Edits in the Manual (using 3.1 draft 3 section numbers) as of 3/17/03

Passed 1/22/03

SV-BC06, SV-BC85, SV-BC53:

REPLACE Section 7.3 title and all

WITH (Note new title):

Section 7.3: Assignment operators

In addition to the simple assignment operator, =, SystemVerilog includes the

C assignment operators and special bitwise assignment operators: +=, -=, *=,

/=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=. An assignment operator is semantically equivalent to a blocking assignment, with the exception that any left hand side index expression is only evaluated once. For example:

a[i]+=2; // same as a[i] = a[i] +2;

In SystemVerilog, an expression can include a blocking assignment, provided it does not have a timing control. Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b for a==b, or a|=b for a!=b.

if ((a=b)) b = (a+=1);

a = (b = (c = 5));

The semantics of such an assignment expression are those of a function

which evaluates the right hand side, casts the right hand side to the

left hand data type, stacks it, updates the left hand side and returns

the stacked value. The type returned is the type of the left hand side

data type. If the left hand side is a concatenation, the type returned

shall be an unsigned integral value whose bit length is the sum of the

length of its operands.

It shall be illegal to include an assignment operator in an event

expression, in an expression within a procedural continuous assignment,

or in an expression that is not within a procedural statement.

SystemVerilog also includes the C incrementor and decrementor assignment

operators ++i, --i, i++, and i--. These do not need parentheses when

used in expressions. These increment and decrement assignment operators

behave as blocking assignments.

The ordering of assignment operations relative to any other operation within an expression is undefined. An implementation may warn whenever a variable is both written and read-or-written within an integral expression or in other contexts where an implementation cannot guarantee order of evaluation. Consider the

following example:

 i = 10;

 j = i++ + (i = i - 1);

After execution, the value of j can be 18, 19, or 20 depending upon the

relative ordering of the increment and the assignment statements.

UPDATE: the table of contents to reflect the new title

SV-BC44-15: Remove "changed" from the list of keywords in Annex B.

Passed 1/29/03

SV-BC19-49-1: ADD "edge" as a keyword in Annex B.

SV-BC02:

Replace "Section 17.6 Time unit and precision" with

SystemVerilog has a time unit and precision declaration which has the

equivalent functionality of the 'timescale compiler directives in

Verilog-2001. Use of these declarations removes the file order

dependencies problems with compiler directives. The time unit and

precision can be declared by the timeunit and timeprecision keywords,

respectively, and set to a time literal which must be a power of 10

units. For example:

timeunit 100ps;

timeprecision 10fs;

There can be only one time unit and one time precision for any module or

interface definition, or in $root. This will define a time scope. If

specified, the timeunit and timeprecision declarations shall precede any

other items in the current time scope. The timeunit and timeprecision

declarations may be repeated as later items, but must match the previous

declaration within the current time scope.

If a timeunit is not specified in the module or interface definition,

then the time unit is determined using the following rules of precedence:

1. If the module or interface definition is nested, then the time

unit is inherited from the enclosing module or interface.

2. Else, if a 'timescale directive has been previously specified,

then the time unit is set to the units of the last 'timescale

directive.

3. Else, if the $root top level has a time unit, then the time

unit is set to the time units of the root module.

4. Else, the default time unit is used.

The time unit of $root shall only be determined by a timeunit declaration, not a 'timescale directive.

If a timeprecision is not specified in the current time scope, then the time precision is determined following the same precedence as with time units.

SV-BC08-05:

In 2.5 add the following at the end

The time literal is interpreted as a realtime value scaled to the current time unit and rounded to the current time precision. Note that if a time literal is used as an actual parameter to a

module or interface instance, the current time unit and precision are those of the module or interface instance.

In 3.2 move time from non_integer type to integer_atom_type

In 3.3 add time as 4-state Verilog-2001 data type, 64 bit integer

In 3.3.1 include time with logic, reg and integer

Remove section 3.4.1

In section 5.3 replace OLD

"A local parameter is a constant which is calculated at elaboration time, and can depend upon parameters or other local parameters at the top level or in the same module or interface"

with NEW

"A parameter or local parameter can only be set to an expression of literals, parameters or local parameters, genvars, or a constant function of these. Hierarchical names are not

allowed."

Replace OLD

"A specify parameter is also calculated at elaboration time, but it may be modified by the PLI, and so cannot be used to set parameters or local parameters"

with NEW

"A specparam can also be set to an expression containing one or more specparams"

Replace OLD

"A constant declared with the const keyword is calculated after elaboration. This means that it can contain an expression with any hierarchical path name. This constant is like a

variable which cannot be written"

with NEW

"A constant declared with the const keyword, can only be set to an expression of literals, parameters, local parameters, genvars, a constant function of these, or other constants. The

parameters, local parameters or constant functions can have hierarchical names. This is because the static constants are calculated after elaboration."

In section 18.5, ADD AFTER SECOND PARAGRAPH

If a module is connected to a modport containing an exported task or function, and the module does not define that task or function, then an elaboration error occurs. Similarly if the

modport contains an exported task or function prototype, and the task or function defined in the module does not exactly match that prototype, then an elaboration error occurs.

Section 18.5.4

REPLACE OLD

"Normally, only one module responds to the task call, e.g. the one containing the appropriate address. Only then should the task write to the result variables. Note multiple export of

functions is not allowed, because they must always write to the result"

WITH NEW

"The call to extern forkjoin task countslaves(); in the example below behaves as

 fork

 top.mem1.a.countslaves;

 top.mem2.a.countslaves;

 join

For a read task, only one module should actively respond to the task call, e.g. the one containing the appropriate address. The tasks in the other modules should return with no effect.

Only then should the active task write to the result variables.

Note multiple export of functions is not allowed, because they must always write to the result.

The effect of a disable on an extern forkjoin task is as follows:

If the task is referenced via the interface instance, all task calls should be disabled.

If the task is referenced via the module instance, only the task call to that module instance should be disabled.

If an interface contains an extern forkjoin task, and no module connected to that interface defines the task, then any call to that task reports a run-time error and returns immediately

with no effect.

REPLACE OLD EXAMPLE WITH

interface simple_bus (input bit clk); // Define the interface

 logic req, gnt;

 logic [7:0] addr, data;

 logic [1:0] mode;

 logic start, rdy;

 int slaves = 0;

 // tasks executed concurrently as a fork/join block

 extern forkjoin task countSlaves();

 extern forkjoin task Read(input logic [7:0] raddr);

 extern forkjoin task Write (input logic [7:0] waddr);

 modport slave(input req,addr, mode, start, clk,

 output gnt, rdy,

 inout data, slaves,

 export Read, Write, countSlaves);

 // export from module that uses the modport

 modport master(input gnt, rdy, clk,

 output req, addr, mode, start,

 inout data,

 import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));

 // import requires the full task prototype

 initial begin

 slaves = 0;

 countSlaves;

 $display ("number of slaves = %d", slaves);

 end

endinterface: simple_bus

module memMod #(parameter int minaddr=0, maxaddr=0;) (interface a);

 logic avail = 1;

 logic [7:0] mem[255:0];

 task a.countSlaves();

 a.slaves++;

 endtask

 task a.Read(input logic[7:0] raddr); // Read method

 if (raddr >= minaddr && raddr <= maxaddr) begin

 avail = 0;

 #10 a.data = mem[raddr];

 avail = 1;

 end

 endtask

 task a.Write(input logic[7:0] waddr); // Write method

 if (waddr >= minaddr && waddr <= maxaddr) begin

 avail = 0;

 #10 mem[waddr] = a.data;

 avail = 1;

 end

 endtask

endmodule

module cpuMod(interface b);

 typedef enum {read, write} instr;

 instr inst;

 logic [7:0] raddr;

 integer seed;

 always @(posedge b.clk) begin

 inst = instr'($dist_uniform(seed, 0, 1));

 raddr = $dist_uniform(seed, 0, 3);

 if (inst == read) begin

 $display("%t begin read %h @ %h", $time, b.data, raddr);

 callr:b.Read(raddr);

 $display("%t end read %h @ %h", $time, b.data, raddr);

 end

 else begin

 $display("%t begin write %h @ %h", $time, b.data, raddr);

 b.data = raddr;

 callw:b.Write(raddr);

 $display("%t end write %h @ %h", $time, b.data, raddr);

 end

 end

endmodule

module top;

 logic clk = 0;

 function void interrupt();

 disable mem1.a.Read; // task via module instance

 disable sb_intf.Write; // task via interface instance

 if (mem1.avail == 0) $display ("mem1 was interrupted");

 if (mem2.avail == 0) $display ("mem2 was interrupted");

 endfunction

 always #5 clk++;

 initial begin

 #28 interrupt();

 #10 interrupt();

 #100 $finish;

 end

 simple_bus sb_intf(clk);

 memMod #(0, 127) mem1(sb_intf.slave);

 memMod #(128, 255) mem2(sb_intf.slave);

 cpuMod cpu(sb_intf.master);

endmodule

SV-BC10b-1:

Add as Section 23 (Moving 23 to 24 and 24 to 25)

Section 23

VCD data

SystemVerilog does not extend the VCD format. Some SystemVerilog types may be dumped into a standard VCD file by masquerading as a Verilog type. The following table lists the basic SystemVerilog types and their mapping to a Verilog type for VCD dumping.

