assist programmers when working with context
functions (see section A.8.3). If those utility functions are used with any non-context function, a
system error will result.

Editor’s Note: Has the preceding note been taken care of?

Annex D.6.2 DIrect access to unpacked arrays

Unpacked arrays, with the exception of formal arguments specified as open arrays, shall have the
same layout as used by a C compiler; they are accessed using C indexing (see section A.6.6).

Editor’s Note: What is the correct cross reference, above?

Annex D.7.1 Actual ranges

In the former case, all indices are normalized on the C side (i.e., 0 and up) and the programmer
needs to know the size of an array and be capable of determining how the ranges of the actual
argument map onto C-style ranges (see section A.6.6).

Editor’s Note: What is the correct cross reference, above?

	General
	Section 2.5 Time Literals
	Section 3.4 Time data types
	Section 3.8.9 atoi(), atohex(), atooct(), atobin()
	Section 3.10 User defined types
	Section 7.12 Unpacked array expressions, 7.13 Structure expressions, 7.14 Aggregate expressions, 7.15 Conditional operator
	Section 8.10 Nonblocking event trigger
	Section 10 Tasks and Functions
	Section 10.6 Import and Export Functions
	Section 11.20 Class scope resolution operator::
	Section 11.22 Parameterized classes
	Section 12.4.3 Set membership
	Section 12.4.4 Distribution
	Section 12.4.5 Implication
	Section 12.4.9 Static constraint blocks
	Section 12.10.1 $urandom
	Section 12.10.2 $urandom_range
	Section 12.10.3 $srandom
	Section 14.4 The PLI callback control points
	Section 18.7.3 Instantiation using implicit .name port connections
	Section 18.8.3 Port connection rules for interfaces
	Section 22.6 Assertion control system tasks, 22.7 Assertion system functions
	Section 26.4.4 Import declarations
	Section 26.4.6.1 Open arrays
	Section 27.1.2 Nomenclature
	Section 27.2 Extensions to VPI enumerations
	Section 27.2.3 Callbacks
	Section 27.3.2 Obtaining static assertion information
	Section 27.4.1 Placing assertion “system” callbac
	Section 27.4.2 Placing assertions callbacks
	Section 27.5.2 Assertion control
	Section 28.2 System Verilog real-time coverage access
	Section 28.2.2 Built-in coverage access system functions
	Section 28.3.1 Specifying the signal that holds the current state
	Section 28.3.6 Specifying the possible states of the FSM
	Section 28.4 VPI coverage extension, 28.4.1 VPI entity/relation diagrams related to coverage
	Section 28.4.3 Obtaining coverage information
	Section 28.4.4 Controlling coverage
	Annex D.1 Overview
	Annex D.5 Semantic constraints
	Annex D.5.5 context and non-context functions
	Annex D.5.6 pure functions
	Annex D.5.7 Memory management
	Annex D.1.2 Mapping between SystemVerilog ranges and normalized ranges
	Annex D.3.2 Calling SystemVerilog functions from C
	Annex D.3.5 Allocating actual arguments for SystemVerilog-specific types
	Annex D.3.7 input arguments
	Annex D.4 Context functions
	Annex D.6.2 DIrect access to unpacked arrays
	Annex D.7.1 Actual ranges

