
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s

Verilog Macros & Semicolons

Matt Maidment

Slide 2
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s Overview

Description
Workaround
BNF
Questions

Slide 3
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s Description

When making extensive use
of macros one would like to
use them as function calls
§ In Expressions or
§ Statements

Want natural termination
with a semicolon

Between definition and
usage
§ semicolon use excessive
§ null statements

introduced

`define foo(a,b,c) \
always @(posedge c) \

a <= b ;

module m();
logic out,in,clk;
. . .
`foo(out,in,clk);
endmodule

always @(posedge clk)
out <= in ;;

Slide 4
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s Description

Verilog further complicates
matters with begin-end
constructs
When using this macro
CANNOT terminate with a
semicolon
Many Verilog Constructs
Complicate Macros
§ generate/endgenerate
§ fork/join
§ begin/end
§ module/endmodule
§ function/endfuntion
§ task/endtask

`define foo(a,b,c) \
always @(posedge c) begin\

a <= b; \
end

Slide 5
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s Description

This is not a new problem, well-known in C
§ See ‘info cpp’ Swallowing the Semicolon

§ Suggestion is to wrap macro in
do {...} while (0);

Is there a well-known workaround in Verilog or are
macros too new?

`

Slide 6
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s

`define foo(a,b,c) \
always @(posedge c) begin \
a <= b; \

`foo(a,b,clk); //it works!

`define foobar(d) \
begin \
d = d + 1; \

always_comb begin
`foo(d) //OOPS NO ;
a = b; //THIS COMPILES!

Workaround

For any Macro that ends with
an join/end* terminate macro
with

initial if(0)
It’s not pretty but it works for
macros intended for module
scope

Similar workaround could be
extended to macros used in
always/initial blocks
§ Note true branch for safety

just in case

initial if(0)end

if (1)end

Slide 7
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s BNF

Verilog does not have a universal notion of
statements
§ Modules contain instances, tf definitions and

constructs (always/initial)

§ “Statements” live in constructs and tf definitions

Null statements are defined but only in special cases
Null module item does not exist

Slide 8
Jan 17, 2003

V
er

ilo
g

 M
ac

ro
s

&
 S

em
ic

o
lo

n
s Questions

Was the lack of null ever considered?
§ Why not allow end; or ;;

Could null be added?
What is committee’s take on this?