SystemVerilog
Verilog
Size

Bit

reg

Size of packed dimension

Logic

reg

Size of packed dimension

Int

integer
32

Shortint

integer
16

Longint

integer
64

Shortreal

real

Char

reg

8

Enum

integer
32

Packed arrays and structures are dumped as a single vector of reg. Multiple packed array dimensions are collapsed into a single dimension.

If an enum declaration specified a type, it is dumped as that type rather than the default shown above.

Unpacked structures appear as named fork-join blocks, and their member elements of the structure appear as the types above. Since named fork-join blocks with variable declarations are extremely rare, this will make structures easy to distinguish from variables declared in begin-end blocks.

As in Verilog 2001, unpacked arrays and automatic variables are not dumped.

Note that the current VCD format does not indicate whether a variable has been declared as signed or unsigned.

SV-BC18h:

3.1 (Informative) 2nd paragraph

OLD:

See section 3.3.1.

New

See sections 3.3.1 and 5.6.

5.1 (Informative) 3rd paragraph

OLD:

Verilog 2001 constants are literals, parameters, localparams and specparams. Verilog 2001 also has variables and nets. Variables must be written by procedural statements, and nets must be written by continuous assignments or ports.

NEW:

Verilog 2001 constants are literals, parameters, localparams and specparams. Verilog 2001 also has variables and nets. Variables must be written by procedural statements, and nets must be driven by continuous assignments or ports. SystemVerilog extends the functionality of variables by allowing them to either be written by procedural statements or driven by a single continuous assignment, like a wire. Since the keyword reg no longer describe the users intent in many cases, the keyword logic is added as a more accurate description that is equivalent to reg. Verilog 2001 has already deprecated the use of the term register in favor of variable.

5.6 Nets, regs, and Other Variables

Replace with:

Verilog 2001 states that a net can be written by one or more continuous assignments, primitive outputs or through module ports. The resultant value of multiple drivers is determined by the resolution function of the net type. A net cannot be procedurally assigned. If a net on one side of a port is driven by a variable on the other side, a continuous assignment is implied. A force statement can override the value of a net. When released, it returns to resolved value.

Verilog 2001 also states that one or more procedural statements can write to variables, including procedural continuous assignments. The last write determines the value. A variable cannot be continuously assigned. The force statement overrides the procedural assign statement, which in turn overrides the normal assignments. A variable cannot be written through a port, it must go through an implicit continuous assignment to a net.

In SystemVerilog, all variables can now be written either by one continuous assignment, or by one or more procedural statements, including procedural continuous assignments. It shall be an error to have multiple continuous assignments or a mixture of procedural and continuous assignments writing to the same variable. All data types may write through a port.

SystemVerilog variables may be packed or unpacked aggregates of other types. The assignments made to each element of a variable are independently examined using the longest static prefix rules. (See section TDB- SV-BC21) [Note: This will define an assignment like a[i] = expr; to be treated as an assignment to all elements of an array] It shall be an error to have a packed structure or array type written with a mixture of procedural and continuous assignments. Thus, an unpacked structure or array can have one element assigned procedurally, and another element assigned continuously. And, each element of a packed structure or array may each have a single continuous assignment. For example, assume the following structure declaration:

struct {

bit [7:0] A;

bit [7:0] B;

char C;

}

abc;

The following statements are legal assignments to struct abc:

assign abc.C = sel ? 8’hBE : 8’hEF;

not(abc.A[0],abc.B[0]), (abc.A[1],abc.B[1]), (abc.A[2],abc.B[2]), (abc.A[3],abc.B[3]);

always @(posedge clk) abc.B <= abc.B + 1;

The following additional statements are illegal assignments to struct abc:

// Multiple continuous assignments to abc.C

assign abc.C = sel ? 8’hDE : 8’hED;

// Mixing continuous and procedural assignments to abc.A

always @(posedge clk) abc.A[7:4] <= !abc.B[7:4];

For the purposes of the preceding rule, a declared variable initialization or a procedural continuous assignment is considered a procedural assignment. A force statement is neither a continuous or procedural assignment. A release statement will not change the variable until there is another procedural assignment, or will schedule a reevaluation of the continuous assignment driving it. A single force or release statement shall not be applied to a whole or part of a variable that is being assigned by a mixture of continuous and procedural assignments.

A continuous assignment is implied when a variable is connected to an input port declaration. This makes assignments to a variable declared as an input port illegal. A continuous assignment is implied when a variable is connected the output port of an instance. This makes procedural or continuous assignments to a variable connected to the output port of an instance illegal.

SystemVerilog variables cannot be connected to either side of an inout port. SystemVerilog introduces the concept of shared variables across ports with the ref port type. See section 12.8 (port connections) for more information about ports and port connection rules.

The compiler may issue a warning if a continuous assignment could drive strengths other then St0, St1, StX, or HiZ to a variable. In any case, SystemVerilog applies automatic type conversion to the assignment, and the strength is lost.

Note that a SystemVerilog variable cannot have an implicit continuous assignment as part of its declaration, the way a net can. An assignment as part of the logic declaration is a variable initialization, not a continuous assignment. For example:
wire w = vara & varb; // continuous assignment

logic v = consta & constb; // initial procedural assignment

logic vw; // no initial assignment

assign vw = vara & varb; // continuous assignment to a logic

real circ;

assign circ = 2.0 * PI * R; // continuous assignment to a real

SV-BC20:

ADD at the end of Section 3.10 as a new paragraph:

A typedef inside a generate may not define the actual

 type of a forward definition that exists outside the

 scope of the forward definition.

SV-BC29:

RENAME sections 22.3-22.6 to 22.4-22.7

ADD as Section 22.3 "Shortreal conversions"

 Verilog 2001 defines a "real" type and functions $realtobits and

 $bitstoreal to permit exact bit pattern transfers between a real and a

 64 bit vector. SystemVerilog adds the "shortreal" type and in a

 parallel manner, $shortrealtobits and $bitstoshortreal are defined to

 permit exact bit transfers between a shortreal and a 32 bit vector.

 [31:0] $shortrealtobits(shortreal_val) ;

 shortreal $bitstoshortreal(bit_val) ;

 $shortrealtobits converts from a shortreal number to the 32-bit

 representation (vector) of that shortreal number. $bitstoshortreal

 is the reverse of $shortrealtobits; it converts from the bit pattern to

 a shortreal number.

In Section 3.14:

REPLACE:

When a shortreal is converted to an int, its value is rounded as

in Verilog. So the conversion can lose information. When a shortreal is

converted to 32 bits, its bit pattern is preserved, which means it can be

converted back to the same value without any loss of information. This

technique can also be used for structures, where the $bits attribute gives

the size of a structure in bits (the $bits system function is discussed in

section 22.2):

WITH:

When a shortreal is converted to an int or to 32 bits, its value is

rounded as in Verilog. So the conversion can lose information. To convert

a shortreal to its underlying bit representation without a loss of

information,

use $shortrealtobits as defined in Section 22.3. To convert from the

bit representation of a shortreal value into a shortreal, use

$bitstoshortreal as defined in Section 22.3.

Structures can be converted to bits preserving the bit pattern, which means

they can be converted back to the same value without any loss of

information. The following example demonstrates this conversion. In the

example, the $bits attribute gives the size of a structure in bits (the

$bits system function is discussed in section 22.2):

SV-BC34a:

Replace Section 17.9 with

SystemVerilog has five namespaces for identifiers. Verilog's global

definitions name space collapses onto the module name space and exists

as the top-level scope, $root. Module, primitive, and interface

identifiers are local to the module name space where there are defined.

The five namespaces are described as follows:

 1. The /text macro name space/ is global. Since text macro names are

 introduced and used with a leading ' character, they remain

 unambiguous with any other name space. The text macro names are

 defined in the linear order of appearance in the set of input

 files that make up the description of the design unit. Subsequent

 definitions of the same name override the previous definitions for

 the balance of the input files.

 2. The /module name space/ is introduced by $root and the module,

 macromodule, interface, and primitive constructs. It unifies the

 definition of functions, tasks, named blocks, instance names,

 parameters, named events, net type of declaration, variable type

 of declaration and user defined types.

 3. The /block name space/ is introduced by named or unnamed blocks,

 the specify, function, and task constructs. It unifies the

 definitions of the named blocks, functions, tasks, parameters,

 named events, variable type of declaration and user defined types.

 4. The /port name space/ is introduced by the module, macromodule,

 interface, primitive, function, and task constructs. It provides a

 means of structurally defining connections between two objects

 that are in two different name spaces. The connection can be

 unidirectional (either input or output) or bi-directional (inout).

 The port name space overlaps the module and the block name spaces.

 Essentially, the port name space specifies the type of connection

 between names in different name spaces. The port type of

 declarations includes input, output, and inout. A port name

 introduced in the port name space may be reintroduced in the

 module name space by declaring a variable or a wire with the same

 name as the port name.

 5. The /attribute name space/ is enclosed by the (* and *) constructs

 attached to a language element (see 2.8). An attribute name can be

 defined and used only in the attribute name space. Any other type

 of name cannot be defined in this name space.

SV-BC44-06:

In 8.7(in 3.1v3), remove the sentence

 A statment label does not create a hierarchy scope.

 And

 This is not the same as a block name, however because it does not

 create a hierarchy scope.

SV-BC44-11,12: In Section 8.5 AFTER "jumps out of the loop"

 Insert "The continue and break statements cannot be used inside

 a fork...join block to control a loop outside the fork...join

 block.

SV-BC44-14: REPLACE the paragraph in Section 8.9:

 If a variable or net is not of type logic, then posedge and

 negedge refer to transitions from 0 and to 0 respectively. If the

 variable or net is a packed array or structure, it is zero if all

 elements are 0.

 With:

 If a variable is not of a 4-state type, then posedge and

 negedge refer to transitions from 0 and to 0 respectively.

SV-BC45:

Add at the end of Section 3.11.4:

An enum variable or identifier used as part of an expression is

automatically cast to the base type of the enum declaration (either

explicitly or using int as the default).

An assignment to an enum variable FROM an expression other than an enum

variable or identifier of the same type shall require a cast. Casting to

an enum type shall cause a conversion of the expression to its base type

without checking the validity of it value.

typedef enum {Red, Green, Blue} Colors;

typedef enum {Mo,Tu,We,Th,Fr,Sa,Su} Week;

Colors C;

Week W;

int I;

C = Colors'(C+1); // C is converted to an integer, then added to one,

then converted back to a Colors type

C = C + 1; C++; C+=2; C = I; // Illegal because they would all be

assignments of expressions without a cast

C = Colors'(Su); // Legal; puts an out of range value into C

I = C + W; // Legal; C and W are automatically cast to int

SV-BC58:

In Section 4.4 Replace:

int i = bitvec[j +: k]; // k must be constant.

a = {(b[c -: d]), e}; // d must be constant

with:

int i = bitvec[j +: k]; // k must be constant.

int a[x:y], b[y:z], e;

a = {b[c -: d], e}; // d must be constant

SV-BC62a:

Add to end of section 2.8 Structure literals

Structure literals can also use member name and value, or data type and default value (see Expressions):

c = {a:0, b:0.0}; // member name and value for that member

d = ab'{int:1, shortreal:1.0}; // data type and default value for all members of that type

To initialize an array of structures the nested braces should reflect the array and the structure, for example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Add after section 7.11 Concatenation

7.12 Unpacked Array Expressions

Braces are also used for expressions to initialize unpacked arrays. Unlike in C, the expressions must match element for element and the braces must match the array dimensions. The type of each element is matched against the type of the initializer expression according to the same rules as for a scalar. This means that the following do not give size warnings, unlike the similar assignments above:

bit unpackedbits [1:0] = {1,1}; // no size warning as bit can be set to 1

int unpackedints [1:0] = {1'b1, 1'b1}; // no size warning as int can be set to 1'b1

The syntax of multiple concatenation can be used for unpacked array initializers as well e.g. {3{1}} for {1, 1, 1}.

The {member:value} or {data type:default value} syntax can also be used:

ab abkey[1:0] = {{a:1, b:1.0}, {int:2, shortreal:2.0}};

It can sometimes be useful to set array elements to a value without having to keep track of how many members there are, or what the names are. This can be done with the default keyword:

initial unpackedints = {default:2}; // sets elements to 2

For more arrays of structures, it is useful to specify one or more matching types, as illustrated under structure expressions below. The rules for unpacked array matching are as follows:

For type:value: if the element or subarray type of the unpacked array exactly matches this type, then each element or subarray will be set to the value. The value must be castable to the array element or subarray type. Otherwise, if the unpacked array is multidimensional, then there is a recursive descent into each subarray of the array using the rules in this section and the type and default specifiers. Otherwise, if the unpacked array is an array of structures, there is a recursive descent into each element of the array using the rules for structure expressions and the type and default specifiers.

For default:value this specifies the default value to use for each element of an unpacked array that has not been covered by the earlier rules in this section. The value must be castable to the array element type.

7.13 Structure Expressions

A structure expression (packed or unpacked) can be built from member expressions using braces and commas, with the members in declaration order. It can also be built with the names of the members

module mod1;

 typedef struct {

 int x;

 int y;

 } st;

 st s1;

 int k = 1;

 initial begin

 #1 s1 = {1, 2+k}; // by position

 #1 $display(s1.x, s1.y);

 #1 s1 = {x:2, y:3+k); // by name

 #1 $display(s1);

 #1 $finish;

 end

endmodule

It can sometimes be useful to set structure members to a value without having to keep track of how many members there are, or what the names are. This can be done with the default keyword:

initial s1 = {default:2}; // sets x and y to 2

Note that the default keyword applies to members in nested structures or elements in unpacked arrays in structures. In fact it descends the nesting to a built-in type or a packed array of them.

struct {

 int A;

 struct {

 int B, C;

 }BC1, BC2;

}

ABC = {A:1, BC1:{B:2, C:3}, BC2:{B:4,C:5}};

DEF = {default:10};

To deal with the problem of members of different types, a type can be used as the key. This overrides the default for members of that type:

typedef struct {

 logic[7:0] a;

 bit b;

 bit [31:0] c;

 string s;

} sa;

sa s2;

initial s2 = {bit[31:0]:1, default:0, string:""}; // set all to 0 except the array of bits to 1 and string to ""

Similarly an individual member can be set to override the general default and the type default:

initial #10 s1 = {default:'1, s = ""}; // set all to 1 except s to ""

The matching rules are as follows:

A member:value: specifies an explicit value for a named member of the structure. The named member must be at the top level of the structure - a member with the same name in some level of substructure will NOT be set. The value must be castable to the member type, otherwise an error is generated.

The type:value specifies an explicit value for a field in the structure which exactly matches the type and has not been set by a fieldname specifier above. If the same key type is mentioned more than once, the LAST value is used.

The default:value applies to members that are not matched by either member name or type and are not either structures or unpacked arrays. The value must be castable to the member type, otherwise an error is generated. For unmatched structure members, the type and default specifiers are applied recursively according to the rules in this section to each member of the substructure. For unmatched unpacked array members, the type and default specifiers are applied to the array according to the rules for unpacked arrays.

Every member must be covered by one of these rules.

SV-BC67:

In 3.10, REPLACE:

 'interface' it ;

 'typedef' 'int' intP;

 'endinterface'

 it it1;

 'typedef' it1.intP intP;

WITH:

 'interface' it;

 'typedef' 'int' intP;

 'endinterface'

 it it1 ();

 'typedef' it1.intP intP;

SV-BC71:

At the end of 17.7.4 ADD:

 To support separate compilation, extern declarations of a

 module can be used to declare the ports on a module without

 defining the module itself. An extern module declaration

 consists of the keyword extern followed by the module name,

 and the list of ports for the module. Both list of ports

 syntax (possibly with parameters), and original Verilog

 style port declarations may be used. Note that the potential

 existence of defparams precludes the checking of the

 port connection information prior to elaboration time even for

 list of ports style declarations.

 The following example demonstrates the usage of extern

 module declarations.

 extern module m (a,b,c,d);

 extern module a #(parameter size= 8, parameter type TP = logic[7:0])

 (input [size:0] a, output TP b);

 module top ();

 wire [8:0] a;

 logic [7:0] b;

 m m (.*);

 a a (.*);

 endmodule

 Modules m and a are then assumed to be instantiated as:

 module top ();

 m m (a,b,c,d);

 a a (a,b);

 endmodule

 If an extern declaration exists for a module, it is possible to

 use .* as the ports of the module. This usage will be equivalent

 to placing the ports (and possibly parameters) of the extern

 declaration on the module. For example,

 extern module m (a,b,c,d);

 extern module a #(parameter size= 8, parameter type TP = logic[7:0])

 (input [size:0] a, output TP b);

 module m (.*);

 input a,b,c;

 output d;

 endmodule

 module a (.*);

 endmodule

 is equivalent to writing:

 module m (a,b,c,d);

 input a,b,c;

 output d;

 endmodule

 module a #(parameter size= 8, parameter type TP = logic[7:0])

 (input [size:0] a, output TP b);

 endmodule

 Extern module declarations can appear at any level of the

 instantiation hierarchy, but are visible only within the level of

 hierarchy in which they are declared. It shall be an error for

 the module definition to not exactly match the extern module

 declaration.

SV-BC72:

I propose adding a clarification like the following to SV LRM section 8.3

after the paragraphs about 'unique if' and 'priority if' --

 The 'unique' and 'priority' keywords apply to the entire series

 of 'if...else...if' conditions. In the preceding examples it

 would have been illegal to insert either keyword after any of

 the occurrences of 'else'.

SV-BC39:

In Section 18.4 on "Interfaces:Modports" ,

before the final sentence, add the following:

All of the names used in a modport declaration shall be declared

by the same interface as is the modport itself. In particular,

the names used shall not be those declared by another enclosing interface,

and a modport declaration shall not implicitly declare new ports.

The following interface declarations would be illegal:

 interface i;

 wire x, y;

 interface illegal_i;

 wire a, b, c, d;

 // x, y not declared by this interface

 modport master(input a, b, x, output c, d, y);

 modport slave(input a, b, x, output c, d, y);

 endinterface : illegal_i

 illegal_i ch1, ch2;

 modport master2 (ch1.master, ch2.master);

 endinterface : i

 interface illegal_i;

 // a, b, c, d not declared by this interface

 modport master(input a, b, output c, d);

 modport slave(output a, b, output c, d);

 endinterface : illegal_i

SV-BC78:

APPEND to the final paragraph of 18.5.1 --

 "The only exception is when a modport is used to import a function

 or task from another module, in which case a full prototype

 shall be used."

In the example of 18.5.2, CHANGE --

 " import task masterRead(input logic [7:0] raddr),

 task masterWrite(input logic[7:0] waddr));

 // import requires the full task prototype "

TO --

 " import masterRead,

 masterWrite);

 // import into module that uses the modport "

SV-BC80:

In the example of 18.5.1, REPLACE --

 memMod mem(sb_intf.slave); // only has access to the slaveRead task

 cpuMod cpu(sb_intf.master); // only has access to the masterRead task

WITH --

 memMod mem(sb_intf);

 cpuMod cpu(sb_intf);

In the example of 18.5.2, REPLACE --

 memMod mem(sb_intf.slave); // only has access to the slaveRead task

 cpuMod cpu(sb_intf.master); // only has access to the masterRead task

WITH --

 memMod mem(sb_intf.slave); // only has access to the slave tasks

 cpuMod cpu(sb_intf.master); // only has access to the master tasks

SV-BC75:

In section 5.5 Scope and lifetime, REPLACE the paragraph"

"Note that in SystemVerilog, data can be declared in unnamed blocks as

well as in named blocks, but in the

unnamed blocks a hierarchical name cannot be used to access it."

WITH

Note that in SystemVerilog, data can be declared in unnamed blocks as

well as in named blocks. This data is visible to the unnamed block and

any nested blocks below it. Hierarchical references cannot be used to

access this data by name.

SV-BC59:

In Section 8.3

REPLACE

 If either keyword is used, it shall be a run-time warning for

 no condition to match unless there is an explicit 'else'.

WITH

 If either keyword is used, it shall be a run-time error for

 no condition to match unless there is an explicit 'else'.

REPLACE

 // values 3,5,6,7 will cause a warning

WITH

 // values 3,5,6,7 will cause an error

REPLACE

 // covers all other possible values, so no warning

WITH

 // covers all other possible values, so no error

REPLACE

 If the case is qualified as 'priority' or 'unique', the

 simulator shall issue a warning message if an unexpected

 case value is found.

WITH

 If the case is qualified as 'priority' or 'unique', the

 simulator shall issue an error message if an unexpected

 case value is found.

REPLACE

 // values 3,5,6,7 will cause a run-time warning

WITH

 // values 3,5,6,7 will cause a run-time error

SV-BC79:

In 23.1, REPLACE --

 SystemVerilog enhances the capabilities of the

 `define compiler directive to support strings

 as macro arguments.

WITH --

 SystemVerilog enhances the capabilities of the

 `define compiler directive to support the

 construction of string literals and identifiers

 and enhances the `include directive to accept

 a filename constructed with a macro.

In 23.2, REPLACE --

 In SystemVerilog

with

 In Verilog

and REPLACE --

 The macro text can also include an isolated quote,

 which must be preceded by a back tic, `". This

 allows macro arguments to be included in strings.

 If the strings are to contain \", the macro text

 should be written `\`". Otherwise, the backslash

 will be treated as the start of an escaped identifier.

WITH

 In SystemVerilog, the macro text can also include

 `", and `\`" and ``. An `" overrides the

 usual lexical meaning of " and indicates that the expansion

 should include an actual quotation mark. This allows

 string literals to be constructed from macro arguments.

 A `\`" indicates that the expansion should include

 the escape sequence \", e.g.

 `define msg(x,y) `"x: `\`"y`\`"`"

 This expands:

 $display(`msg(left side,right side));

 to:

 $display("left side: \"right side\"");

and REPLACE

 The macro text can also include a double back tick,

 ``, to allow identifiers to be constructed from

 arguments, e.g.

WITH

 A `` delimits lexical tokens without introducing whitespace,

 allowing identifiers to be constructed from arguments, e.g.

and REPLACE

 foo(bar)

WITH

 `foo(bar)

and DELETE

 Note that there must be no space before the parenthesis.

 Otherwise it is treated as macro text.

and REPLACE

 `define f1 "/home/foo/myfile"

 `include `f1

WITH

 `define home(filename) `"/home/foo/filename`"

 `include `home(myfile)

SV-BC42-16:

In section 9.3 Replace:

"The always_latch procedure differs from a normal always procedure in

the following ways:

— There is an inferred sensitivity list that includes every variable

read by the procedure.

— The variables written on the left-hand side of assignments may not be

written to by any other process.

— The procedure is automatically triggered once at time zero, after all

initial and always blocks have

been started, so that the outputs of the procedure are consistent with

the inputs."

with

"The *always_latch* procedure determines its sensitivity and executes

identically to the *always_comb* procedure."

SV-BC42-24:

REPLACE in section 17.7.3:

"Implicit .name port connections do not have to be ordered the same as

the ports of the instantiated module.

The following rules apply to implicit .name port connections:

— For an implicit .name port connection to be legal, the connecting

variable name must match the port name

of the instantiated module.

— For an implicit .name port connection to be legal, the connecting

variable size must match the port size of

the instantiated module.

— For an implicit .name port connection to be legal, the connecting

variable data type must be compatible to

the port data type of the instantiated module. See section 12.7.5 for a

description of compatible data types

for implicit port connections.

— Implicit .name port connections cannot be used in the same

instantiation with positional port connections.

— Implicit .name port connections may be used in the same instantiation

with named port connections.

— Implicit .name port connections cannot be used in the same

instantiation with implicit .* port connections.

— The order of the implicit .name port connections does not have to

match the port-order of the instantiated

module.

— All connecting variables must be explicitly declared, either as a port

in the parent module (following the

rules of Verilog-2001) or as an explicit net or variable of one or more

bits."

WITH

A *.name* port connection is semantically equivalent to the named port

connection *.name(name)* port connection with the following exceptions:

— The identifier referenced by *.name* shall not create an implicit wire

declaration.

— It shall be illegal for a *.name* port connection to create an

implicit cast. This includes truncation or padding.

— A conversion between a 2-state and 4-state type of the same bit length is a

legitimate cast.

— A port connection between a net type and a variable type of the same bit

length is a legitimate cast.

— It shall be an error if a *.name* port connection between two dissimilar net

types would generate a warning message as required by the Verilog-2001 standard.

"

REPLACE in section 17.7.4:

"The following rules apply to implicit .* port connections:

— For an implicit .* port connection to be legal, all implicitly connected ports

must have a connecting variable

name to match the port name of the instantiated module.

— For an implicit .* port connection to be legal, all implicitly connected ports

must have a connecting variable

size to match the port size of the instantiated module.

— For an implicit .* port connection to be legal, the connecting variable data

type must be compatible to the

port data type of the instantiated module. See section 12.7.5 for a description

of compatible data types for

implicit port connections.

— Implicit .* port connections cannot be used in the same instantiation with

positional port connections.

— Implicit .* port connections may be used in the same instantiation with named

port connections.

— Implicit .* port connections cannot be used in the same instantiation with

implicit .name port connections.

— If implicit .* port connections are used in an instantiation, all unconnected

ports must be shown using

named port connections.

— When the implicit .* port connection is mixed in the same instantiation with

named port connections, the

implicit .* port connection token can be placed anywhere in the port list.

— All connecting variables must be explicitly declared, either as a port in the

parent module (following the

rules of Verilog-2001) or as an explicit net or variable of one or more bits.

"

WITH

An implicit .* port connection is semantically equivalent to a default *.name*

port connection for every port declared in the instantiated module. A named port

connection may be mixed with a .* connection to override the port connection to

a different expression or to leave the port unconnected.

When the implicit .* port connection is mixed in the same instantiation with

named port connections, the implicit .* port connection token can be placed

anywhere in the port list. The .* token may only appear at most once in the port

list.

"

DELETE section 17.7.5

Note that *.name* is .name in bold

.* is in bold

SV-BC26-2:

In Section 22.1:

CHANGE:

 SystemVerilog adds several system tasks and system functions.

TO:

 SystemVerilog adds system tasks and system functions as described

 in the following sections. In addition, SystemVerilog extends the

 behavior of the following:

 o %u and %z format specifiers:

 For packed data, %u and %z are defined to operate as though

 the operation were applied to the equivalent vector.

 For unpacked struct data, %u and %z are defined to apply as

 though the operation were performed on each member in declaration

 order.

 For unpacked union data, %u and %z are defined to apply as

 though the operation were performed on the first member in

 declaration order.

 %u and %z are not defined on unpacked arrays.

 The "count" of data items read by a %u or %z for an aggregate

 type is always either 1 or 0; the individual members are

 not counted separately.

 o $fread

 $fread has two variants -- a "register" variant and a set

 of three "memory" variants.

 The "register" variant,

 $fread(myreg, fd);

 is defined to be the one applied for all packed data.

 For unpacked struct data, $fread is defined to apply as

 though the operation were performed on each member in

 declaration order.

 For unpacked union data, $fread is defined to apply as

 though the operation were performed on the first member in

 declaration order.

 For unpacked arrays, the original definition applies except

 that unpacked struct or union elements are read as described

 above.

 o $readmemb and $readmemh

 $readmemb and $readmemh are extended to unpacked arrays

 of packed data. In such cases, they treat each packed

 element as the vector equivalent and perform the normal

 operation. $readmemb and $readmemh are not defined for

 packed arrays or unpacked arrays of unpacked data.

SV-BC42-11:

In Table 7-2 from the 3.1 version 3 draft:

 Replace the second row with:

 + - ! ~ & ~& | ~| ^ ~^ ^~ ++ -- (unary)

 Replace the fifth row with:

 + - (binary)

 Replace the ninth row with:

 & (binary)

 Replace the tenth row with:

 ^ ~^ ^~ (binary)

 Replace the 11th row with:

 | (binary)

 Replace the 14th row with:

 ?: (conditional operator)

 Replace the 17th row with:

 {} {{}}

The editors note for this table in the version 3 draft is correct that was

the right change.

SV-BC62c:

Add at the end section 7 (Operators and Expressions)

7.12 Aggregate Expressions

Unpacked structure and array variables, literals, and expressions may all be

used as aggregate expressions. A multi-element slice of an unpacked array is may

also be used as an aggregate expression.

Aggregate expressions may be copied in an assignment, through a port, or as an

argument to a task or function. Aggregate expressions may also be compared with

equality or inequality operators. To be copied or compared, the type of an

aggregate expression must be equivalent.

Unpacked structures types are equivalent by the hierarchical name of its type

alone. This means in order to have two equivalent unpacked structures in two

different scopes, the type must be defined in one of the following ways:

- Defined in a higher-level scope common to both expressions.

- Passed through type parameter.

- Imported by hierarchical reference.

Unpacked arrays types are equivalent by having equivalent element types and

identical shape. Shape is defined as the number of dimensions and the number of

elements in each dimension, not the actual range of the dimension.

7.13 Conditional Operator

conditional_expression ::= (From Annex A - A.8.3)

expression1 ? { attribute_instance } expression2 : expression3

As defined in Verilog, if expression1 is true, the operator returns expression2,

if false, it returns expression3. If expression1 evaluates to ambiguous value (x

or z), then both expression2 and expression3 shall be evaluated and their

results shall be combined, bit by bit.

SystemVerilog extends the conditional operator to non bit-level types and

aggregate expressions using the following rules:

- If both expression2 and expression3 are bit-level types, or a packed aggregate

of bit type, the operation proceeds as defined.

- If expression2 or expression3 is a bit-level type and the opposing expression

can be implicitly cast to a bit-level type, the cast is made and proceeds as

defined.

- For all other cases, the type of expression2 and expression3 must be equivalent.

If expression1 evaluates to ambiguous value, then both expression2 and

expression3 shall be evaluated and their results shall be combined,

element-by-element. If the elements match, the element is returned. If they do

not match, then the default-uninitialized value for that element's type shall be

returned.

SV-BC19-60:
Under 17.5 (referring to the System-Verilog 3.1 / Draft 3)

Add the following paragraph to the end of the section:

"Generic interface ports cannot be declared using the Verilog 95 list of

ports style. Generic interface ports can only be declared by using a list of

port declaration style

 module cpuMod(interface d, interface j);

 ...

 endmodule

"

Under 18.2.3

REPLACE

A module header can be created with an unspecified interface instantiation

as a place-holder for an interface to be selected when the module itself

is instantiated. The unspecified interface is referred to as a “generic”

interface port.

The following interface example shows how to specify a generic interface

port in a

module definition.

WITH

A module header can be created with an unspecified interface instantiation

as a place-holder for an interface to be selected when the module itself

is instantiated. The unspecified interface is referred to as a “generic”

interface port.

This generic interface port can only be declared by using the list of port

decleration style port declaration style. It will be illegal to declare such

a generic interface port

using the old Verilog 95 list of port style.

The following interface example shows how to specify a generic interface

port in a module definition.

SV-BC86:

In Section 1, REPLACE

 int, char, typedef

WITH

 int, typedef

Note that this list already leaves out some types like shortint that have

different names from the C equivalent, so leaving byte out should be fine.

In 2.6, REPLACE

 char c1 = "A";

WITH

 byte c1 = "A";

In 2.6, REPLACE

 char c3 [0:12] = "hello world\n";

WITH

 byte c3 [0:12] = "hello world\n";

In Syntax 3-1 and A2.2.1, REPLACE

 integer_atom_type ::= byte|char|shortint|int|longint|integer

WITH

 integer_atom_type ::= byte|shortint|int|longint|integer

In Table 3-1, DELETE line for char

In Table 3-1, REPLACE

 byte 2-state SystemVerilog data type, 8 bit signed integer

WITH

 byte 2-state SystemVerilog data type, 8 bit signed integer or ASCII

character

In 3.3.2, REPLACE

 The data types char, byte, shortint...

WITH

 The data types byte, shortint...

In 4.2, REPLACE

 These types are: char, byte, shortint...

WITH

 These types are: byte, shortint...

In 5.3, REPLACE

 localparam char colon1 = ":";

WITH

 localparam byte colon1 = ":";

In 17.5, REPLACE

 char y;

WITH

 byte y;

In 17.5, REPLACE

 (input char a, b)

WITH

 (input byte a, b)

In Annex B, DELETE the keyword char.

In the Index, DELETE the entry for char.

SV-BC61:

Include at the end of section 18.5.1 in draft 3

The argument types in a prototype must match the argument types in the function or task declaration. The rules for matching are like those in C. The types must be exactly the same,

or defined as being the same by a typedef declaration, or a series of typedef declarations. Two structure declarations containing the same members are NOT considered to be the

same type.

SV-BC61a:

ADD TO DRAFT 3 SECTION 4.7 BEFORE "A dynamic array can"

An array of wires can be assigned to an array of variables having the same

number of unpacked dimensions and the same length for each of those dimensions, and

vice-versa.

wire [31:0] W [9:0];

assign W = A;

initial #10 B = W;

SV-BC18f:

Replace Section 17.8 with:

17.8 Port Connections Rules

SystemVerilog extends Verilog port connections by making all variable data types available to pass through ports. It does this by allowing both sides of a port connection to have the same compatible data type, and by allowing continuous assignments to variables. It also creates a new type of port qualifier, ref, to allow shared variable behavior across a port by passing a hierarchical reference.

17.8.1 Port Connection Rules for variables

If a port declaration has a variable data type, then its direction controls how it can be connected when instantiated, as follows:

· An input port may be connected to any expression of a compatible data type. A continuous assignment is implied when a variable is connected to an input port declaration. Assignments to variable declared as an input port are illegal. If left unconnected, the port has the default initial value corresponding to the data type.

· An output port may be connected to a variable (or a concatenation) of a compatible data type. A continuous assignment is implied when a variable is connected the output port of an instance. Procedural or continuous assignments to a variable connected to the output port of an instance are illegal.

· An output port may be connected to a net (or a concatenation) of a compatible data type. In this case, multiple drivers are permitted on the net as in Verilog-2001.

· A variable data type is not permitted on either side of an inout port.

· A ref port shall be connected to an equivalent variable data type. References to the port variable are treated as hierarchal references to the variable it is connected to in its instantiation. This kind of port may not be left unconnected

17.8.2 Port Connection Rules for nets

If a port declaration has a wire type (which is the default), or any other net type, then its direction controls how it can be connected as follows:

· An input may be connected to any expression of a compatible data type. If left unconnected, it has the value ’z.

· An output may be connected to a net type (or a concatenation of net types) or a compatible variable type (or a concatenation of variable types).

· An inout may be connected to a net type (or a concatenation of net types) or left unconnected, but not to a variable type.

Note that where the data types differ between the port declaration and connection, an initial value change event may be caused at time zero.

17.8.3 Port Connection Rules for interfaces

A port declaration may be a generic interface or named interface type.. An interface port instance must always be connected to an interface instance or a higher-level interface port. An interface port cannot be left unconnected.

If a port declaration has a generic interface type, then it can be connected to an interface instance of any type.If a port declaration has a named interface type, then it must be connected to an interface instance of the identical type.

See Section XX for more port connection rules with interfaces.

17.8.4 Compatible Port Types

The same rules for assignment compatibility are used for compatible port types for ports declared as an input or an output variable, or for output ports connected to variables. SystemVerilog does not change any of the other port connection compatibility rules

17.8.5 Unpacked array ports and arrays of instances

For an unpacked array port, the port and the array connected to the port must have the same number of unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension of the array being connected.

If the size and type of the port connection match the size and type of a single instance port, the connection shall be made to each instance in an array of instances.

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be compared with the dimensions of the instance array. If they match exactly in size, each element of the port connection shall be matched to the port left index to left index, right index to right index. If they do not match it shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting with all right-hand indices to match the right most part-select, and iterating through the right most dimension first. Too many or too few bits to connect all the instances shall be considered an error.

SV-BC65:

Section numbers refer to SystemVerilog 3.0

Add to end of section 2.8 Structure literals

Structure literals can also use member name and value, or data type and default value (see Expressions):

c = {a:0, b:0.0}; // member name and value for that member

c = {default:0}; // all elements of structure c are set to 0

d = ab'{int:1, shortreal:1.0}; // data type and default value for all members of that type

To initialize an array of structures the nested braces should reflect the array and the structure, for example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Add after section 7.11 Concatenation

7.12 Unpacked Array Expressions

Braces are also used for expressions to assign to unpacked arrays. Unlike in C, the expressions must match element for element and the braces must match the array dimensions. The type of each element is matched against the type of the initializer expression according to the same rules as for a scalar. This means that the following do not give size warnings, unlike the similar assignments above:

bit unpackedbits [1:0] = {1,1}; // no size warning as bit can be set to 1

int unpackedints [1:0] = {1'b1, 1'b1}; // no size warning as int can be set to 1'b1

The syntax of multiple concatenations can be used for unpacked array expressions as well.

. unpackedbits = {2{y}} for {y, y}.

SystemVerilog determines the context of the braces by looking at the left hand side of an assignment. If the left hand side is an unpacked array, the braces represent an unpacked array literal or expression. Outside the context of an assignment on the right hand side, an explicit cast must be used with the braces to distinguish it from a concatenation.

It can sometimes be useful to set array elements to a value without having to keep track of how many members there are. This can be done with the default keyword:

initial unpackedints = {default:2}; // sets elements to 2

For more arrays of structures, it is useful to specify one or more matching types, as illustrated under structure expressions below.

Struct {int a; time b;} abkey[1:0];

abkey = {{a:1, b:2ns}, {int:5, time:$time}};

 The rules for unpacked array matching are as follows:

For type:value: if the element or subarray type of the unpacked array exactly matches this type, then each element or subarray will be set to the value. The value must be castable to the array element or subarray type. Otherwise, if the unpacked array is multidimensional, then there is a recursive descent into each subarray of the array using the rules in this section and the type and default specifiers. Otherwise, if the unpacked array is an array of structures, there is a recursive descent into each element of the array using the rules for structure expressions and the type and default specifiers.

For default:value this specifies the default value to use for each element of an unpacked array that has not been covered by the earlier rules in this section. The value must be castable to the array element type.

7.13 Structure Expressions

A structure expression (packed or unpacked) can be built from member expressions using braces and commas, with the members in declaration order. It can also be built with the names of the members

module mod1;

 typedef struct {

 int x;

 int y;

 } st;

 st s1;

 int k = 1;

 initial begin

 #1 s1 = {1, 2+k}; // by position

 #1 $display(s1.x, s1.y);

 #1 s1 = {x:2, y:3+k); // by name

 #1 $display(s1);

 #1 $finish;

 end

endmodule

It can sometimes be useful to set structure members to a value without having to keep track of how many members there are, or what the names are. This can be done with the default keyword:

initial s1 = {default:2}; // sets x and y to 2

The {member:value} or {data type:default value} syntax can also be used:

ab abkey[1:0] = {{a:1, b:1.0}, {int:2, shortreal:2.0}};

Note that the default keyword applies to members in nested structures or elements in unpacked arrays in structures. In fact it descends the nesting to a built-in type or a packed array of them.

struct {

 int A;

 struct {

 int B, C;

 }BC1, BC2;

}

ABC = {A:1, BC1:{B:2, C:3}, BC2:{B:4,C:5}};

DEF = {default:10};

To deal with the problem of members of different types, a type can be used as the key. This overrides the default for members of that type:

typedef struct {

 logic[7:0] a;

 bit b;

 bit [31:0] c;

 string s;

} sa;

sa s2;

initial s2 = {bit[31:0]:1, default:0, string:""}; // set all to 0 except the array of bits to 1 and string to ""

Similarly an individual member can be set to override the general default and the type default:

initial #10 s1 = {default:'1, s = ""}; // set all to 1 except s to ""

SystemVerilog determines the context of the braces by looking at the left hand side of an assignment. If the left hand side is an unpacked structure, the braces represent an unpacked structure literal or expression. Outside the context of an assignment on the right hand side, an explicit cast must be used with the braces to distinguish it from a concatenation.

The matching rules are as follows:

A member:value: specifies an explicit value for a named member of the structure. The named member must be at the top level of the structure - a member with the same name in some level of substructure will NOT be set. The value must be castable to the member type, otherwise an error is generated.

The type:value specifies an explicit value for a field in the structure which exactly matches the type and has not been set by a fieldname specifier above. If the same key type is mentioned more than once, the LAST value is used.

The default:value applies to members that are not matched by either member name or type and are not either structures or unpacked arrays. The value must be castable to the member type, otherwise an error is generated. For unmatched structure members, the type and default specifiers are applied recursively according to the rules in this section to each member of the substructure. For unmatched unpacked array members, the type and default specifiers are applied to the array according to the rules for unpacked arrays.

Every member must be covered by one of these rules.

7.14 Aggregate Expressions

Unpacked structure and array variables, literals, and expressions may all be used as aggregate expressions. A multi-element slice of an unpacked array is may also be used as an aggregate expression.

Aggregate expressions may be copied in an assignment, through a port, or as an argument to a task or function. Aggregate expressions may also be compared with equality or inequality operators. To be copied or compared, the type of an aggregate expression must be equivalent.

Unpacked structures types are equivalent by the hierarchical name of its type alone. This means in order to have two equivalent unpacked structures in two different scopes, the type must be defined in one of the following ways:

· Defined in a higher-level scope common to both expressions.

· Passed through type parameter.

· Imported by hierarchical reference.

Unpacked arrays types are equivalent by having equivalent element types and identical shape. Shape is defined as the number of dimensions and the number of elements in each dimension, not the actual range of the dimension.

7.15 Conditional Operator

conditional_expression ::= (From Annex A - A.8.3)

expression1 ? { attribute_instance } expression2 : expression3

As defined in Verilog, if expression1 is true, the operator returns expression2, if false, it returns expression3. If expression1 evaluates to ambiguous value (x or z), then both expression2 and expression3 shall be evaluated and their results shall be combined, bit by bit.

SystemVerilog extends the conditional operator to non bit-level types and aggregate expressions using the following rules:

· If both expression2 and expression3 are bit-level types, or a packed aggregate of bit type, the operation proceeds as defined.

· If expression2 or expression3 is a bit-level type and the opposing expression can be implicitly cast to a bit-level type, the cast is made and proceeds as defined.

· For all other cases, the type of expression2 and expression3 must be equivalent.

If expression1 evaluates to ambiguous value, then both expression2 and expression3 shall be evaluated and their results shall be combined, element-by-element. If the elements match, the element is returned. If they do not match, then the default-uninitialized value for that element's type shall be returned.

BNF (using 3.1 draft 2 section numbers)

SV-BC19-41: VSG #237

SV-BC19-45: VSG #238

SV-BC19-49: VSG #181 (ETF Passed)

SV-BC81-1:

In A.2.1.2, in output_declaration, the second occurrence of 'output'

should be bold.

SV-BC83:

ADD TO A.1.6 Interface Items

interface_or_generate_item ::=

 | {attribute_instance} extern_tf_declaration

extern_tf_declaration ::= extern method_prototype

 | extern forkjoin task named_task_proto ;

SV-BC84-1:

In A.1.3:

REPLACE: (bold endmodule ;)

module_declaration ::=

 { attribute_instance } module_keyword module_identifier [

parameter_port_list]

 list_of_ports ; [timeunits_declaration] { module_item }

 endmodule

 | {attribute_instance } module_keyword module_identifier [

parameter_port_list]

 [list_of_port_declarations] ; [timeunits_declaration] {

non_port_module_item }

 endmodule

WITH: (bold endmodule, "(.*)", ;)

module_nonansi_header ::=

 { attribute_instance } module_keyword module_identifier [

parameter_port_list]

 list_of_ports ;

module_ansi_header ::=

 {attribute_instance } module_keyword module_identifier [parameter_port_list]

 [list_of_port_declarations] ;

module_declaration ::=

 module_nonansi_header [timeunits_declaration] { module_item } endmodule

 | module_ansi_header [timeunits_declaration] { non_port_module_item }

endmodule

 | { attribute_instance } module_keyword module_identifier (.*) ;

 [timeunits_declaration] { module_item } endmodule

 | extern module_nonansi_header

 | extern module_ansi_header

REPLACE: (bold interface, endinterface)

interface_declaration ::=

 { attribute_instance } interface interface_identifier [parameter_port_list]

 list_of_ports ; [timeunits_declaration] { interface_item }

 endinterface [:interface_identifier]

 | {attribute_instance } interface interface_identifier [parameter_port_list]

 [list_of_port_declarations] ; [timeunits_declaration] {

non_port_interface_item }

 endinterface [:interface_identifier]

WITH: (bold interface, endinterface)

interface_nonansi_header ::=

 { attribute_instance } interface interface_identifier [parameter_port_list]

 list_of_ports ;

interface_ansi_header ::=

 {attribute_instance } interface interface_identifier [parameter_port_list]

 [list_of_port_declarations] ;

interface_declaration ::=

 interface_nonansi_header [timeunits_declaration] { interface_item }

 endinterface [:interface_identifier]

 | interface_ansi_header [timeunits_declaration] {

non_port_interface_item }

 endinterface [:interface_identifier]

 | { attribute_instance } interface_keyword interface_identifier (.*) ;

 [timeunits_declaration] { interface_item } endinterface [

:interface_identifier]

 | extern interface_nonansi_header

 | extern interface_ansi_header

In A.5.1

REPLACE:

udp_declaration ::=

 { attribute_instance } primitive udp_identifier (udp_port_list) ;

 udp_port_declaration { udp_port_declaration }

 udp_body

 endprimitive

 | { attribute_instance } primitive udp_identifier (

udp_declaration_port_list) ;

 udp_body

 endprimitive

WITH:

udp_nonansi_declaration ::=

 { attribute_instance } primitive udp_identifier (udp_port_list) ;

udp_ansi_declaration ::=

 { attribute_instance } primitive udp_identifier (

udp_declaration_port_list) ;

udp_declaration ::=

 udp_nonansi_declaration udp_port_declaration { udp_port_declaration }

 udp_body

 endprimitive

 | udp_ansi_declaration udp_body primitive

 | extern udp_nonansi_declaration

 | extern udp_ansi_declaration

 | { attribute_instance } primitive udp_identifier (.*) ;

 {udp_port_declaration} udp_body endprimitive

SV-BC42-33:

REPLACE section A.6.1 with:

continuous_assign ::= *assign* [drive_strength] [delay3]

list_of_net_assignments *;*

 | *assign* [delay_control]

list_of_variable_assignments *;*

list_of_net_assignments ::= net_assignment { *,* net_assignment }

net_assignment ::= net_lvalue *=* expression

list_of_variable_assignments ::= variable_assignment { *,*

variable_assignment }

SV-BC91:

REPLACE:

type_declaration ::=

 typedef data_type type_declaration_identifier ;

 | typedef hierarchical_identifier . type_identifier

type_declaration_identifier ;

WITH:

type_declaration ::=

 typedef [data_type] type_declaration_identifier ;

// typedef and ';' in bold

 | typedef hierarchical_identifier . type_identifier

type_declaration_identifier ; // typedef , '.' , and ';' in bold

SV-BC19-60:

In A.1.4

ADD

 non_generic_port_declaration ::=

 { attribute_instance } inout_declaration

 | { attribute_instance } input_declaration

 | { attribute_instance } output_declaration

 | interface_port_declaration

REPLACE

 port_declaration ::=

 { attribute_instance } inout_declaration

 | { attribute_instance } input_declaration

 | { attribute_instance } output_declaration

 | { attribute_instance } interface_port_declaration

WITH

 port_declaration ::=

 non_generic_port_declaration

 | { attribute_instance } generic_interface_port_declaration

In A.1.5

REPLACE

 module_item ::=

 port_declaration ';'

 | non_port_module_item

WITH

 module_item ::=

 non_generic_port_declaration ';'

 | non_port_module_item

In A.1.6

REPLACE

 interface_item ::=

 port_declaration ';'

 | non_port_interface_item

WITH

 interface_item ::=

 non_generic_port_declaration ';'

 | non_port_interface_item

Under A.2.1.2

ADD

 generic_interface_port_declaration ::=

 'interface' list_of_interface_identifiers

 | 'interface' '.' modport_identifier

list_of_interface_identifiers

REPLACE

 interface_port_declaration ::=

 'interface' list_of_interface_identifiers

 | 'interface' '.' modport_identifier

list_of_interface_identifiers

 | interface_identifier list_of_interface_identifiers

 | interface_identifier . modport_identifier

list_of_interface_identifiers

WITH

 interface_port_declaration ::=

 interface_identifier list_of_interface_identifiers

 | interface_identifier . modport_identifier

list_of_interface_identifiers

SV-BC86:

In A2.2.1, REPLACE

 integer_atom_type ::= byte|char|shortint|int|longint|integer

WITH

 integer_atom_type ::= byte|shortint|int|longint|integer

SV-BC69:

Under A.1.3

REPLACE

description ::=

module_declaration

| udp_declaration

| module_root_item

| statement

WITH

description ::=

module_declaration

| udp_declaration

| module_root_item

| statement_or_null

--

Under A.2.7

REPLACE

task_declaration ::=

 'task' ['automatic'] [interface_identifier '.']

task_identifier ';'

 { task_item_declaration }

 { statement }

 'endtask' [':' task_identifier]

 | 'task' ['automatic'] [interface_identifier '.']

task_identifier '(' task_port_list ')' ';'

 { block_item_declaration }

 { statement }

 'endtask' [':' task_identifier]

WITH

task_declaration ::=

 'task' ['automatic'] [interface_identifier '.']

task_identifier ';'

 { task_item_declaration }

 { statement_or_null }

 'endtask' [':' task_identifier]

 | 'task' ['automatic'] [interface_identifier '.']

task_identifier '(' task_port_list ')' ';'

 { block_item_declaration }

 { statement_or_null }

 'endtask' [':' task_identifier]

--

Under A.6.2

REPLACE

initial_construct ::= 'initial' statement

always_construct ::= 'always' statement

combinational_statement ::= 'always_comb' statement

latch_statement ::= 'always_latch' statement

ff_statement ::= 'always_ff' statement

WITH

initial_construct ::= 'initial' statement_or_null

always_construct ::= 'always' statement_or_null

combinational_statement ::= 'always_comb' statement_or_null

latch_statement ::= 'always_latch' statement_or_null

ff_statement ::= 'always_ff' statement_or_null

--

Under A.6.3

REPLACE

par_block ::=

'fork' [':' block_identifier] { block_item_declaration } { statement }

'join' [':' block_identifier]

seq_block ::=

'begin' [':' block_identifier] { block_item_declaration } { statement }

'end' [':' block_identifier]

WITH

par_block ::=

'fork' [':' block_identifier] { block_item_declaration } {

statement_or_null } 'join' [':' block_identifier]

seq_block ::=

 'begin' [':' block_identifier] { block_item_declaration } {

statement_or_null } 'end' [':' block_identifier]

--

Under A.6.4 (assuming the process rule was not removed by the EC)

REPLACE

statement_item ::=

 { attribute_instance } blocking_assignment ';'

 | { attribute_instance } nonblocking_assignment ';'

 | { attribute_instance } procedural_continuous_assignments

';'

 | { attribute_instance } case_statement

 | { attribute_instance } conditional_statement

 | { attribute_instance } inc_or_dec_expression ';'

 | { attribute_instance } function_call ';'

 | { attribute_instance } disable_statement

 | { attribute_instance } event_trigger

 | { attribute_instance } loop_statement

 | { attribute_instance } jump_statement

 | { attribute_instance } par_block

 | { attribute_instance } procedural_timing_control_statement

 | { attribute_instance } seq_block

 | { attribute_instance } system_task_enable

 | { attribute_instance } task_enable

 | { attribute_instance } wait_statement

 | { attribute_instance } 'process' statement

 | { attribute_instance } proc_assertion

WITH

statement_item ::=

 { attribute_instance } blocking_assignment ';'

 | { attribute_instance } nonblocking_assignment ';'

 | { attribute_instance } procedural_continuous_assignments

';'

 | { attribute_instance } case_statement

 | { attribute_instance } conditional_statement

 | { attribute_instance } inc_or_dec_expression ';'

 | { attribute_instance } function_call ';'

 | { attribute_instance } disable_statement

 | { attribute_instance } event_trigger

 | { attribute_instance } loop_statement

 | { attribute_instance } jump_statement

 | { attribute_instance } par_block

 | { attribute_instance } procedural_timing_control_statement

 | { attribute_instance } seq_block

 | { attribute_instance } system_task_enable

 | { attribute_instance } task_enable

 | { attribute_instance } wait_statement

 | { attribute_instance } 'process' statement_or_null

 | { attribute_instance } proc_assertion

--

Under A.6.8

REPLACE

loop_statement ::=

 'forever' statement

 | 'repeat' '(' expression ')' statement_or_null

 | 'while' '(' expression ')' statement_or_null

 | 'for' '(' variable_decl_or_assignment ';' expression ';'

variable_assignment ')' statement_or_null

 | 'do' statement 'while' '(' expression ')' ';'

WITH

loop_statement ::=

 'forever' statement_or_null

 | 'repeat' '(' expression ')' statement_or_null

 | 'while' '(' expression ')' statement_or_null

 | 'for' '(' variable_decl_or_assignment ';' expression ';'

variable_assignment ')' statement_or_null

 | 'do' statement_or_null 'while' '(' expression ')' ';'

Segment 2

Under A.2.6

REPLACE

function_declaration ::=

'function' ['automatic'] [signing] [range_or_type]

 [interface_identifier '.'] function_identifier ';'

{ function_item_declaration }

{ function_statement }

'endfunction' [':' function_identifier]

| 'function' ['automatic'] [signing] [range_or_type]

 [interface_identifier '.'] function_identifier '('

function_port_list ')' ';'

 { block_item_declaration }

 { function_statement }

 'endfunction' [':' function_identifier]

WITH

'function' ['automatic'] [signing] [range_or_type]

 [interface_identifier '.'] function_identifier ';'

{ function_item_declaration }

{ function_statement_or_null }

'endfunction' [':' function_identifier]

| 'function' ['automatic'] [signing] [range_or_type]

 [interface_identifier '.'] function_identifier '('

function_port_list ')' ';'

 { block_item_declaration }

 { function_statement_or_null }

 'endfunction' [':' function_identifier]

--

Under A.6.3

REPLACE

function_seq_block ::=

'begin' [':' block_identifier { block_item_declaration }] {

function_statement } 'end'

WITH

'begin' [':' block_identifier { block_item_declaration }] {

function_statement_or_null } 'end'

--

Under A.6.8

function_loop_statement ::=

 'forever' function_statement

 | 'repeat' '(' expression ')' function_statement_or_null

 | 'while' '(' expression ')' function_statement_or_null

 | 'for' '(' variable_decl_or_assignment ';' expression ';'

variable_assignment ')'

 function_statement_or_null

 | 'do' function_statement 'while' '(' expression ')' ';'

WITH

function_loop_statement ::=

 'forever' function_statement_or_null

 | 'repeat' '(' expression ')' function_statement_or_null

 | 'while' '(' expression ')' function_statement_or_null

 | 'for' '(' variable_decl_or_assignment ';' expression ';'

variable_assignment ')'

 function_statement_or_null

 | 'do' function_statement_or_null 'while' '(' expression ')' ';'

Segment 3

Under A.1.5

REPLACE

module_or_generate_item ::=

 { attribute_instance } parameter_override

 | { attribute_instance } continuous_assign

 | { attribute_instance } gate_instantiation

 | { attribute_instance } udp_instantiation

 | { attribute_instance } module_instantiation

 | { attribute_instance } initial_construct

 | { attribute_instance } always_construct

 | { attribute_instance } combinational_statement

 | { attribute_instance } latch_statement

 | { attribute_instance } ff_statement

 | module_common_item

WITH

module_or_generate_item ::=

 { attribute_instance } parameter_override

 | { attribute_instance } continuous_assign

 | { attribute_instance } gate_instantiation

 | { attribute_instance } udp_instantiation

 | { attribute_instance } module_instantiation

 | { attribute_instance } initial_construct

 | { attribute_instance } always_construct

 | { attribute_instance } combinational_statement

 | { attribute_instance } latch_statement

 | { attribute_instance } ff_statement

 | module_common_item

 | { attribute_instance } ';'

--

Under A.1.6

REPLACE

interface_or_generate_item ::=

 { attribute_instance } continuous_assign

 | { attribute_instance } initial_construct

 | { attribute_instance } always_construct

 | { attribute_instance } combinational_statement

 | { attribute_instance } latch_statement

 | { attribute_instance } ff_statement

 | { attribute_instance } local_parameter_declaration

 | { attribute_instance } parameter_declaration ';'

 | module_common_item

 | { attribute_instance } modport_declaration

WITH

interface_or_generate_item ::=

 { attribute_instance } continuous_assign

 | { attribute_instance } initial_construct

 | { attribute_instance } always_construct

 | { attribute_instance } combinational_statement

 | { attribute_instance } latch_statement

 | { attribute_instance } ff_statement

 | { attribute_instance } local_parameter_declaration

 | { attribute_instance } parameter_declaration ';'

 | module_common_item

 | { attribute_instance } modport_declaration

 | { attribute_instance } ';'

Segment 4

Under A.4.2.1

REMOVE

generate_module_item_or_null ::= generate_module_item | ';'

--

REPLACE

generate_module_conditional_statement ::=

'if' (constant_expression) generate_module_item_or_null ['else'

generate_module_item_or_null]

...

genvar_module_case_item ::=

 constant_expression { , constant_expression } ':'

generate_module_item_or_null

 | 'default' [':'] generate_module_item_or_null

WITH

generate_module_conditional_statement ::=

'if' (constant_expression) generate_module_item ['else'

generate_module_item]

...

genvar_module_case_item ::=

 constant_expression { ',' constant_expression } ':'

generate_module_item

 | 'default' [':'] generate_module_item

--

Under A.4.2.2

REMOVE

generate_interface_item_or_null ::= generate_interface_item | ';'

--

REPLACE

generate_interface_conditional_statement ::=

'if' (constant_expression) generate_interface_item_or_null ['else'

generate_interface_item_or_null]

...

genvar_interface_case_item ::=

 constant_expression { ',' constant_expression } ':'

generate_interface_item_or_null

 | 'default' [':'] generate_interface_item_or_null

WITH

generate_interface_conditional_statement ::=

'if' (constant_expression) generate_interface_item ['else'

generate_interface_item]

...

genvar_interface_case_item ::=

 constant_expression { ',' constant_expression } ':'

generate_interface_item

 | 'default' [':'] generate_interface_item

SV-BC96:

Under A.8.4

REPLACE

 primary ::=

 number

 | hierarchical_identifier

 | hierarchical_identifier [expression] { [expression] }

 | hierarchical_identifier [expression] { [expression] } [

range_expression]

 | hierarchical_identifier [range_expression]

 | concatenation

 | multiple_concatenation

 | function_call

 | system_function_call

 | constant_function_call

 | (mintypmax_expression)

 | { expression { , expression } }

 | { expression { expression } }

 | simple_type_or_number ’ (expression)

 | simple_type_or_number ’ { expression { , expression } }

 | simple_type_or_number ’ { expression { expression } }

 | time_literal

 | ’0 | ’1 | ’z | ’Z | ’x | ’X

WITH

REPLACE

 primary ::=

 number

 | hierarchical_identifier

 | hierarchical_identifier [expression] { [expression] }

 | hierarchical_identifier [expression] { [expression] } [

range_expression]

 | hierarchical_identifier [range_expression]

 | concatenation

 | multiple_concatenation

 | function_call

 | system_function_call

 | constant_function_call

 | (mintypmax_expression)

 | { expression { , expression } }

 | { expression { expression } }

 | casting_type’ (expression)

 | casting_type’ { expression { , expression } }

 | casting_type’ { expression { expression } }

 | time_literal

 | ’0 | ’1 | ’z | ’Z | ’x | ’X

Under A.2.2.1

REMOVE

 simple_type_or_number ::= simple_type | number

ADD

 casting_type ::= simple_type | number | signing

SV-BC19-12a:

Replace type_declaration in A.2.13 with ---(typedef, period is in bold)

type_declaration ::=

 typedef data_type type_declaration_identifier ;

 | typedef hierarchical_identifier . type_identifier type_declaration_identifier ;

SV-BC70:

In A.9.3, change type_declaration_identifier from

 type_declaration_identifier ::=

 type_identifier { packed_dimension }

to

 type_declaration_identifier ::=

 type_identifier { unpacked_dimension }

SV-BC73:

In section A.8.7 --

ADD

 implicit_base_binary_number ::= '0 | '1 | 'X | 'x | 'Z | 'z

REPLACE

 binary_number ::= [size] binary_base binary_value

WITH

 binary_number ::= [size] binary_base binary_value

 | implicit_base_binary_number

SV-BC74:

Proposal --

 1) In A.1.3, replace each of the two occurrences of 'endmodule'

 with

 'endmodule' [':' module_identifier]

 2) In A.5.1, replace each of the two occurrences of 'endprimitive'

 with

 'endprimitive' [':' udp_identifier]

